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A theoretical study is presented on the natural frequencies of a circular
cylindrical shell concentrically or eccentrically submerged in a #uid-"lled rigid
cylindrical container. In this analysis, it is assumed that the shell is clamped at both
ends, and an annulus between the shell and the rigid container is "lled with
a non-viscous and compressible #uid. The velocity potential for #uid motion is
formulated in terms of Fourier series expansion, and the modal displacements of
the shell are expanded with the "nite Fourier series using the "nite Fourier
transformation. Along the contacting surface between the shell and #uid, the
compatibility requirement is applied for #uid}structure interaction. In order to
consider eccentricity between the axes of the shell and the container, an additional
shifted co-ordinate system is introduced. Graf 's additional theorem and Beltrami's
theorem are used for the translated forms of the Bessel functions in the shifted
co-ordinate system. The proposed analytical method for the concentrically
submerged shell is veri"ed by observing an excellent agreement with the
"nite-element analysis results. In order to evaluate the dynamic characteristics of
the #uid-coupled system, the e!ects of annular #uid gap and eccentricity of the shell
on the natural frequencies are investigated. ( 1999 Academic Press
1. INTRODUCTION

The free vibration characteristics of a #uid-surrounded cylindrical shell subjected
to various loads have been of great concern in engineering design. Hence, many
investigations in this area have been carried out. The free vibration analysis of two
in"nitely long, coaxial cylinders containing #uid was performed by Krajcinovic [1].
Chen and Rosenberg [2] derived a frequency equation for two concentrically
arranged circular cylindrical shells containing and separated by incompressible
#uid and obtained an approximate closed-form solution. Au-Yang [3] treated the
internal structure of a pressurized water reactor as a system of "nite coaxial
cylinders immersed in a #uid. He estimated the virtual mass and coupling
coe$cient of two "nite cylinders with di!erent lengths immersed in #uid for the
simply supported boundary condition. The free vibration of an in"nitely long
cylindrical shell under axisymmetrical hydrodynamic pressures of the external and
022-460X/99/290709#24 $30.00/0 ( 1999 Academic Press
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internal #uids was studied using Fourier cosine transformation by Endo and
Tosaka [4]. Tani et al. [5] performed a study on the free vibration of clamped
coaxial cylindrical shells partially "lled with incompressible and inviscid #uid.
The theoretical analysis was based upon the Galerkin method and the velocity
potential theory for the #uid. The vibrational characteristic of two concentric
submerged cylindrical shells coupled by entrained #uid was studied by Yoshigawa
et al. [6]. Chiba [7] carried out a theoretical and experimental study on the free
vibration of clamped}free cylindrical shell, which is partially and concentrically
submerged in a liquid-"lled container using the Galerkin method. Jeong and
Lee [8] suggested a theoretical method to study the free vibration of a
liquid-surrounded cylindrical shell. Recently Chiba and Osumi [9] carried out a
theoretical and experimental study on the free vibration of a clamped}clamped
cylindrical shell which is partially "lled with liquid and, at the same time, partially
submerged in a liquid. A theoretical method to study the free vibration of coaxial
cylindrical shells coupled with compressible #uid was suggested and the presence of
some mixed vibrational modes was found by Jeong [10]. Danila et al. [11]
suggested a calculating method of the scattered "eld due to a plane wave incident
on one or several cylindrical #uid}#uid interfaces using the generalized Debye
series expansion. The theoretical method is applied to a concentric and
a non-concentric #uid shell and then extended to the multi-layered cylindrical
structure.

However, few theoretical studies have been made on the free vibration of
a circular cylindrical shell submerged in a compressible #uid-"lled cylindrical
container. Therefore, this paper attempts to develop an analytical method that
calculates the natural frequencies of a cylindrical shell concentrically or eccentrically
submerged in a #uid-"lled cylindrical container using the series expansion methods.
The clamped boundary condition was assumed for both ends of the shell. However,
the theory can be extended to any arbitrary classical boundary conditions using an
additional simple formulation. This analytical method for the concentrically sub-
merged case was veri"ed by "nite-element modelling (FEM).

