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A theoretical study is presented on the natural frequencies of a circular
cylindrical shell concentrically or eccentrically submerged in a fluid-filled rigid
cylindrical container. In this analysis, it is assumed that the shell is clamped at both
ends, and an annulus between the shell and the rigid container is filled with
a non-viscous and compressible fluid. The velocity potential for fluid motion is
formulated in terms of Fourier series expansion, and the modal displacements of
the shell are expanded with the finite Fourier series using the finite Fourier
transformation. Along the contacting surface between the shell and fluid, the
compatibility requirement is applied for fluid-structure interaction. In order to
consider eccentricity between the axes of the shell and the container, an additional
shifted co-ordinate system is introduced. Graf’s additional theorem and Beltrami’s
theorem are used for the translated forms of the Bessel functions in the shifted
co-ordinate system. The proposed analytical method for the concentrically
submerged shell is verified by observing an excellent agreement with the
finite-element analysis results. In order to evaluate the dynamic characteristics of
the fluid-coupled system, the effects of annular fluid gap and eccentricity of the shell
on the natural frequencies are investigated. © 1999 Academic Press

1. INTRODUCTION

The free vibration characteristics of a fluid-surrounded cylindrical shell subjected
to various loads have been of great concern in engineering design. Hence, many
investigations in this area have been carried out. The free vibration analysis of two
infinitely long, coaxial cylinders containing fluid was performed by Krajcinovic [1].
Chen and Rosenberg [2] derived a frequency equation for two concentrically
arranged circular cylindrical shells containing and separated by incompressible
fluid and obtained an approximate closed-form solution. Au-Yang [3] treated the
internal structure of a pressurized water reactor as a system of finite coaxial
cylinders immersed in a fluid. He estimated the virtual mass and coupling
coefficient of two finite cylinders with different lengths immersed in fluid for the
simply supported boundary condition. The free vibration of an infinitely long
cylindrical shell under axisymmetrical hydrodynamic pressures of the external and
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internal fluids was studied using Fourier cosine transformation by Endo and
Tosaka [4]. Tani et al. [5] performed a study on the free vibration of clamped
coaxial cylindrical shells partially filled with incompressible and inviscid fluid.
The theoretical analysis was based upon the Galerkin method and the velocity
potential theory for the fluid. The vibrational characteristic of two concentric
submerged cylindrical shells coupled by entrained fluid was studied by Yoshigawa
et al. [6]. Chiba [7] carried out a theoretical and experimental study on the free
vibration of clamped-free cylindrical shell, which is partially and concentrically
submerged in a liquid-filled container using the Galerkin method. Jeong and
Lee [8] suggested a theoretical method to study the free vibration of a
liquid-surrounded cylindrical shell. Recently Chiba and Osumi [9] carried out a
theoretical and experimental study on the free vibration of a clamped-clamped
cylindrical shell which is partially filled with liquid and, at the same time, partially
submerged in a liquid. A theoretical method to study the free vibration of coaxial
cylindrical shells coupled with compressible fluid was suggested and the presence of
some mixed vibrational modes was found by Jeong [10]. Danila et al. [11]
suggested a calculating method of the scattered field due to a plane wave incident
on one or several cylindrical fluid—-fluid interfaces using the generalized Debye
series expansion. The theoretical method is applied to a concentric and
a non-concentric fluid shell and then extended to the multi-layered cylindrical
structure.

However, few theoretical studies have been made on the free vibration of
a circular cylindrical shell submerged in a compressible fluid-filled cylindrical
container. Therefore, this paper attempts to develop an analytical method that
calculates the natural frequencies of a cylindrical shell concentrically or eccentrically
submerged in a fluid-filled cylindrical container using the series expansion methods.
The clamped boundary condition was assumed for both ends of the shell. However,
the theory can be extended to any arbitrary classical boundary conditions using an
additional simple formulation. This analytical method for the concentrically sub-
merged case was verified by finite-element modelling (FEM).

2. THEORETICAL BACKGROUND

2.1. EQUATION OF MOTION AND BOUNDARY CONDITIONS OF A CIRCULAR CYLINDRICAL
SHELL

Consider a circular cylindrical shell with a clamped boundary condition at both
ends, as illustrated in Figure 1. The shell can be concentrically or eccentrically
submerged in a fluid-filled container. The cylindrical shell has mean radius R,
height L, and wall thickness h. The Sanders’ shell equations [8, 10] as the governing
equations for the shell where the hydrodynamic effect is considered, can be written
as

R+ _“)<1 +lf>u,ge + R{(l —m_3 _“)k}v,xg +Rw 4T Riow oo

2 4 2 8 2
= 7’U.u, (1a)
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Figure 1. An eccentrically submerged cylindrical shell in a fluid-filled rigid container.

