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This study investigates the dynamic instability behavior of a column carrying
a concentrated mass with oscillating motion along the column axis. The dynamic
equation of the column was derived based on the assumed-modes method. The
derived dynamic equation, which contains parametrically excited terms associated
with modal accelerations, modal velocities, and modal displacements, is a general
form of Mathieu's equation. A new analytical method used to determine the
instability regions of the column was directly applied to the transition state. This
method is di!erent from the traditional perturbation method in which a criterion,
involving the determination of the characteristic exponents, is used to yield the
transition curves. The principal vibration frequencies, the ratio of principal
amplitudes, and the phase di!erence between the parametrically excited force
and the principal frequency response on the transition state were obtained
systematically. The parametric instability behavior of a column carrying
a periodically moving concentrated mass is di!erent from that of a column
subjected to a periodic tangential inertia force. The present case contains the simple
resonances and combination resonances of sum type only, while the case with
tangential inertia force may contain the combination resonances of the di!erence
type additionally. Four examples are given to demonstrate the instability behavior
of various columns carrying concentrated oscillating mass along the column axis at
varying positions. ( 1999 Academic Press.
1. INTRODUCTION

The dynamic instability of elastic structural elements, such as rods, beams and
columns, induced by parametric excitation has been investigated by many
researchers. Extensive bibliographies on this subject were given by
Evan-Iwanowski [1] and Nayfeh and Mook [2]. Bolotin [3] provided a general
introduction to analyze the dynamic stability problems of various structural
elements. Hsu [4}6], Nayfeh and Mook [7], and Yamamoto and Saito [8] used the
perturbation method to solve Mathieu}Hill's equation, which governed the
behavior of an elastic system under parametric excitation. They established a
criterion to yield the transition curves by determining the characteristic exponents
in the solution. Several researchers [3, 9] examined simply supported columns
subjected to periodic axial loads; they expressed the governing equation of the
transverse motion of the column as a set of uncoupled Mathieu}Hill's equation. In
022-460X/99/290643#22 $30.00/0 ( 1999 Academic Press
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1972, Iwatsubo et al. [10] developed a numerical simulation procedure to
investigate the dynamic instability of continuous systems with a periodically
time-varying parameter; they applied the procedure to a cantilevered column
subjected to axial and tangential periodic loads. Later, Iwatsubo et al. [11] used the
"nite-di!erence method and experimental approach to examine the simple and
combination resonances of clamped}clamped and clamped}simply supported
columns in 1973. Iwatsubo et al. [12] applied Galerkin's method to investigate the
existence of the combination resonances of four typical columns under periodic
axial or tangential loads in 1974; they also discussed the e!ects of damping on
combination resonances. Chen and Yeh [13] assessed analytically the instability
behavior of a cantilevered column subjected to a periodic load in the direction of
a varying tangency coe$cient at the free end and physical explanations for the
behavior of simple and combination resonances were presented. Yeh and Chen
[14] also developed a general formula to determine the regions of simple and
combination resonances of an elastic column subjected to a periodic load at any
axial position in the direction of a varying tangency coe$cient.

Handoo and Sundararajan [15] investigated both analytically and
experimentally the parametric instability regions of cantilevered columns carrying
concentrated end mass and subjected to periodic axial motion at its "xed end.
Elmaraghy and Tabarrok [16] studied the parametric resonance of a beam with
encastreH ends and subjected to a given periodic axial acceleration. Saito and
Koizumi [17] examined the parametrically excited behavior of a simply supported
horizontal beam carrying a concentrated mass at one end and subjected to
a periodic axial displacement excitation at the other end under the in#uence of
gravity. Bu$nton and Kane [18] investigated the dynamic behavior of a uniform
beam moving longitudinally at a prescribed rate over two bilateral supports.

Although much research has been carried out on the parametrically excited
instability of columns and beams subjected to periodic axial or tangential loads or
given periodic axial motion, little information is available on the parametric
instability of columns or beams induced by a concentrated mass moving periodically
along its axis. This problem may be encountered for columns carrying a Scotch yoke,
or a piston, which oscillates along the column axis. The objective of this work is to
investigate the parametric instability of an elastic column carrying a concentrated
mass that undergoes a periodic motion along the axis of the column. A new analytical
method, di!erent from the traditional perturbation method, is developed to
determine the transition curves of the general form of Mathieu's equation. In this
method, without determining the characteristic exponents as used in the traditional
perturbation method, the transition curves between the stability and the instability
regions are easily obtained. The study may lead to a better understanding of the
dynamic instability behaviour induced by an &&axially oscillating mass''.