2. THEORETICAL BACKGROUND

2.1. EQUATION OF MOTION AND BOUNDARY CONDITIONS OF A CIRCULAR CYLINDRICAL
SHELL

Consider a circular cylindrical shell with a clamped boundary condition at both
ends, as illustrated in Figure 1. The shell can be concentrically or eccentrically
submerged in a #uid-"lled container. The cylindrical shell has mean radius R,
height ¸, and wall thickness h. The Sanders' shell equations [8, 10] as the governing
equations for the shell where the hydrodynamic e!ect is considered, can be written
as
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Figure 1. An eccentrically submerged cylindrical shell in a #uid-"lled rigid container.
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The comma in the equations denotes a partial derivative with respect to the
corresponding variable. For a complete description of the shell motions, it is
necessary to add boundary conditions to the equations of motion. Consider the
simplest end arrangements of the shell on the top and bottom supports. At both
ends of a concentrically or eccentrically arranged shell with respect to a rigid
circular cylindrical container, all the boundary conditions will obviously hold for
the case of sine}cosine}cosine (SCC) formulation [12]:

M
x
(0)"N

x
(0)"v(0)"w(0)"0 for the bottom support of the shell, (2a)

M
x
(¸)"N

x
(¸)"v(¸)"w(¸)"0 for the top support of the shell (2b)

where M
x

and N
x

denote the bending moment and the membrane tensile force
respectively. All geometric boundary conditions applicable to the clamped}clamped
shell can be reduced to the following equations for the ends of the shell [13]:

v (0)"w (0)"v (¸)"w (¸)"0. (3)

The relationships between the boundary forces and displcements are
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where D"Eh/(1!k2), K"Eh3/12(1!k2), k"h2/12R2. N
xh and Q

x
denote the

membrane shear force and transverse shear force per unit length, respectively.

2.2. MODAL FUNCTIONS

A general relation for the dynamic displacements in any vibration mode of the
shell can be written in the following form for the cylindrical co-ordinate r, h;

u(x, h, t)"u(x, h)exp(iut), (5a)

v(x, h, t)"v(x, h)exp(iut), (5b)

w(x, h, t)"w(x, h)exp(iut), (5c)
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where u(x, h), v(x, h), and w(x, h) are modal functions corresponding to the axial,
tangential, and radial displacements for the shell respectively. These modal
functions along the axial direction can be described by a sum of linear
combinations of the Fourier series that are orthogonal:
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The derivatives of the above modal functions for the shell can be obtained using the
"nite Fourier transformation [13, 14]. The modal functions and their derivatives of
the cylindrical shell were described in reference [13].

2.3. EQUATION OF FLUID MOTION

The inviscid, irrotational and compressible #uid movement due to shell vibration
is described by the Helmholz equation
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where c is the speed of sound in the #uid medium equal to JB/o
o
, B is the bulk

modulus of elasticity of #uid and o
o

stands for the #uid density. It is possible to
separate the function U with respect to x by observing that, in the axial direction,
the rigid surfaces support the edges of the shell; thus,

U(x, r, h, t)"iu/(r, h, x)exp(iut)"iug(r, h) f (x)exp(iut), (8)

where u is the #uid-coupled frequency of the shell. Substitution of equation (8) into
the partial di!erential equation (7) gives
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It is possible to solve the partial di!erential equation (9) by the separation of the
variables. The solution can be obtained with respect to the original cylindrical



714 K.-H. JEONG
co-ordinates, r, h and x:
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where J
n
and Y

n
are Bessel functions of the "rst and second kinds of order n, whereas

I
n
and K

n
are modi"ed Bessel functions of the "rst and second kinds of order n, / is

the spatial velocity potential of the contained compressible #uid, and a
sn

is related
to the speed of sound in the #uid medium,

a
sn
"SKA

sn
¸ B

2
!A

u
c B

2

K for s"1, 2, 3,2. (11)

Equations (10a) and (10b) automatically satisfy by boundary conditions that
appear as follows: (a) impermeable rigid surface on the bottom is