R{(l —w 3= “)k}u,xo + (1 4 k)v,gp + a- ”)R2<1 + 9—k>u,xx

2 8 2 4
— Lszzkw,xxo + W9 — kW g9o = 7204, (1b)
(l—gu)Rku,x@g + pRu,  — L;k)Rzkv,xxg + 00+ WA K(R*W o + 2R?W 00
+ W.g000 — U.go0) = — Uy + R—Zp (1c)
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The comma in the equations denotes a partial derivative with respect to the
corresponding variable. For a complete description of the shell motions, it is
necessary to add boundary conditions to the equations of motion. Consider the
simplest end arrangements of the shell on the top and bottom supports. At both
ends of a concentrically or eccentrically arranged shell with respect to a rigid
circular cylindrical container, all the boundary conditions will obviously hold for
the case of sine—cosine—cosine (SCC) formulation [12]:

M, (0) = N,(0) =v(0) = w(0) =0 for the bottom support of the shell, (2a)
M.(L)= N.(L)=v(L)=w(L) =0 for the top support of the shell (2b)

where M, and N, denote the bending moment and the membrane tensile force
respectively. All geometric boundary conditions applicable to the clamped-clamped
shell can be reduced to the following equations for the ends of the shell [13]:

v(0) = w(0) = v(L) = w(L) = 0. 3)

The relationships between the boundary forces and displcements are

NxzD[u,x+%v,9 +%w} (4a)
D1 —p| 1 3 9
N =20 [ R<1 - 4k>u,e " (1 s 4k>v,x - 3kw,xe} (4b)
(I —p) B—mw 2—p
Qx = K|: — 2R3 U g9 + 2R2 U,xO - TW,xOG — W xxx [» (4C)
M, =K| L wo—wo)—w o l: (4d)
x R2 ,0 ,00 ,xx |

where D = Eh/(1 — p?), K = Eh3/12(1 — u?), k = h*/12R?. N,y and Q, denote the
membrane shear force and transverse shear force per unit length, respectively.

2.2. MODAL FUNCTIONS

A general relation for the dynamic displacements in any vibration mode of the
shell can be written in the following form for the cylindrical co-ordinate r, 6;

u(x, 0, t) = u(x, 0)exp(iwt), (5a)
v(x, 0, t) = v(x, O)exp(iwt), (5b)

w(x, 0, t) = w(x, O)exp(iwt), (5¢)
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where u(x, 0), v(x, 0), and w(x, 0) are modal functions corresponding to the axial,
tangential, and radial displacements for the shell respectively. These modal
functions along the axial direction can be described by a sum of linear
combinations of the Fourier series that are orthogonal:

u(x,0) =Y Y Agsin <?>cos no, (6a)
n=1s=1

v(x,0)= ) | By + Y, Bycos <%>}sin no, (6b)
n=1_L s=1

wx,0)= > | Cp+ >, Cyeos (?)]cos no. (6¢)
n=1_L s=1

The derivatives of the above modal functions for the shell can be obtained using the
finite Fourier transformation [ 13, 14]. The modal functions and their derivatives of
the cylindrical shell were described in reference [13].

2.3. EQUATION OF FLUID MOTION

The inviscid, irrotational and compressible fluid movement due to shell vibration
is described by the Helmholz equation

1 1 1
(D,rr + _(p,r + _z(p,GG + (p,xx = _z(p,tta (7)
r r C

where ¢ is the speed of sound in the fluid medium equal to ./B/p,, B is the bulk
modulus of elasticity of fluid and p, stands for the fluid density. It is possible to
separate the function @ with respect to x by observing that, in the axial direction,
the rigid surfaces support the edges of the shell; thus,

D(x, 1, 0,t) =1w¢(r, 0, x)exp(iwt) = iwn(r, 0) f(x)exp(iwt), (8)

where w is the fluid-coupled frequency of the shell. Substitution of equation (8) into
the partial differential equation (7) gives

’7(7”’ 0),rr + (1/7’)1’](7’, 9),r + (1/’”2)77(7’: 9),00 + (w/c)zn(ra 9) — _f(x),xx — <ﬁ>2 (9)
n(r, 0) f(x) L)

It is possible to solve the partial differential equation (9) by the separation of the
variables. The solution can be obtained with respect to the original cylindrical
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Doan<“”> +E,Y, ( )
C C

co-ordinates, r, 0 and x:

¢(r. 0, x) = Z 0 cosnf
= Z {D_snI (Ofsnr + F:gnK s’ }COS <Tx>
ST W
for — > — 1
ot L c’ (10a)
o | Doud, <‘Zr> + FanYn< Cr>
¢(r. 0, x) = Z 0 o cosnl
n=1 Z (D3 (0tn1) + E, Y u( ocs,,r}cos< I >
ST o
for <7 (10b)

where J, and Y, are Bessel functions of the first and second kinds of order n, whereas
I, and K,, are modified Bessel functions of the first and second kinds of order n, ¢ is
the spatial velocity potential of the contained compressible fluid, and a, is related
to the speed of sound in the fluid medium,

o= Y (@)

sn T L c
Equations (10a) and (10b) automatically satisfy by boundary conditions that
appear as follows: (a) impermeable rigid surface on the bottom is

fors=1,23,.... (11)

90,09 _ o arx=o: (12)
0x

(b) as there exists no free surface, the axial fluid velocity at the rigid top is also zero,
SO
d¢(r, 0, x)

-0 atx=L (13)
0x

2.4. GENERAL FORMULATION FOR CONCENTRICALLY SUBMERGED SHELL

When the shell is concentrically submerged in the fluid-filled container, the radial
fluid velocity along the outer wetted surface of the shell must be identical to the
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radial velocity of a flexible shell, so

do(r, 0, x)

o = —w(x,0) atr=R. (14)

Additionally, the radial fluid velocity along the wetted surface of the outer rigid
container must be zero, and so

0¢(r, 0, x)

=0 atr=R,. (15)
or

Substitution of equations (6¢), (10a) and (10b) into equations (14) and (15) gives the
following relationships:

() ()

o cosnf
n=1| Z Sn { DLy (020 R) + Fo K (26, R }cos( z )

s=

=— ) [C,,n + ) Cs,,cos<@>}cosn0 for 2% 29, (16a)
n=1 s=1 L L ¢

X (2) () mvs(25 )]

SERS

cosnl

o0

+ Z Osn {Danr/:((xsnR) + anYn/(fXS,,R)} COS<%>

s=1

II
“MS

ST o
1[Co,, + Z Cs,,cos< I >}cosn0 forf <o (16b)

n s=

o))

+ Z OCS,,{DS,,I, SnR )+ anK, snR )} COS<STCX> B 0

L
ST W
for — > —, 16
orL - (16¢)

o) ()

+ Z %sn {Dan';(O(S"RU) + anYr,l((xsn }COS<S7LIAX> =0
s=1

§=

ST w
for 7 < ’ (16d)
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Now, all unknown coefficients D,,, F,,, Dy, and F, related to the fluid motion will
be written in terms of the coefficients C,, and C,, related to the shell motion:

Y, (wR,/c)

D,, = (CU/C)[J/ (CURO/C)Y,(COR/C) ¢ (COR/C)Y’ (CURO/C)] Cons (178,)

. T(@R,/c)
" (/) TR Yi(@R,/) — T (@R, /)Y, (@R/c)]

Cons (17b)

Dan = (ocsn)[I;,(ocsnRo)K;(IoZi%"foIz(asn R)K, (o R.)] Cy, for an > % (17¢)
Do = G o RO)Y,;(X%”’_{"};(% RV R < o =<2 (7d)
O o v et ki e L S ML
R ORTE (o 3 (e i e o 0 C NS A S (L

2.5. GENERAL FORMULATION FOR ECCENTRICALLY SUBMERGED SHELL

On the other hand, for the eccentrically submerged shell, the velocity potential of
equations (10a) and (10b) can be transformed into the shifted cylindrical
co-ordinates, (a, i, x) by Graf’s addition theorem and Beltrami’s theorem [15]:

dla, Y, x) =
© © {Doan+m<%>+ FonYn-%—m(%)}Jm(%)
Z Z ¢ ¢ cos mys
T Z {Dsn _1 n+m(asna)+anKn+m(asna)}I (O(sn&,)COS <Szx>
for SZ” >§ (18a)
dla, ¥, x) =
0 0 {Doan+m<wa>+ FonYn+m<wa>}Jm<%>
Yooy . ¢ ¢ cos mys

R N YT CRP R o A} <as,.g>cos(”£x>

s=1

ST w
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It is convenient to handle the boundary condition along the surface of the rigid
container when the velocity potential is transformed from the origin “O” into the
shifted origin “O"’. The radial fluid velocity along the outer wetted surface of the
shell must be identical to that of the flexible shell. Therefore, equations (16¢) and
(16d) should be satisfied, and the radial fluid velocity along the wetted surface of the
outer rigid container that maintains eccentricity to the shell must be zero. Hence

WXV D _ o ag=R, (19)
da

Substitution of equations (6¢), (18a) and (18b) into equations (14) ad (19) gives
equation (16a, b) and the relationships

