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A clamped-free rotating flexible robotic arm is modelled by the Euler-Bernoulli
beam theory. The arm rotates horizontally about the clamped axis while the other
end is constrained to move against a curve. The arm has an end mass attached at its
tip. An axial compressive force, which is derived from the contact force between the
tip of the arm and the constrained curve, is applied at the free end. When
the flexible robotic arm rotates, a centrifugal force is produced on the arm by the
centrifugal stiffening effect. Hamilton’s principle is used to derive the equation
of motion of the arm together with the associated boundary conditions. The
non-homogeneous boundary condition is transformed into a homogeneous one by
defining a new variable. The equation of motion and the boundary conditions are
then expressed in non-dimensional form. The power series method is used to solve
the equation of motion. A frequency equation is derived giving the relationship
between the non-dimensional modal frequencies and the four non-dimensional
parameters, i.e. the axially compressed force, the end mass, the angular velocity of
the arm and the total moment of inertia about the hub. The numerical bisection
method is used to solve for the natural frequencies under different values of axial
force, end mass, angular velocity of the arm and the total moment of inertia about
the hub. Results are prersented for the first three modes of vibration. These results
are useful in the understanding of the dynamic behavior of the rotating constrained
flexible beam with an end mass. © 1999 Academic Press

1. INTRODUCTION

Nowadays, industrial robots are mainly applied in two types of work. The first type
of work is either dangerous or highly repetitive work. This type of work is usually
performed in an unpleasant or dangerous environment. Examples include
machining operation, welding, grinding and polishing, machine loading and
unloading, forging and die-casting, spray painting, etc. The application of robots in
this area can spare humans not only from many hazardous operations, but also
from the boredom of much repetitive work. The second type of work is the kind
that requires high precision and high speed of operation. This includes many
assembly operations in the light industry and precision machining operations. The
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application of robots in this area can increase the efficiency of the work and also
improve the quality and the accuracy of the work produced.

In order to attain high speed of operation as required in the second type of work,
the feasibility of using robot arms made of lightweight elastic links has been studied.
The reduction in weight allows the robot arm to move faster and carry heavier
loads with longer links. However, this reduction in weight has inevitably led to the
problem of flexibility of the arm. When this robot arm is operating at high speed,
the effects of flexibility of the arm cause the problem of oscillatory elastic motion.
Also, the axial shortening of the arm due to centrifugal stiffening effects changes the
system’s natural frequencies. These in turn affect the precision of the robot motion.
Hence, the axial shortening effect is an important area to be studied when inves-
tigating the vibration of a rotating flexible beam. In addition, there is a need to
investigate the vibration of a rotating flexible beam under constrained motion. In
many industrial applications of robot such as grinding and polishing, a constrained
surface exists and the end of the last link of the robot experiences an axial
compressive force resulting from the contact with the surface. Also, the end mass
effect needs to be considered as the payload including the wrist or tool is usually
present in many robotic applications. Moreover, in designing control algorithm for
the robot arm, an accurate determination of the vibration frequencies of the flexible
arm is necessary, as they are required by many model-based control methods.
Hence, the objective of the present work is to investigate the effects of axial
shortening on the vibration frequencies of a rotating constrained flexible robotic
arm carrying an end mass.

Recently, the vibration of a rotating flexible beam has been studied by numerous
researchers. Although exact frequency equations for the lateral vibrations of beams
with different boundary conditions have been derived in many references [1-16],
not many of them have taken into account the axial shortening effect in their
studies. Among those that have not considered the axial shortening effect [1-7],
some even did not consider the end mass effect. Liu and Ertekin [5] presented the
results of a free—free beam under both tensile and compressive load and the
fundamental frequency is found for the tensile case. However, the above analyses
were performed on the axial compressive or tensile beams without the end mass.
There is a need to consider, in addition to the constrained force effect, the end mass
effect in the derivation of the frequency characteristic equation as the payload is
usually present in many robotic applications as mentioned earlier in this paper.
Moreover, White and Heppler [6, 7] studied the vibration of a rotating
Timoshenko beam with an attached end mass using two different rotating frames of
reference: pseudo-pinned and pseudo-clamped, but the axial shortening effect due
to the centrifugal stiffening is not considered in his paper.