L/(r, h, x)
Lx

"0 at x"0; (12)

(b) as there exists no free surface, the axial #uid velocity at the rigid top is also zero,
so

L/(r, h, x)
Lx

"0 at x"¸. (13)

2.4. GENERAL FORMULATION FOR CONCENTRICALLY SUBMERGED SHELL

When the shell is concentrically submerged in the #uid-"lled container, the radial
#uid velocity along the outer wetted surface of the shell must be identical to the
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radial velocity of a #exible shell, so

L/(r, h, x)
Lr

"!w (x, h) at r"R. (14)

Additionally, the radial #uid velocity along the wetted surface of the outer rigid
container must be zero, and so

L/ (r, h, x)
Lr

"0 at r"R
o
. (15)

Substitution of equations (6c), (10a) and (10b) into equations (14) and (15) gives the
following relationships:
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Now, all unknown coe$cients D
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, F
on

, D
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and F
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related to the #uid motion will
be written in terms of the coe$cients C
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and C

sn
related to the shell motion:
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2.5. GENERAL FORMULATION FOR ECCENTRICALLY SUBMERGED SHELL

On the other hand, for the eccentrically submerged shell, the velocity potential of
equations (10a) and (10b) can be transformed into the shifted cylindrical
co-ordinates, (a, t, x) by Graf 's addition theorem and Beltrami's theorem [15]:
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It is convenient to handle the boundary condition along the surface of the rigid
container when the velocity potential is transformed from the origin &&O'' into the
shifted origin &&O@''. The radial #uid velocity along the outer wetted surface of the
shell must be identical to that of the #exible shell. Therefore, equations (16c) and
(16d) should be satis"ed, and the radial #uid velocity along the wetted surface of the
outer rigid container that maintains eccentricity to the shell must be zero. Hence

L/(x, t, a)
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o
. (19)

Substitution of equations (6c), (18a) and (18b) into equations (14) ad (19) gives
equation (16a, b) and the relationships
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Now, all unknown coe$cients D
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related to the #uid motion will
be written in terms of the coe$cients C
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and C
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related to the shell motion using

equations (16a, b) and (20a, b).
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As the eccentric distance e approaches zero, J
m
(a

sn
e) and I
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e) of equation (22a}c)

will be zero for mO0 and J
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e)"1 for m"0. Therefore, when e"0,

equation (22) for the eccentric arrangement of the shell obviously reduces equation
(17) of the concentric case. The concentrically submerged shell will be a special case
of the shell submerged eccentrically in a #uid-"lled container.

When the hydrostatic pressure on the shell is neglected for simple formulation,
the hydrodynamic pressure along the outer wetted shell surface can be given by
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2.6. GENERAL FORMULATION

The dynamic displacements and their derivatives can be represented by a Fourier
sine and cosine series in an open range of 0(x(¸ with the end values using the
"nite Fourier transformation [14]. Substitution of the displacements and their
derivatives into the governing Sanders' shell equation (1a}c) leads to an explicit
relation for C
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l
, wJ

o
, wJ

l
, wJ J

o
, and wJJ

l
in equations (25) and (26) are

de"ned in reference [13]. The matrix y
1
, y

2
,2, y

8
are the derived column matrices.

The equivalent hydrodynamic mass e!ect on the shell is included in the coe$cient.
The forces N

xh and Q
x

at the ends of the shells can be written as a combination of
some boundary values of displacement and their derivatives using equation (4). The
boundary values of displacement and their derivatives, v

o
, v

l
, wJJ

0
, and wJ J

l
can be

transformed into a combination of the boundary values of u, wJ , N
xh and Q

x
by

equation (4), as written in the form

v
o
"g

1
u
o
#g

2
wJ

o
#g

3
No

xh , (27a)

v
l
"g

1
u
l
#g

2
wJ

l
#g

3
Nl

xh , (27b)

wJJ
o
"g

4
u
o
#g

5
wJ

o
#g

6
No

xh#g
7
Qo

x
, (27c)

wJJ
l
"g

4
u
l
#g

5
wJ

l
#g

6
Nl

xh#g
7
Ql

x
, (27d)
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where the end values of the forces are de"ned in reference [13] and g
k