R R
0 <%>Jm<%g>{DonJ;+m<%> + EmYn/+m<wc 0)}
Z STTX

el g %ummwﬂ—wmmmm»+&mmmmwm%i) -°
=1

s=

ST W
for — = —, 20
or i - (20a)

R R
0 <%>Jm<%>{DonJ;+m<%> + FonYn,-%—m(wc 0>}
Z STX

m=—w + Z O(anm(asng){Dan;1+M(OCS”R0) + F'SnY;,er(asnRO)} COS<T> - 0
s=1

ST (0]
for - <~ (20b)

Now, all unknown coefficients D,,, F,,, Dy, and F,, related to the fluid motion will
be written in terms of the coefficients C,, and Cg, related to the shell motion using
equations (16a, b) and (20a, b).

Fon = WnlDona Dan = I—;ll Con: Em = I_;lzcon: (2121—C)
For 5t > 9,
C
an = WnZDsn: Dsn = Lsn3 Csn: an = RnSCsn: (21d_f)
ST w
For — < —
or L 5

P;n = Wn3Dsn: Dsn = 1—;n4csn7 an = 1—;n6 Csn: (21g_1)
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where
Y {Juw(we/c)T, s m(@wR,/c)}
Wy = =557 , (22a)
Y nl(@e/e)Yiim(@R, /o))
Z {I “sng l)m ;t+m(fxsnR0)}
W, = —m=—x , (22b)
z {Im O‘snb ;|+m(aSnR0)}
Z {Jm(ocsng)];l-%—m(asnRﬂ)}
Wn3 = - ; = ’ (22C)
Z {J (O(S,,S n+m(ocsnRo)}
R R
() ]
W c c
Ly =Wy Ly, L= — | (22e, f)
n2 — nlinl> sn3 — Ocs,,[Ii.(OCS,,R) + anK;,(OCS,,R)]’ s
Ls = — 1 Ls = Wi Tons, Tine = Was T
T a0 R) + Wia Yo, R = et e T st
(22g-1)

As the eccentric distance ¢ approaches zero, J,,(o,¢) and 1,,(z,,¢) of equation (22a—c)
will be zero for m # 0 and J (o, &) = 1,,(os,8) = 1 for m = 0. Therefore, when ¢ = 0,
equation (22) for the eccentric arrangement of the shell obviously reduces equation
(17) of the concentric case. The concentrically submerged shell will be a special case
of the shell submerged eccentrically in a fluid-filled container.

When the hydrostatic pressure on the shell is neglected for simple formulation,
the hydrodynamic pressure along the outer wetted shell surface can be given by

p(x,0,1) = p,w*P(R, 0, x)exp(imt). (23)

Finally, the hydrodynamic force on the shell can be written as

wR wR
Lo 228 + 0,y (25
(5, 0,1)  po?R? & C”"{ J( ¢ >+ "2 < ¢ >}

D D -
nl + Z Csn{l—;n3ln(asnR) + 1—;n5 Kn((xsnR)}
s=1

exp(imt)

for — = = (24a)
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wR wR
— I,Y
R?p(x,0,t)  p,»’R* i CO"{F"1J"< c > " < ¢ >}

D D o exp(iwt)
=t + Z CS"{I—:Sn4Jn(O(snR) + 1—_‘sn6Yn(ocsn12)}>
s=1
for 2% < 2. (24b)
L c

2.6. GENERAL FORMULATION

The dynamic displacements and their derivatives can be represented by a Fourier
sine and cosine series in an open range of 0 < x < L with the end values using the
finite Fourier transformation [14]. Substitution of the displacements and their
derivatives into the governing Sanders’ shell equation (la-c) leads to an explicit
relation for C,, and a set of equations for A4,, Bs,, C,,, as follows:

BO" ~ ~ ~ ~x
|:C :| =yilu, + w] +y2[v, + vl +y3[Wo + Wil +ya[w, + wi], (25)

Asn
{Bsn:| =ysluo + (= D" ud +ys[v,+(— 1)"v, ] + p700, + (= )™l
Csn

+y8 ["T)o + (_ l)m‘f)l:la (26)

where the end values u,, u;, v,, v;, W,, W;, W,, and W, in equations (25) and (26) are
defined in reference [13]. The matrix yq, y», ..., ys are the derived column matrices.
The equivalent hydrodynamic mass effect on the shell is included in the coefficient.
The forces N,y and Q, at the ends of the shells can be written as a combination of
some boundary values of displacement and their derivatives using equation (4). The
boundary values of displacement and their derivatives, v,, v;, Wy, and w; can be
transformed into a combination of the boundary values of u, W, N4 and Q, by
equation (4), as written in the form