2. DYNAMIC EQUATION OF THE COLUMN

A column carrying a concentrated moving mass m
0

at point P is shown in
Figure 1. The column has length ¸, mass per unit length o (x) and bending rigidity



Figure 1. The dynamic system of a general column carrying an axially oscillating mass.
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E(x)I(x). The cross sections and material properties of the column, which may vary
along the length, are symmetric about the x!y plane. The neutral axis of the
column is initially straight. The "xed supporting point of the column is point O,
which has no de#ection in any direction. The de#ections of the column in the x and
y directions are denoted as u (x, t ) and v (x, t ) respectively. The column carries
a concentrated mass m

0
which oscillates along the axis of the column. The

oscillating mass centered at point P is restricted to have a small sinusoidal motion.
In this work the following assumptions were made:

(1) The neutral axis of the column is inextensible
(2) Only small de#ections in the x and y directions are considered.
(3) The gravitational e!ects are neglected.
(4) Only small proportional viscous damping is considered.

As shown in Figure 1, when the concentrated mass is kept at point P on the
column, the free transverse vibration equation of the column is

L2

Lx2AE(x)I (x)
L2v(x, t )

Lx2 B#c (x)
Lv(x, t )

Lt
#[o (x)#m

0
d (x!x

"
)]

L2v(x, t)
Lt2

"0,

(1)

where c(x) is the viscous damping coe$cient, d is unit impulse function, and x
"

is
the x-co-ordinate of point P before the column undergoes deformation. Let the sys-
tem have undamped natural frequencies u

n
, modal damping coe$cient d

n
and cor-

responding mode shape functions /
n
(x) when boundary conditions are speci"ed. The

transverse de#ection of the column, shown in Figure 1, can be expressed by mode-
shape functions /

n
(x) and corresponding modal de#ection components <

n
(t) as

v(x, t )"+ /
n
(x)<

n
(t). (2)
n
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For convenience, the mode-shape functions are chosen to be a set of orthonormal
functions as follows:

P
L

0

[o (x)#m
0
d(x!x

"
)]/

n
(x)/

m
(x) dx"d

nm
, n, m"1, 2, 3,2 , (3)

where d
nm

is Kronecker delta. The governing equation of the free transverse
vibration of the system can be expressed with respect to the modal de#ection
component <

n
(t ) as

<G
n
(t )#d

n
<Q
n
(t )#u2

n
<
n
(t)"0, n"1, 2, 3,2 . (4)

Assuming the inextensibility of the neutral axis and small de#ections in the x and
y directions, the horizontal displacement of the column, u (x, t ), can be
approximately expressed by the transverse de#ection v (x, t) as

u(x, t)"!

1
2 P

x

x0

v@2 (m, t) dm

"!

1
2

+
n

+
m
P

x

x0

/@
n
(m)/@

m
(m ) dm<

n
(t)<

m
(t ), (5)

where x
0

is the x-co-ordinate of the "xed supporting point O.
The positions of the concentrated mass before and after oscillating motion can be

expressed by the position vectors r
"

and r
!

respectively as

r
"
"[x

"
#u(x

"
, t )] i#v (x

"
, t) j, (6)

r
!
"[x

!
(t )#u(x

!
, t)] i#v (x

!
, t ) j, (7)

where x
!
(t ) is the x-co-ordinate of the concentrated mass m

0
after it undergoes an

oscillating motion when the column is kept straight. The corresponding kinetic
energy of the concentrated mass m

0
before and after the oscillating motion can be

expressed respectively as

KE
"
"1

2
m

0
r5 2
"
, KE

!
"1

2
m

0
r5 2
!
. (8, 9)

Therefore, when the concentrated mass m
0

undergoes an oscillating motion, the
dynamic equation of the system can be obtained by adding the terms derived from
the energy di!erence between the oscillating mass and the "xed concentrated mass
into equation (4) as follows:

<G
n
(t )#d

n
<Q
n
(t)#u2

n
<
n
(t )#

d
dt A

L(KE
!
!KE

"
)

L<Q B!
L (KE

!
!KE

"
)

L<
"0. (10)
n n
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Using equations (2) and (5)} (9), we have

d
dt A

L(KE
!
!KE

"
)

L<Q
n

B!
L(KE

!
!KE

"
)

L<
n

"m
0

+
m

/
n
(x

!
)/

m
(x

!
)<G

m
(t)#2m

0
xR
!
(t) +

m

/
n
(x

!
)/@

m
(x

!
)<Q

m
(t)

#m
0
xK
!
(t ) +

m
C/n

(x
!
)/@

m
(x

!
)!P

x!(t)

x0

/@
n
(m)/@

m
(m) dmD<m (t)

#m
0
xR 2
!
(t) +

m

/
n
(x

!
)/A

m
(x

!
)<

m
(t )!m

0
+
m

/
n
(x

"
)/

m
(x

"
)<G

m
(t ). (11)

Assuming that the concentrated mass has a sinusoidal oscillation motion with
frequency u and small amplitude e

x
!
(t )"x

"
#e cosut. (12)

Then /
n
(x

!
)/

m
(x

!
) in equation (11) can be expressed as

/
n
(x

!
)/

m
(x

!
)"/

n
(x

"
)/

m
(x

"
)#e cosut[/@

n
(x

"
)/

m
(x

"
)#/

n
(x

"
)/@

m
(x

"
)]#O (e2).

(13)

Substituting equations (12) and (13) into equation (11) and neglecting the terms of
second and higher orders of e, we obtain

d
dt A

L (KE
!
!KE

"
)

L<Q
n

B!
L(KE

!
!KE

"
)

L<
n

+em
0
cosut +

m

[/
n
(x

"
)/@

m
(x

"
)#/@

n
(x

"
)/

m
(x

"
)]<G

m
(t)

!2em
0
u sinut +

m

/
n
(x

"
)/@

m
(x

"
)<Q

m
(t )

!em
0
u2 cosut +

m
C/n

(x
"
)/@

m
(x

"
)!P

x"

x0

/@
n
(m)/@

m
(m) dmD<m(t ).

(14)

Assuming small modal damping coe$cients d
n
, then d

n
can be expressed as

d
n
"2ek

n
, (15)
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where k
n

is a damping parameter. After substituting equations (14) and (15) into
equation (10), we have

<G
n
(t )#u2

n
<
n
(t )#2ek

n
<Q
n
(t)#2e cosut +

m

h
nm
<G
m
(t)#2e sinut +

m

g
nm
<Q
m
(t)

#2e cosut +
m

f
nm
<
m
(t )"0, n"1, 2, 3,2 , (16)

where

h
nm
"1

2
m

0
[/

n
(x

"
)/@

m
(x

"
)#/@

n
(x

"
)/

m
(x

"
)],

g
nm
"!m

0
u/

n
(x

"
)/@

m
(x

"
),

f
nm
"1

2
m

0
u2 CP

x"

x0

/@
n
(m)/@

m
(m) dm!/

n
(x

"
)/@

m
(x

"
)D . (17)

Equation (16) is the dynamic equation of a column, as shown in Figure 1, carrying
a concentrated mass that undergoes a sinusoidal oscillation along the column axis
with frequency u and small amplitude e. This equation is a general form of
Mathieu's equation with parametrically excited terms associated with modal
accelerations <G

m
(t), modal velocities <Q

m
(t ), and modal displacements <

m
(t ). The

dynamic equation of a column carrying an oscillating concentrated mass, discussed
here, is quite di!erent from that of a column subjected to a concentrated periodic
loading applied on the axis of the column in the tangential direction or more
general in the direction of varying tangency coe$cient. In the latter case, the
dynamic equation contains parametrically excited terms associated with modal
displacement <

m
(t ) only [14]. The last three terms of equation (16) come out to be

the e!ects of the acceleration of the point on the column which instantaneously
coincides with mass m

0
, the Coriolis component of acceleration of mass m

0
, and the

acceleration of mass m
0

relative to the point on the column which instantaneously
coincides with mass m

0
, respectively.