(k"1, 2,2, 7) can be derived. Substitution of equation (27) into equations (25)
and (26) gives

C
B

on
C

on
D"z

1
[u

o
#u

l
]#z

2
[wJ

o
#wJ

l
]#z

3
[No

xh#Nl
xh]#z

4
[Qo

x
#Ql

x
], (28a)

A
sn

B
sn

C
sn

"["
ik
]

u
o
#(!1)mu

l
wJ

o
#(!1)mwJ

l
No

xh#(!1)mNl
xh

Qo
x
#(!1)mQl

x

, (28b)

where z
k
(k"1, 2, 3, 4) in equation (28a) are the derived coe$cient matrices, and

["
ik
] (i"1, 2, 3; k"1, 2, 3, 4) in equation (28b) is the 4]3 derived coe$cient

matrix. Eventually, all Fourier coe$cients A
sn
, B

sn
and C

sn
are rearranged with

a combination of the end point values, as shown in equation (28b).
The geometric boundary conditions that must be satis"ed are associated with the

dynamic displacement v and w as described in equation (3). Hence it follows that

v (0)"
=
+
n/1
CB

on
#

=
+
s/1

B
snD"0, v (¸)"

=
+
n/1
CB

on
#

=
+
s/1

B
sn

(!1)mD"0,

(29a, b)

w(0)"
=
+
n/1
CC

on
#

=
+
s/1

C
snD"0, w(¸)"

=
+
n/1
CB

on
#

=
+
s/1

B
sn

(!1)mD"0.

(29c, d)

Substitution of equation (28) for the coe$cients B
on

, C
on

, A
sn

, B
sn

, and C
sn

into the
four constraint conditions that come from the geometric boundary condition,
written as equation (29), leads to a homogeneous matrix equation by omitting the
details:

e
11

e
12

e
13

e
14

e
15

e
16

e
17

e
18

e
21

e
22

e
23

e
24

e
25

e
26

e
27

e
28

e
31

e
32

e
33

e
34

e
35

e
36

e
37

e
38

e
41

e
42

e
43

e
44

e
45

e
46

e
47

e
48 G

u
o

u
l

wJ
o

wJ
l

No
xh

Nl
xh

Qo
x

Ql
x

H"M0N. (30)

The elements of the matrix, e
ik

(i"1, 2, 3, 4, k"1, 2,2, 8) can be obtained from
equation (29). However, when the cylindrical shell is clamped at both support ends,
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the associated boundary condition is

u"v"w"w
,x
"0 at x"0 and ¸. (31)

Among these boundary conditions, the two geometric boundary conditions u"0
and wJ

o
"0 at x"0 and x"¸ are not automatically satis"ed by equation (6), the

modal functions set. Therefore the "rst, second, third, and fourth rows of the matrix
in equation (30) are enforced and the terms associated with u

o
, u

l
, wJ

o
, and wJ

l
are

released. The 4]4 frequency determinant is obtained from equations (30) and (31)
by retaining the rows and columns associated with No

xh , Nl
xh , Qo

x
, and Ql

x
. For the

clamped boundary condition, the coupled natural frequencies are numerically
obtained from the frequency determinant:

K
e
15

e
16

e
17

e
18

e
25

e
26

e
27

e
28

e
35

e
36

e
37

e
38

e
45

e
46

e
47

e
48
K"0. (32)