Uy = gluo + g2 Wa + g3 ;(9’ (273)
U =giu + gaW; + g3 N, (27b)
Wo = gally + g5Wo + g6 N + 9703, (27¢)

Wi = gatl; + gsW; + g Nko + g7 0%, (27d)
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where the end values of the forces are defined in reference [13] and g,
(k=1,2,...,7) can be derived. Substitution of equation (27) into equations (25)
and (26) gives

|:Ban:| = Zl[u + ul] + Zz[W + Wl] + ZS[N 0 + NxO] + Z4[Qo + Qx] (283)

COI’I
4 u, + (— )"y,
> Wo + (= 1)™Wy
L: } [Asd e’ 3 (et | (28b)
> Q%+ (= D" Qx

where z, (k =1, 2, 3, 4) in equation (28a) are the derived coefficient matrices, and
[Ax] (i=1,2,3 k=1, 2, 3, 4) in equation (28b) is the 4 x 3 derived coeflicient
matrix. Eventually, all Fourier coefficients A,,, By, and C,, are rearranged with
a combination of the end point values, as shown in equation (28b).

The geometric boundary conditions that must be satisfied are associated with the
dynamic displacement v and w as described in equation (3). Hence it follows that

v(0) = i [Bo,, + Z Bsn} =0, v(L)=

s=1

§:|:Bon+ ZBsn_l)i| 0:
=1

(29a, b)

(29¢, d)

Substitution of equation (28) for the coefficients B,,, C,,, As, Bs, and Cg, into the
four constraint conditions that come from the geometric boundary condition,
written as equation (29), leads to a homogeneous matrix equation by omitting the
details:

€11 €12 €13 €14 €15 €16 €17 €13 Wo

€21 €32 €33 €34 €35 €36 €27 €33 Wi _{0} (30)
0 -_ .
€31 €32 €33 €34 €35 €36 €37 €33 x0
!
€41 €42 €43 Caga €45 €46 €47 €45 | [Ny
o
0z
Ql
X

The elements of the matrix, e i=1, 2, 3,4, k=1, 2,...,8) can be obtained from
equation (29). However, when the cylindrical shell is clamped at both support ends,
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the associated boundary condition is
u=v=w=w_,=0 atx=0and L. (31)

Among these boundary conditions, the two geometric boundary conditions u = 0
and w, = 0 at x = 0 and x = L are not automatically satisfied by equation (6), the
modal functions set. Therefore the first, second, third, and fourth rows of the matrix
in equation (30) are enforced and the terms associated with u,, u;, W,, and w; are
released. The 4 x 4 frequency determinant is obtained from equations (30) and (31)
by retaining the rows and columns associated with N%, N.y, 0%, and Q. For the
clamped boundary condition, the coupled natural frequencies are numerically

obtained from the frequency determinant:

€15 €16 €17 €18
€25 €26 €27 €38 -0 (32)
€35 €36 €37 €33
€45 €46 €47 €48

3. EXAMPLE AND DISCUSSION

3.1. VERIFICATION OF ANALYTICAL METHOD

On the basis of the preceding analysis, the frequency determinant is numerically
solved for the clamped boundary condition in order to find the natural frequencies
of the circular cylindrical shell concentrically or eccentrically submerged in
a fluid-filled cylindrical container. The fluid-filled annular gap distance and the
eccentricity to the container affect the motion of the cylindrical shell. In order to
check the validity and accuracy of the results from the theoretical study and
compare them with the FEM result, computation is carried out for the
fluid-coupled system. The cylindrical shell has a mean radius of 100 mm, a length of
300 mm, and a wall thickness of 2 mm. The outer cylindrical container has an inner
radius of 110 mm with the same length for Case 1 and it has 130 mm of inner radius
with the same length for Case 2. The physical properties of the shell material are as
follows: Young’s modulus = 69-0 GPa, the Poisson ratio =03, and mass
density = 2700 kg/m?>. Water is used as the containing fluid with a density of
1000 kg/m?. The sound speed in water, 1483 m/s, is equivalent to the bulk modulus
of elasticity, 2-:2 GPa. The clamped boundary condition at both ends of the shell is
considered.