3. DETERMINATION OF INSTABILITY REGIONS

The instability regions of combination and simple resonances of a general form
of Mathieu's equation, equation (16), can be determined as follows:

(a) Combination resonances of sum type: From the nth and mth component
equations of equation (16), we have

<G
n
#u2

n
<
n
#2ek

n
<Q
n
#2e cosut +

k

h
nk
<G
k
#2e sinut +

k

g
nk
<Q
k
#2e cosut +

k

f
nk
<
k
"0,

(18)
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<G
m
#u2

m
<
m
#2ek

m
<Q
m
#2e cosut +

k

h
mk
<G
k
#2e sinut +

k

g
mk
<Q
k
#2e cosut +

k

f
mk
<
k
"0.

(19)

When the excitation frequency u is near u
n
#u

m
and the system is just on the

boundary between stable and unstable regions, <
n
(t) and <

m
(t ) have steady

oscillations. From equation (18), if one frequency component that consists of <
n
(t )

and away from u
n
possesses the amplitude of order e0, <G

n
(t)#u2

n
<
n
(t ) in equation

(18) will produce an unbalanced dynamic force of order e0. Therefore, only the
frequency component that consists of<

n
(t) and near u

n
can possess the amplitude of

order e0. Similarly, from equation (19), only the frequency component which
consists of <

m
(t ) and near u

m
can possess the amplitude of order e0 such that when

the system is just on the boundary between stable and unstable regions, we get

<
n
(t )"<M

n
cos (u*

n
t#h

n
)#e (frequencycy components without u*

n
)#e22,

<
m
(t)"<M

m
cos (u*

m
t#h

m
)#e (frequency components without u*

n
)#e22, (20)

where u*
n
,u

n
#ep

n
and u*

m
,u

m
#ep

m
are named the principal frequencies of

<
n
(t ) and <

m
(t) respectively. The principal frequencies #oat from the natural

frequencies u
n

and u
m

with small magnitudes ep
n

and ep
m
. <M

n
and <M

m
are the

corresponding principal amplitudes of <
n
(t) and <

m
(t ) respectively. Substituting

equation (20) into equation (18), we have

!2ep
n
u

n
<M
n
cos (u*

n
t#h

n
)!2ek

n
u

n
<M
n
sin (u*

n
t#h

n
)#2e cos ut +

k

h
nk
<G
k

#2e sinut +
k

g
nk
<Q
k
#2e cosut +

k

f
nk
<
k
"e(frequency components

without u*
n
)#e22 . (21)

The "rst two terms on the left-hand side of the above equation are always un-
balanced and so the last three terms on the left-hand side of the above equation
have to contain the principal frequency u*

n
with the amplitude of order e to

maintain self-equilibrium for the component of the principal frequency u*
n
. To

induce the terms with the principal frequency u*
n

and the amplitude of order e in the
last three terms on the left-hand side of the above equation, it is necessary that the
excitation frequency u, near u

n
#u

m
, must be equal to u*

n
#u*

m
. That is

2e cosut +
k

h
nk
<G
k

"!eu2
m
h
nm
<M
m
cos (u*

n
t!h

m
)#e (frequency components without u*

n
)#e22 ,
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2e sinut +
k

g
nk
<Q
k

"!eu
n
g
nm
<M
m
cos (u*

n
t!h

m
)#e(frequency components without u*

n
)#e22 ,

2e cosut +
k

f
nk
<
k

"!ef
nm
<M
m
cos (u*

n
t!h

m
)#e (frequency components without u*

n
)#e22 .

(22)

Substituting equation (22) into equation (21), we get the dynamic equilibrium of the
principal frequency u*

n
as

!2ep
n
u

n
<M
n
cos (u*

n
t#h

n
)!2ek

n
u

n
<M
n
sin (u*

n
t#h

n
)!eu2

m
h
nm
<M
m
cos (u*

n
t!h

m
)

!eu
m
g
nm
<M
m

cos (u*
n
t!h

m
)#e f

nm
<M
m

cos (u*
n
t!h

m
)"0. (23)