3. EXAMPLE AND DISCUSSION

3.1. VERIFICATION OF ANALYTICAL METHOD

On the basis of the preceding analysis, the frequency determinant is numerically
solved for the clamped boundary condition in order to "nd the natural frequencies
of the circular cylindrical shell concentrically or eccentrically submerged in
a #uid-"lled cylindrical container. The #uid-"lled annular gap distance and the
eccentricity to the container a!ect the motion of the cylindrical shell. In order to
check the validity and accuracy of the results from the theoretical study and
compare them with the FEM result, computation is carried out for the
#uid-coupled system. The cylindrical shell has a mean radius of 100 mm, a length of
300 mm, and a wall thickness of 2 mm. The outer cylindrical container has an inner
radius of 110 mm with the same length for Case 1 and it has 130 mm of inner radius
with the same length for Case 2. The physical properties of the shell material are as
follows: Young's modulus"69)0 GPa, the Poisson ratio"0)3, and mass
density"2700 kg/m3. Water is used as the containing #uid with a density of
1000 kg/m3. The sound speed in water, 1483 m/s, is equivalent to the bulk modulus
of elasticity, 2)2 GPa. The clamped boundary condition at both ends of the shell is
considered.

The frequency equation derived in the preceding section involves the double
in"nite series of algebraic terms. Before exploring the analytical method for
obtaining the natural frequencies of the #uid-coupled shell, it is necessary to
conduct convergence studies and establish the number of terms required in the
series expansions involved. In the numerical calculation, the Fourier expansion
terms s is set at 80, which gives an exact enough solution by convergence.
Additionally, the Bassel expansion term m is included in the numerical calculation
for the case of eccentrically submerged shell. The expansion term m is set at 50,
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which also gives a converged solution. Finite element analyses, using a commercial
computer code ANSYS (version 5)2), are performed to verify the theoretical results
for the concentrically submerged shell. The FEM results are used as the baseline
data. In the "nite-element analysis, two-dimensional axisymmetric models are
constructed with axisymmetric two-dimensional #uid elements (FLUID81) and
axisymmetric shell elements (SHELL61). The #uid region is divided into a number
of identical #uid elements with four nodes. We model the circular cylindrical shell
as deformable shell elements with two nodes. The #uid boundary conditions at the
top and bottom of the tank are zero displacement and rotations. The nodes
connected entirely by the #uid elements are free to move arbitrarily in
three-dimensional space, with the exception of those restricted to motion in the
bottom and top surfaces of the #uid cavity. The radial velocities of the #uid nodes
along the wetted shell surfaces coincide with the corresponding velocities of the
shells. The FEM model has 320 (radially 8]axially 40) #uid elements and 40 shell
elements.

Table 1 will make it easier to check the accuracy of the frequencies and compare
the theoretical frequencies with the corresponding FEM ones for the concentrically
submerged shell. The discrepancy in the table is de"ned as

Discrepancy (%)"
¹heoretical frequency!FEM frequency

FEM frequency
]100. (33)

The largest discrepancies between the theoretical and FEM results are 1)79% for
Case 1 when n"1, and m@"4 and 2)53% for Case 2 when n"2 and m@"3. The
discrepancies de"ned by equation (33), for the cases, are always less than 3% in the
range of n"1}8 and m@"1}4. As the coarse mesh of the FEM model changes to
the "ne mesh, all natural frequencies may converge to the theoretical results. As can
be seen, the present results for the concentrically submerged shell agree quite well
with the FEM solution. Unfortunately, the veri"cation for the eccentrically
submerged case is not performed yet, because the "nite-element analyses for the
eccentric cases should be carried out using the three-dimensional model instead of
the two-dimensional axisymmetric model. The three-dimensional model for the
eccentrically submerged case requires a large number of elements and complicated
boundary conditions along the wetted surfaces.

3.2. EFFECT OF RADIUS RATIO

First of all, in order to see the distance e!ect of surrounding annular #uid gap,
the radius ratio is de"ned as

d"A
R

0
R B , 1(d(R. (34)

when R
0
<R, d approaches R. It obviously corresponds to the case of the shell

submerged in an in"nite #uid. On the contrary, as R
0

approaches R, the radius



TABLE 1
Comparison of FEM and theoretical coupled natural frequencies (Hz) for a cylindrical shell

concentrically submerged in a -uid-,lled rigid container

Coupled natural frequency (Hz)

Mode Case 1 (R
o
"0)110 m) Case 2 (R

o
"0)130 m)

n m@ FEM Theory Discrepancy (%) FEM Theory Discrepancy (%)