The frequency equation derived in the preceding section involves the double
infinite series of algebraic terms. Before exploring the analytical method for
obtaining the natural frequencies of the fluid-coupled shell, it is necessary to
conduct convergence studies and establish the number of terms required in the
series expansions involved. In the numerical calculation, the Fourier expansion
terms s is set at 80, which gives an exact enough solution by convergence.
Additionally, the Bassel expansion term m is included in the numerical calculation
for the case of eccentrically submerged shell. The expansion term m is set at 50,
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which also gives a converged solution. Finite element analyses, using a commercial
computer code ANSYS (version 5-2), are performed to verify the theoretical results
for the concentrically submerged shell. The FEM results are used as the baseline
data. In the finite-element analysis, two-dimensional axisymmetric models are
constructed with axisymmetric two-dimensional fluid elements (FLUIDS81) and
axisymmetric shell elements (SHELLG61). The fluid region is divided into a number
of identical fluid elements with four nodes. We model the circular cylindrical shell
as deformable shell elements with two nodes. The fluid boundary conditions at the
top and bottom of the tank are zero displacement and rotations. The nodes
connected entirely by the fluid elements are free to move arbitrarily in
three-dimensional space, with the exception of those restricted to motion in the
bottom and top surfaces of the fluid cavity. The radial velocities of the fluid nodes
along the wetted shell surfaces coincide with the corresponding velocities of the
shells. The FEM model has 320 (radially 8 x axially 40) fluid elements and 40 shell
elements.

Table 1 will make it easier to check the accuracy of the frequencies and compare
the theoretical frequencies with the corresponding FEM ones for the concentrically
submerged shell. The discrepancy in the table is defined as

Theoretical frequency — FEM frequency "
FEM frequency

Discrepancy (%) = 100.  (33)

The largest discrepancies between the theoretical and FEM results are 1:79% for
Case 1 whenn =1, and m’ = 4 and 2:53% for Case 2 when n = 2 and m’ = 3. The
discrepancies defined by equation (33), for the cases, are always less than 3% in the
range of n = 1-8 and m’ = 1-4. As the coarse mesh of the FEM model changes to
the fine mesh, all natural frequencies may converge to the theoretical results. As can
be seen, the present results for the concentrically submerged shell agree quite well
with the FEM solution. Unfortunately, the verification for the eccentrically
submerged case is not performed yet, because the finite-element analyses for the
eccentric cases should be carried out using the three-dimensional model instead of
the two-dimensional axisymmetric model. The three-dimensional model for the
eccentrically submerged case requires a large number of elements and complicated
boundary conditions along the wetted surfaces.

3.2. EFFECT OF RADIUS RATIO

First of all, in order to see the distance effect of surrounding annular fluid gap,
the radius ratio is defined as

R
5:(?’), 1<d <o (34)

when Ry > R, 0 approaches oo. It obviously corresponds to the case of the shell
submerged in an infinite fluid. On the contrary, as R, approaches R, the radius
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TABLE 1
Comparison of FEM and theoretical coupled natural frequencies (Hz) for a cylindrical shell
concentrically submerged in a fluid-filled rigid container

Coupled natural frequency (Hz)

Mode Case 1 (R, =0-110 m) Case 2 (R, = 0-130 m)
n m' FEM  Theory Discrepancy (%) FEM  Theory Discrepancy (%)
1 1 3341 3337 —012 5364 5327 — 069
2 750-0 7445 — 073 1219-1 11952 — 196
3 1288:0 12712 —1-30 20242 19746 — 2:45
4 18939  1860-0 - 179 28025 27436 —2-10
2 1 3427 3429 0-06 5346 534-5 —0-02
2 7568 7553 — 020 11693 11627 — 056
3 12632 12533 — 078 18970 18721 — 131
4 18221 17953 — 144 26063 25451 —2:35
3 1 3165 3165 0-00 4683 468-5 0-04
2 700-6 699-8 —0-11 1022:0 10205 —015
3 1188  1183-0 — 049 16897 16797 — 059
4 17337 17150 — 1-08 23705 23438 — 113
4 1 3377 3374 — 009 471-3 471-4 0-02
2 6687 6676 — 016 920-0 9193 —0-08
3 11209 11161 — 043 15076 15025 — 034
4 16475 16328 —0-89 21482 21319 — 076
5 1 463-0 462-6 — 009 6111 6115 0-07
2 719-8 7182 —022 938-0 9374 — 006
3 11204 11154 — 045 1432:5 14287 — 027
4 16171  1603-7 —0-83 2017-1 20052 — 059
6 1 700-2 699-6 —0-09 8789 8799 0-11
2 894-5 892-5 —022 11112 11109 —0-03
3 12346 12290 — 045 15102 15069 —022
4 16905 16769 —0-80 20281 20179 — 050