The dynamic equilibrium diagram of the above equation can be plotted as shown in
Figure 2(a). Following similar procedure, the dynamic equilibrium diagram of the
principal frequency u*

m
can be plotted as shown in Figure 2b. The dynamic forces in

the dynamic equilibrium diagrams constitute two similar closed-loop right
triangles. From Figures 2(a, b), we found that
(i) The phase di!erence, h"h

n
#h

m
, between the parametrically excited force,

( f
nm
!u

m
g
nm
!u2

m
h
nm

)<M
m
cos (u*

n
t!h

m
) or ( f

mn
!u

n
g
mn
!u2

n
h
mn

)<M
n
cos (u*

m
t!h

n
)

and the principal frequency response, <M
n
cos (u*

n
t!h

n
) or <M

m
cos (u*

m
t#h

m
),

satis"es the following relationship:

tan h"tan (h
n
#h

m
)"

k
n

p
"

k
m

p
. (24)
Figure 2. The dynamic equilibrium diagram of the principal frequencies u*
n

and u*
m
.

n m
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(ii) The principal amplitude ratio between <M
n

and <M
m

is

<M
n
<M
m

"GA
k
m
u

m
k
n
u

n
B A

f
nm
!u

m
g
nm
!u2

m
h
nm

f
mn
!u

n
g
mn
!u2

n
h
mn
BH

1@2
. (25)

(iii) The frequency #oating parameters p
n
and p

m
satisfy the following relationship:

4(p
n
p
m
#k

n
k
m
)u

n
u

m
"( f

nm
!u

m
g
nm
!u2

m
h
nm

)( f
mn
!u

n
g
mn
!u2

n
h
mn

). (26)

Substituting equation (24) into equation (26), we obtain

p
n
"$

k
n

k
n
#k

m

G1@2
nm

,

p
m
"$

k
m

k
n
#k

m

G1@2
nm

,

p"p
n
#p

m
"$G1@2

nm
, (27)

where the instability bandwidth parameter G
nm

is

G
nm
"

(k
n
#k

m
)2

k
n
k
m

C
( f

nm
!u

m
g
nm
!u2

m
h
nm

) ( f
mn
!u

n
g
mn
!u2

n
h
mn

)
4u

n
u

m

!k
n
k
mD . (28)

Equations (24)} (27) are available when G
nm

is positive. The transition curves
separating stable and unstable regions are

u"u*
n
#u*

m
"u

n
#u

m
$eG1@2

nm
when G

nm
'0. (29)

(b) Simple resonances: When the excitation frequency u is near 2u
n
, letting

n"m in equation (28), we have

G
nn
"A

f
nn
!u

n
g
nn
!u2

n
h
nn

u
n

B
2
!4k2

n
. (30)

The transition curves separating stable and unstable regions are

u"2u
n
$eG1@2

nn
when G

nn
'0. (31)

(c) Combination resonances of di+erence type: When the excitation frequency u is
near u

n
!u

m
(u

n
'u

m
), the instability bandwidth parameter G

nm
can be obtained

by changing the sign of u
m

in equation (28) as

G
nm
"

(k
n
#k

m
)2

k
n
k
m

C
( f

nm
#u

m
g
nm
!u2

m
h
nm

) ( f
mn
!u

n
g
mn
!u2

n
h
mn

)
!4u

n
u

m

!k
n
k
mD , (32)
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when G
nm
'0 the transition curves are

u"u
n
!u

m
$eG1@2

nm
. (33)

The frequency #oating parameters are

p
n
"$

k
n

k
n
#k

m

G1@2
nm

,

p
m
"$

k
m

k
n
#k

m

G1@2
nm

,

p"p
n
#p

m
"$G1@2

nm
. (34)

The principal amplitude ratio is

<M
n
<M
m

"GA!
k
m
u

m
k
n
u

n
B A

f
nm
#u

m
g
nm
!u2

m
h
nm

f
mn
!u

n
g
mn
!u2

n
h
mn
BH

1@2
(35)

and the phase di!erence h is the same as equation (24).