1 1 334)1 333)7 !0)12 536)4 532)7 !0)69
2 750)0 744)5 !0)73 1219)1 1195)2 !1)96
3 1288)0 1271)2 !1)30 2024)2 1974)6 !2)45
4 1893)9 1860)0 !1)79 2802)5 2743)6 !2)10

2 1 342)7 342)9 0)06 534)6 534)5 !0)02
2 756)8 755)3 !0)20 1169)3 1162)7 !0)56
3 1263)2 1253)3 !0)78 1897)0 1872)1 !1)31
4 1822)1 1795)3 !1)44 2606)3 2545)1 !2)35

3 1 316)5 316)5 0)00 468)3 468)5 0)04
2 700)6 699)8 !0)11 1022)0 1020)5 !0)15
3 118)8 1183)0 !0)49 1689)7 1679)7 !0)59
4 1733)7 1715)0 !1)08 2370)5 2343)8 !1)13

4 1 337)7 337)4 !0)09 471)3 471)4 0)02
2 668)7 667)6 !0)16 920)0 919)3 !0)08
3 1120)9 1116)1 !0)43 1507)6 1502)5 !0)34
4 1647)5 1632)8 !0)89 2148)2 2131)9 !0)76

5 1 463)0 462)6 !0)09 611)1 611)5 0)07
2 719)8 718)2 !0)22 938)0 937)4 !0)06
3 1120)4 1115)4 !0)45 1432)5 1428)7 !0)27
4 1617)1 1603)7 !0)83 2017)1 2005)2 !0)59

6 1 700)2 699)6 !0)09 878)9 879)9 0)11
2 894)5 892)5 !0)22 1111)2 1110)9 !0)03
3 1234)6 1229)0 !0)45 1510)2 1506)9 !0)22
4 1690)5 1676)9 !0)80 2028)1 2017)9 !0)50
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ratio d will come near unity and the #uid annular gap formed by a shell and a rigid
container is relatively narrow. One of the best ways to estimate the hydrodynamic
e!ects on free vibration of a #uid-coupled structure is to obtain the
non-dimensional normalized natural frequencies as described in the previous study
[16]. The normalized natural frequency behaviour of the inner shell depending on
water annular gap distances are illustrated in Figures 2}5, where the normalized
natural frequency is de"ned as the #uid-coupled natural frequency divided by the
natural frequency in vacuum for the speci"c corresponding mode. The normalized
natural frequencies for the axial mode number m@"1 are plotted in Figure 2 as
a function of the circumferential mode number n in the cases of d"1)1, 1)2, 1)3, 1)5,
and 2)0. This "gure shows that the natural frequency of the shell can be reduced by



Figure 2. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a #uid-"lled rigid container for m@"1 (*£*, d"1)1;*h*, d"1)2;*d*, d"1)3;*j*, d"1)5;
*s*, d"2)0

Figure 3. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a #uid-"lled rigid container for m@"2. Key as for Figure 2.
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Figure 4. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a #uid-"lled rigid container for m@"3. Key as for Figure 2.

Figure 5. Normalized natural frequencies of a circular cylindrical shell concentrically submerged in
a #uid-"lled rigid container for m@"4. Key as for Figure 2.
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Figure 6. E!ects of eccentricity on the normalized natural frequencies of a circular cylindrical shell
eccentrically submerged in a #uid-"lled rigid container for m@"1 and d"1)3 (*h*, p"0)0;*s*,
p"0)2; *n*, d"0)4; *£*, d"0)6; *e*, p"0)8).
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about 90% by coming into contact with water for m@"1, n"1 and d"1)1. For
m@"2, 3 and 4, similar "gures are illustrated in Figures 3, 4 and 5 respectively. As
one can see, the normalized natural frequencies are always less than unity due to
the hydrodynamic mass (or the added mass) of #uid. When the circumferential
mode number n increases, the normalized natural frequencies monotonically
increase regardless of the axial mode, m@, in the range of 1)n)8 due to the
separation e+ect explained by Jeong and Lee [16]. Judging from Figures 2}5, it is
also clear that for the same reason the normalized natural frequencies also increase
with an increase in the axial mode number. If the radius ratio d approaches unity,
the normalized natural frequencies decrease drastically because the narrow annular
gap produces a great hydrodynamic mass due to a lengthened moving length of
#uid. That is to say, the narrow annular gap works as a one directional channel
carrying #uid during vibration, which produces an increased hydrodynamic mass,
and eventually reduces the natural frequencies of the shell. On the contrary, as the
#uid annular gap distance increases, the moving length of #uid during vibration is
relatively shortened and eventually the hydrodynamic mass is also reduced. When
the radius ratio d'2)0 and the circumferential mode number n'5, the results are