The axial shortening due to the centrifugal stiffening effects of the rotating beam
was also a topic considered by many researchers [8-15]. Among them, some
analyzed the end mass in their models [ 11-15] while others did not study its effects
[8-10]. Yigit et al. [8, 9] formulated a model of a rotating Euler-Bernoulli beam
that includes the axial shortening effect. Du et al. [12] employed the Timoshenko
beam model to formulate the equations of motion of a rotating beam that has
a finite hub and has a mass attached at the free end of the beam. This model
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includes the effect of centrifugal stiffening due to constant angular rotation and the
resulting equations of motion are solved by the power series method. Also, Fallahi
et al. [14] utilized a Timoshenko beam model to formulate a rotating beam-mass
system with centrifugal stiffening effect. In this paper, the effects of speed and tip
mass on the cross-coupling between the elastic and rigid-body motions represented
by Coriolis, normal and tangential accelerations are investigated. However, for all
the above studies [8-15], the robotic arm under investigation is not subjected to
any axial compressive force. Fung and Shi [16] in a recent paper has formulated
a model of a rotating Euler-Bernoulli beam that carries an end mass and is
subjected to an axial compressive force. In this paper, an exact frequency equation
is derived giving the relationship between the vibration frquencies and the
parameters such as the axial compressive force and the end mass. However, the
effect of axial shortening was not considered and hence the parameter of the beam
angular velocity was not included in the frequency equation.

The present study aims to determine the natural vibration frequencies of a
rotating constrained flexible arm carrying an end mass taking into consideration
the axial shortening effect. In this paper, the robotic arm is modelled by
a clamped-free Euler-Bernoulli beam ignoring the shear deformation and rotary
inertia effects. The arm rotates horizontally about the clamped axis while the free
end is constrained to move against a curve. The arm also has an end mass attached
at its tip. An axial compressive force derived from the contact force between
the tip of the arm and the constrained curve is applied at the free end. When
the flexible robotic arm rotates, an axial shortening force is produced on the
arm by the centrifugal stiffening effect. Hamilton’s principle is used to derive the
governing equation of motion of the beam along with the boundary conditions.
The non-homogeneous boundary condition is transformed into a homogeneous
one by defining a new variable. The equation of motion and the boundary
condition are then expressed in non-dimensional form. The power series method is
used to solve the equation of motion. A frequency equation is derived giving
the relationship between the non-dimensional modal frequencies and the four
non-dimensional parameters, i.e., the axially compressed force, the end mass, the
angular velocity of the arm and the total moment of inertia about the hub.
Numerical bisection method is used to solve for the natural frequencies under
different values of axial force, end mass, angular velocity of the arm and total
moment of inertia about the hub by means of FORTRAN programming. Results
are presented for the first three modes of vibration. These results are useful in
understanding the dynamic behavior of the rotating constrained flexible beam
carrying an end mass.

2. THEORY

The clamped-free flexible robotic arm to be studied is shown in Figure 1. It is
modelled by the Euler-Bernoulli beam theory in which rotary inertia and shear
deformation effects are ignored. The arm is of length L and the mass per unit length
is p. It rotates at an angular velocity of 0 about the clamped axis and has a mass
m attached at its free end. The end is also constrained to move against a curve
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Figure 1. A rotating constrained flexible robotic arm carrying an end mass.

@(X, Y) = 0. An axial compressive force Q which is derived from the contact force
between the tip of the arm and the constrained curve is applied at the free end.
When this flexible robotic arm rotates, the centrifugal stiffening effect will produce
a centrifugal force P(r, t) on the arm. The work done by this centrifugal force will
produce an axial shortening effect on the arm.

The transverse displacement of a spatial point on the beam at a distance
r(0 < r < L) from the origin is denoted by w(t, r) while the transverse displacement
at the tip end is denoted by wg(t) where

wg(t) = w(t, L).