In the absence of damping, i.e. k
n
"0, n"1, 2,2 , the instability regions of

simple and combination resonances can be obtained as follows:
(a) Combination resonances of sum type: When the excitation frequency u is near

u
n
#u

m
and the system oscillates steadily, from the dynamic equilibrium diagrams

of Figures 2(a, b), we have

!2p
n
u

n
<M
n
#( f

nm
!u

m
g
nm
!u2

m
h
nm

)<M
m
"0, (36)

( f
mn
!u

n
g
mn
!u2

n
h
mn

)<M
n
!2p

m
u

m
<M
m
"0. (37)

Combining the above two equations, we obtain

p2"(p
n
#p

m
)2*4p

n
p
m
"G

nm
, (38)

where the instability bandwidth parameter G
nm

is

G
nm
"C

( f
nm
!u

m
g
nm
!u2

m
h
nm

) ( f
mn
!u

n
g
mn
!u2

n
h
mn

)
u

n
u

m
D . (39)

The total frequency #oating parameter p in equation (38) is solvable when G
nm

is
positive, and the transition curves separating neutrally stable and unstable regions
are

u"u
n
#u

m
$eG1@2

nm
. (40)
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(b) Simple resonances: When the excitation frequency u is near 2u
n
, the

transition curves are

u"2u
n
$eG1@2

nn
, (41)

where the instability bandwidth parameter G
nn

is

G
nn
"A

f
nn
!u

n
g
nn
!u2

n
h
nn

u
n

B
2
. (42)

(c) Combination resonances of di+erence type: When the excitation frequency u is
near u

n
!u

m
(u

n
'u

m
), the instability bandwidth parameter G

nm
can be obtained

by changing the sign of u
m

in equation (39) as

G
nm
"C

( f
nm
#u

m
g
nm
!u2

m
h
nm

) ( f
mn
!u

n
g
mn
!u2

n
h
mn

)
!u

n
u

m
D . (43)

Then, when G
nm
'0 the transition curves are

u"u
n
!u

m
$eG1@2

nm
. (44)

It is noted that

(i) When h
nm
"g

nm
"0, n, m"1, 2,2 , the transition curves obtained in

equations (28)}(33) are the same as those obtained by Nayfeh and Mook [2].
(ii) When h

nm
"g

nm
"0, n, m"1, 2,2 , and k

n
"0, n"1, 2,2 , the transition

curves obtained in equations (39)}(44) are the same as those obtained by Hsu
[5] and Nayfeh and Mook [7].

Consider the problem shown in Figure 1. When the excitation frequency u is
near u

n
!u

m
(u

n
'u

m
), from equation (17) and substituting u by (u
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), we

have
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(45)

Substituting equation (45) into equations (32) and (43), G
nm

is found to be always
less or equal to zero, which implies that no combination resonances of di!erence
type may occur in the column system, as shown in Figure 1. This problem is quite
di!erent from that of a column subjected to a periodic loading in the tangential
direction or in the direction of a varying tangency coe$cient, in which the
combination resonances of di!erence type may occur in addition to simple
resonances and combination resonances of sum type.
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The transition curves of simple resonances and combination resonances of sum
type can be summarized as follows:

(a) The transition curves of simple resonance

u"2u
n
$eG1@2

nn
when G

nn
'0, (46)

where
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(47)

(b) The transition curves of combination resonance of sum type
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for the case with damping; and
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for the case without damping.

4. EXAMPLES AND DISCUSSION

From equations (46)} (50) the transition curves of simple and combination
resonances of a system, as shown in Figure 1, can be completely determined by the
following parameters:
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e the excitation amplitude of the concentrated mass
u

n
the modal natural frequencies of the system when the concentrated mass is
kept "xed on the column

d
n

modal damping coe$cients of the system when the concentrated mass is kept
"xed on the column, d

n
"2ek

n
/
n

normalized mode shape functions of the system when the concentrated mass is
kept "xed on the column

m
0

the concentrated mass
x
0

x-co-ordinate of the "xed supporting point
x
"

x-co-ordinate of the center point of the moving concentrated mass before the
column undergoes deformation

The natural frequencies u
n
, the corresponding modal damping coe$cients d

n
and

normalized mode shape functions /
n
(x) can be obtained by using an experimental,

numerical, or analytic method. Once u
n
, d

n
and /

n
(x) are known, the transition

curves of simple and combination resonances can be obtained.
In the following, the method developed above is demonstrated to obtain the

instability bandwidth parameters G
nm

of an undamped system of cantilevered,
simply supported, clamped}simple supported and clamped}clamped columns
carrying a concentrated mass which undergoes a sinusoidal motion along the axis
of the column with frequency u and small vibrating amplitude e. Once the
instability bandwidth parameters G

nm
are known, the transition curves separating

stable and unstable regions can be obtained by substituting the natural frequency
u

n
and the vibrating amplitude e into equations (46) and (48). For simplicity, the

column in each case was chosen to have uniform cross-section with length ¸, mass
per unit length o and bending rigidity EI. The con"guration of each system is
shown in Figures 3}6 respectively. The natural frequencies u

n
and corresponding

normalized mode-shape functions /
n
(x) of the free transverse vibration of each

column with concentrated mass m
0
"xed at an arbitrary point on the column was
Figure 3. The dynamic system of a cantilevered column carrying an axially oscillating mass.