Figure 7. E!ects of eccentricity on the normalized natural frequencies of a circular cylindrical shell
eccentrically submerged in a #uid-"lled rigid container for m@"2 and d"1)3. Key as for Figure 6.
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not di!erent from the case when it is surrounded with an in"nite #uid. This shows
the case of the radius ratio d'2)0 with a circumferential higher mode that can be
treated as a shell submerged in an in"nite #uid. However, the assumption that
a cylindrical shell is submerged in an in"nite #uid, in order to get the natural
frequencies of a concentrically submerged shell in a #uid-"lled container with
a relatively wide annular gap, may lead to overestimation of the natural frequencies
for lower circumferential modes.

3.3. EFFECT OF ECCENTRICITY

The e!ect of eccentricity on the natural frequency is investigated in this section.
The eccentricity of the shell to the container, p, is de"ned as

p"A
e

R
0
!RB , 0)p(1. (35)

As an extreme case, when the two origins &&O'' and &&O@'' in Figure 1 get close to each
other, the eccentric distance e will be zero. Hence, the eccentricity p"0



Figure 8. E!ects of eccentricity on the normalized natural frequencies of a circular cylindrical shell
eccentrically submerged in a #uid-"lled rigid container for m@"3 and d"1)3. Key as for Figure 6.
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corresponds to the case of the concentrically submerged shell. The e!ects of the
eccentricity on natural frequencies are illustrated in Figures 6}10. Figure 6 shows
the eccentricity e!ect of the shell on the normalized natural frequencies for m@"1.
In the "gure, the normalized natural frequencies are found to gradually increase
with an increase of the circumferential mode number for any eccentricity.
Additionally, the "gure shows that the normalized natural frequencies decrease
with an increase of the eccentricity. Especially, as the eccentricity approaches unity,
the drop of normalized natural frequencies is accelerated. However, for axial mode
number m@"2, and 3, the e!ect of eccentricity on the normalized natural
frequencies appear relatively small as shown in Figures 7 and 8. One reason can be
that the tangential movement of #uid along the annular #uid gap for m@"1 is
changed to the combined movement to the tangential and vertical directions for
m@'1. The change of #uid movement direction during vibration of the shell makes
the moving length of #uid relatively shorter, which contributes the reduction of
hydrodynamic mass along with the reduction in the eccentricity e!ect for m@'1.
Therefore, the e!ect of eccentricity appears to be most pronounced for axial mode
number m@"1. Figures 9 and 10 illustrate the ratios of the natural frequencies for



Figure 9. Natural frequencies ratios of the eccentrically submerged shell to the concentrically
submerged case for m@"1 and d"1)3 (*h*, p"0)2; *s*, p"0)4; *n*, p"0)6; *£*,
p"0)8).
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the eccentrically submerged case to those of the concentrically submerged case. In
the "gures, u

c
and u

e
represent the natural frequencies for the concentrically

submerged case and the eccentrically submerged case respectively. Figure 9 also
shows that the natural frequency can be reduced by about 50% due to the
eccentricity only when m@"1, n"1, d"1)3 and p"0)8. It is also found that the
eccentricity e!ect on the natural frequencies of the shell is dominant for lower
vertical and circumferential modes.