ratio ¢ will come near unity and the fluid annular gap formed by a shell and a rigid
container is relatively narrow. One of the best ways to estimate the hydrodynamic
effects on free vibration of a fluid-coupled structure is to obtain the
non-dimensional normalized natural frequencies as described in the previous study
[16]. The normalized natural frequency behaviour of the inner shell depending on
water annular gap distances are illustrated in Figures 2-5, where the normalized
natural frequency is defined as the fluid-coupled natural frequency divided by the
natural frequency in vacuum for the specific corresponding mode. The normalized
natural frequencies for the axial mode number m’ = 1 are plotted in Figure 2 as
a function of the circumferential mode number » in the cases of 6 = 1-1, 1-2, 1-3, 1-5,
and 2-0. This figure shows that the natural frequency of the shell can be reduced by
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Figure 2. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a fluid-filled rigid container form' =1 (—~N—, 0 =11;—{3—6=12;,—@— 6 =13, 0 =15
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Figure 3. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a fluid-filled rigid container for m" = 2. Key as for Figure 2.
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Figure 4. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a fluid-filled rigid container for m" = 3. Key as for Figure 2.
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Figure 5. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a fluid-filled rigid container for m" = 4. Key as for Figure 2.
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Figure 6. Effects of eccentricity on the normalized natural frequencies of a circular cylindrical shell
eccentrically submerged in a fluid-filled rigid container form’ = 1 and 6 = 1-3 (——, ¢ = 0-0; —O—,
0 =02 —A—, 6=04—~—, =06 —<— c=08).

about 90% by coming into contact with water for m"=1,n =1 and 6 = 1-1. For
m' =2, 3 and 4, similar figures are illustrated in Figures 3, 4 and 5 respectively. As
one can see, the normalized natural frequencies are always less than unity due to
the hydrodynamic mass (or the added mass) of fluid. When the circumferential
mode number n increases, the normalized natural frequencies monotonically
increase regardless of the axial mode, m’, in the range of 1 <n < 8 due to the
separation effect explained by Jeong and Lee [16]. Judging from Figures 2-5, it is
also clear that for the same reason the normalized natural frequencies also increase
with an increase in the axial mode number. If the radius ratio é approaches unity,
the normalized natural frequencies decrease drastically because the narrow annular
gap produces a great hydrodynamic mass due to a lengthened moving length of
fluid. That is to say, the narrow annular gap works as a one directional channel
carrying fluid during vibration, which produces an increased hydrodynamic mass,
and eventually reduces the natural frequencies of the shell. On the contrary, as the
fluid annular gap distance increases, the moving length of fluid during vibration is
relatively shortened and eventually the hydrodynamic mass is also reduced. When
the radius ratio 6 > 2-0 and the circumferential mode number n > 5, the results are
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Figure 7. Effects of eccentricity on the normalized natural frequencies of a circular cylindrical shell
eccentrically submerged in a fluid-filled rigid container for m’ = 2 and 6 = 1-3. Key as for Figure 6.

not different from the case when it is surrounded with an infinite fluid. This shows
the case of the radius ratio 6 > 2-0 with a circumferential higher mode that can be
treated as a shell submerged in an infinite fluid. However, the assumption that
a cylindrical shell is submerged in an infinite fluid, in order to get the natural
frequencies of a concentrically submerged shell in a fluid-filled container with
a relatively wide annular gap, may lead to overestimation of the natural frequencies
for lower circumferential modes.

3.3. EFFECT OF ECCENTRICITY

The effect of eccentricity on the natural frequency is investigated in this section.
The eccentricity of the shell to the container, o, is defined as

€
S < .
o <R0—R>’ 0<o<1 (3%

As an extreme case, when the two origins “O” and “O’"” in Figure 1 get close to each
other, the eccentric distance ¢ will be zero. Hence, the eccentricity ¢ =0
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Figure 8. Effects of eccentricity on the normalized natural frequencies of a circular cylindrical shell
eccentrically submerged in a fluid-filled rigid container for m’ = 3 and 6 = 1-3. Key as for Figure 6.

corresponds to the case of the concentrically submerged shell. The effects of the
eccentricity on natural frequencies are illustrated in Figures 6-10. Figure 6 shows
the eccentricity effect of the shell on the normalized natural frequencies for m’ = 1.
In the figure, the normalized natural frequencies are found to gradually increase
with an increase of the circumferential mode number for any eccentricity.
Additionally, the figure shows that the normalized natural frequencies decrease
with an increase of the eccentricity. Especially, as the eccentricity approaches unity,
the drop of normalized natural frequencies is accelerated. However, for axial mode
number m' =2, and 3, the effect of eccentricity on the normalized natural
frequencies appear relatively small as shown in Figures 7 and 8. One reason can be
that the tangential movement of fluid along the annular fluid gap for m' =1 is
changed to the combined movement to the tangential and vertical directions for
m’ > 1. The change of fluid movement direction during vibration of the shell makes
the moving length of fluid relatively shorter, which contributes the reduction of
hydrodynamic mass along with the reduction in the eccentricity effect for m’ > 1.
Therefore, the effect of eccentricity appears to be most pronounced for axial mode
number m' = 1. Figures 9 and 10 illustrate the ratios of the natural frequencies for
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Figure 9. Natural frequencies ratios of the eccentrically submerged shell to the concentrically
submerged case for m"=1 and 6=13 (—{1— ¢6=02;, —O—, 6 =04; —A—, 6 =06 —~/—,
o = 0-8).