Figure 4. The dynamic system of a simply-supported column carrying an axially oscillating mass.

Figure 5. The dynamic system of a clamped-simply supported column carrying an axially oscillating
mass.

Figure 6. The dynamic system of a clamped-clamped column carrying an Axially oscillating mass.
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calculated by the assumed-modes method. The "rst four natural frequencies u
n
of

each column with various concentrated mass "xed at varying positions on the
column were shown in Figures 7}10 respectively. The abscissa of each plot
represents the center position of the oscillating concentrated mass and the ordinate
of each plot represents the natural frequency u

n
. The instability bandwidth

parameters G
nm

, n, m"1, 2, 3, 4, of each column carrying various concentrated
masses which undergo sinusoidal motion along the axis of the column and centered
at varying positions, calculated from equations (47) and (50), are shown in Figures
11}14 respectively. The abscissa of each represents the center position of the
oscillating concentrated mass and the ordinate of each plot represents the
instability bandwidth parameters.

5. CONCLUSIONS

The parametrically excited instability behavior of a general column carrying
a concentrated moving mass that undergoes a small sinusoidal motion along the
axis of the column has been investigated analytically. The following conclusions
can be drawn.

(1) The governing equation of the system is a Mathieu's equation with multiple
degrees of freedom that contains parametrically excited terms associated with
modal accelerations, modal velocities, and modal displacements. The governing
Figure 7. The "rst four natural frequencies of cantilevered column carrying various mass "xed on
the column. (uN
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Figure 8. The "rst four natural frequencies of simply-supported column carrying various mass
"xed on the Column. (uN
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Figure 9. The "rst four natural frequencies of clamped-simply supported column carrying various
mass "xed on the Column. (uN
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Figure 10. The "rst four natural frequencies of clamped-clamped column carrying various mass
"xed on the Column. (uN
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equation is di!erent from that of a column subjected to a concentrated periodic
loading applied on the column in the direction of the tangency coe$cient. In the
latter case, the governing equation contains parametrically excited terms associated
with modal displacements only.

(2) The approach developed in this study determines the instability regions of
a general form of the Mathieu's equation systematically. In the evaluation of the
instability regions, only the oscillating amplitude, the center position and the value
of the concentrated mass, the position of the "xed supporting point, and the modal
natural frequencies, the modal damping, and the normalized mode-shape functions
of the system with the concentrated mass "xed on the column are necessary.

(3) The method can solve the principal vibration frequencies, the ratio of
principal amplitudes and phase di!erence between the parametrically excited forces
and principal frequency responses of a damping system on the transition state as
well as the transition curves.

(4) When the parametrically excited terms associated with modal accelerations
and modal velocities of the general Mathieu's equation vanish, the instability
regions obtained by our approach are the same as those obtained by Hsu [5] and
Nayfeh and Mook [2,7].

(5) Only the simple resonances and the combination resonances of sum type
occur in the general system, as shown in Figure 1. This is regardless of the



Figure 11. The instability bandwidth parameters G
nm

of cantilevered column carrying various mass
"xed on the column. (GM 1@2
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Figure 12. The instability bandwidth parameters G
nm

of simply-supported column carrying various
mass "xed on the column. (GM 1@2
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Figure 13. The instability bandwidth parameters G
nm

of clamped-simply supported column carry-
ing various mass "xed on the column. (GM 1@2
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Figure 14. The instability bandwidth parameters G
nm

of clamped-clamped column carrying vari-
ous mass "xed on the column. (GM 1@2
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distribution of mass and the bending rigidity of the column, the supporting
condition of the column, and the value and central position of the oscillating
concentrated mass.
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