4. CONCLUSIONS

A theoretical study on the natural frequencies of a circular cylindrical shell
concentrically or eccentrically submerged in a #uid-"lled rigid cylindrical container
is conducted. In order to consider an eccentricity between the axes of the shell and
the container, Graf 's additional theorem and Beltrami's theorem are used for the
translated forms of the Bassel functions in the shifted co-ordinate system. The
proposed analytical method for the concentrically submerged shell is veri"ed by the
"nite-element method, the results of which show excellent agreement. In order to



Figure 10. Natural frequencies ratios of the eccentrically submerged shell to the concentrically
submerged case for m@"2 and d"1)3. Key as for Figure 9.
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evaluate the dynamic characteristics of the #uid-coupled system, the e!ects of
annular #uid gap distance and eccentricity of the shell to the container on the
natural frequencies are investigated. It is found that an increase of the annular gap
between the shell and rigid container produces an increase of the natural
frequencies of the shell for all circumferential and axial modes. The eccentricity of
the shell tends to reduce the natural frequencies for all axial and circumferential
mode numbers. The eccentricity e!ect on the natural frequencies is found to be
especially dominant for axial mode number m@"1.
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APPENDIX: NOMENCLATURE

A
sn

Fourier coe$cient related to modal function in the axial direction
a radial co-ordinate for shifted co-ordinate system with origin &&O@ ''
B bulk modulus of elasticity of the #uid
B
on

, B
sn

Fourier coe$cients related to modal function in the azimuthal direction
C

on
, C

sn
Fourier coe$cients related to modal function in the radial direction

c speed of sound in the #uid medium
D "Eh/(1!k2)
D

on
, D

sn
Fourier coe$cients related to #uid motion

E Young's modulus of the shell
e
ik

derived coe$cients in equation (30), where i"1, 2,2, 4 and k"1, 2,2, 8
F
on

, F
sn

Fourier coe$cients related to #uid motion
f (x) spacial velocity potential in the axial direction de"ned in equation (8)
g
k

derived coe$cients in equation (27), where k"1, 2,2, 7
i imaginary unit
h thickness of the cylindrical shell
K "Eh3/12(1!k2)
k "h2/12R2

m series expansion terms for Graf 's additional theorem and Beltrami's theorem
m@ axial mode number
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M
x

bending moment per unit length
N

xh e!ective membrane shear force per unit length
N

x
membrane tensile force per unit length

n circumferential mode number
¸ height of the shell
p hydrodynamic pressure on the shell
Q

x
e!ective transverse shear force per unit length

R mean radius of the shell
R

o
inner radius of the rigid container

r radial co-ordinate for the original co-ordinate system with origin &&O''
s Fourier components in the axial direction
t time
u axial dynamic displacement of the shell
v tangential dynamic displacement of the shell
=

n1
,=

n2
,=

n3
coe$cients de"ned in equations (22a)}(22c)

w radial dynamic displacement of the shell
wJ , wJJ end values de"ned in reference [13]
x axial co-ordinate
y
j

derived column matrices de"ned in equations (25) and (26), where j"1,
2,2, 8

z
k

derived column matrices de"ned in equation (28a) where k"1, 2,2, 4
a
sn

parameter de"ned in equation (11)
C
n1

, C
n2

coe$cients de"ned in equations (22d) and (22e)
C
sn3

,2,C
sn6

coe$cients de"ned in equations (22f)}(22i)
d "R

o
/R

e eccentric distance between the central axes &&O'' and &&O@ ''
c2 "oR2 (1!k2)/E
g velocity potential function of r and h
h tangentical co-ordinate for original co-ordinate system with origin &&O''
["

ik
] derived matrix de"ned in equation (28b), where i"1, 2, 3 and k"1, 2, 3, 4

k Poisson ratio of the shell
o density of the cylindrical shell
o
o

density of the #uid
p "e/(R

o
!R)

U general velocity potential function of r, h, x and t
/ spatial velocity potential function of r, h and x
t tangential co-ordinate for shifted co-ordinate system with origin &&O@ ''
u coupled natural frequency
u

c
coupled natural frequency of concentrically submerged shell

u
e

coupled natural frequency of eccentrically submerged shell

Indices value at x"0
value at x"¸
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