the eccentrically submerged case to those of the concentrically submerged case. In
the figures, w. and w, represent the natural frequencies for the concentrically
submerged case and the eccentrically submerged case respectively. Figure 9 also
shows that the natural frequency can be reduced by about 50% due to the
eccentricity only when m' =1, n =1, 6 = 1-3 and ¢ = 0-8. It is also found that the
eccentricity effect on the natural frequencies of the shell is dominant for lower
vertical and circumferential modes.

4. CONCLUSIONS

A theoretical study on the natural frequencies of a circular cylindrical shell
concentrically or eccentrically submerged in a fluid-filled rigid cylindrical container
is conducted. In order to consider an eccentricity between the axes of the shell and
the container, Graf’s additional theorem and Beltrami’s theorem are used for the
translated forms of the Bassel functions in the shifted co-ordinate system. The
proposed analytical method for the concentrically submerged shell is verified by the
finite-element method, the results of which show excellent agreement. In order to
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Figure 10. Natural frequencies ratios of the eccentrically submerged shell to the concentrically
submerged case for m' = 2 and 6 = 1-3. Key as for Figure 9.

evaluate the dynamic characteristics of the fluid-coupled system, the effects of
annular fluid gap distance and eccentricity of the shell to the container on the
natural frequencies are investigated. It is found that an increase of the annular gap
between the shell and rigid container produces an increase of the natural
frequencies of the shell for all circumferential and axial modes. The eccentricity of
the shell tends to reduce the natural frequencies for all axial and circumferential
mode numbers. The eccentricity effect on the natural frequencies is found to be
especially dominant for axial mode number m’ = 1.
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APPENDIX: NOMENCLATURE

Ag, Fourier coefficient related to modal function in the axial direction

a radial co-ordinate for shifted co-ordinate system with origin “O’”

B bulk modulus of elasticity of the fluid

B,,, By, Fourier coefficients related to modal function in the azimuthal direction

Con, Csn Fourier coefficients related to modal function in the radial direction

¢ speed of sound in the fluid medium

D = Eh/(1 — 1)

D,,, Dy, Fourier coefficients related to fluid motion

E Young’s modulus of the shell

e derived coefficients in equation (30), wherei =1,2,...,4and k=1, 2,...,8
> Fan Fourier coefficients related to fluid motion
X) spacial velocity potential in the axial direction defined in equation (8)

R TE

IIF

derived coefficients in equation (27), where k =1,2,...,7

imaginary unit

thickness of the cylindrical shell

= ER*/12(1 — p?)

= h?/12R?

series expansion terms for Graf’s additional theorem and Beltrami’s theorem
axial mode number
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W
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=

bending moment per unit length

effective membrane shear force per unit length
membrane tensile force per unit length
circumferential mode number

height of the shell

hydrodynamic pressure on the shell

effective transverse shear force per unit length
mean radius of the shell

inner radius of the rigid container

radial co-ordinate for the original co-ordinate system with origin “O”
Fourier components in the axial direction
time

axial dynamic displacement of the shell
tangential dynamic displacement of the shell
1> Wya, W,3 coeflicients defined in equations (22a)—(22c)

2z

=

N%t&“ s

S

g@:ﬂmx

=

W radial dynamic displacement of the shell

w, W end values defined in reference [13]

X axial co-ordinate

y; derived column matrices defined in equations (25) and (26), where j =1,
2,...,8

Z derived column matrices defined in equation (28a) where k =1, 2,...,4

Oy parameter defined in equation (11)

I, T, coefficients defined in equations (22d) and (22e¢)

I, ..., 1y coefficients defined in equations (22f)-(221i)

0 =R,/R

€ eccentric distance between the central axes “O” and “O’”

y? = pR*(1 — 1?)/E

n velocity potential function of r and 0

0 tangentical co-ordinate for original co-ordinate system with origin “O”

[Ai] derived matrix defined in equation (28b), wherei = 1,2,3and k =1, 2, 3, 4

u Poisson ratio of the shell

P density of the cylindrical shell

Do density of the fluid

o =¢/(R, — R)

() general velocity potential function of r, , x and ¢

¢ spatial velocity potential function of r, § and x

1/ tangential co-ordinate for shifted co-ordinate system with origin “O"”

w coupled natural frequency

W, coupled natural frequency of concentrically submerged shell

We coupled natural frequency of eccentrically submerged shell

Indices value at x =0
value at x = L
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