Let (X,, Y,) denote the co-ordinates of the end point of the beam in the inertial
Cartesian axes OXY. Then

X,=LcosO+ wgsin0, Y,=Lsin0 —wgcosl

The position vector P of the end mass m and the position vector r of a spatial point
at a distance r from the origin of the flexible link are

P=Li—wg, P=wgi+ L0j— g
r=ri—wtnr)j F=w i+ rlj—wr)j (1)
Let EI be the flexural rigidity of the beam, J the moment of inertia of the hub and

P(r, t) the centrifugal force arising from the centrifugal stiffening effect.
The total kinetic energy T of the system is

T—1 " fodr+1mPTP+1J9'2
=2, 7 2 2
L

- j pOv202 + 1207 + 402 — 20000) dr + 3 m(w0? + L26% + i — 2Ldve) ()
0

I .,
—|—§J€)
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and the total potential energy V' of the system is

V= ! fL EI(w")* dr — ! fL Qw)*dr + ! jL P(r, t)(w')*dr, (3)
2 Jo 2 Jo 2 Jo

where a dot denotes the time derivative and a prime denotes the derivative with
respect to the spatial variable r and
L

P(r, t) = mLO? + J pro*dr

r

1.
=mL0? + 3 p0*(L? —r?). 4)

The virtual work done by the applied torque dW is given by
oW =140, )
where 7 is the applied hub torque.
By applying Hamilton’s principle,
2
J (0T — OV + oW + Ao®)dt =0, (6)
ty

where /4 is a Lagrange multiplier.

Assuming that E, I. p, L are constants and substituting equations (1)-(5) into
equation (6), the equation of vibration of the flexible beam can be obtained. The
equation of vibration of the flexible beam is

p(r0 — W + 02w) — EIw"" — Ow" + [L p02(L* — r?) + mLO*]w" — p02rw’ = 0.

(7)

The four boundary conditions at the clamped end and the constrained end are

wt,00=0, w(0)=0  wp=w"(t,L)=0, (8a—c)
m 0D
EI <; wg’ + wE> + Qwp= — 4 . (8d)

Since the boundary condition given by equation (8d) is non-homogeneous, it is
difficult to treat it directly. This non-homogeneous boundary condition is therefore
transformed into a homogeneous one [16] by defining a new variable v(t, r).

Let

v(t,r) = w(t,r) + g@) f(r) ©)

where



814 E. H. K. FUNG AND D. T. W. YAU

and

N S U T
f(r)_EI<2r 6" TaL" "1z )

g(t) and f (r) are selected to satisfy the boundary conditions in equations (8a)-(8d).
Substituting equation (9) into equation (7) and retaining the terms that are needed
for the determination of the natural frequencies gives the following equation of
motion:

EIV" +(Q — 3 p0*L* — mLO? + 3 p02r2)v" + p0*rv’' + pis — p0*v — prll = 0.
(10)

Substituting equation (9) into equations (8a)—(8d), the non-homogeneous boundary
condition is transformed into a homogeneous one in v:

0(,0)=0, v'(t0)=0, vj=0"(t,L)=0, (11a—c)

EI <p 1 + H/) —I— QUE — (11d)

The method of assumed modes is applied, so the variable v is expressed as
- ¥ Vi (12)
Substituting equation (12) into equation (10), we obtain
i{HY%umJ(Q—#Wﬁ—muﬁ+wwﬂmvmm

+ p02rY(()gi(t) + pYi(n)(0) — p0*Y (1) (1)} = prd. (13)
Torque balance about the hub gives
JO =1 -1, (14)

where J, is the total moment of inertia about the hub and
L
Ty = J prwdr + mLwg + Qwg. (15)
0

Combining equations (14) and (15), setting T = 0 for free vibration of the beam and
ignoring the terms that are not required for the determination of the natural
frequencies, we obtain

.o L
Jo= — j privdr — mLiig — Qug. (16)
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Using equations (12) and (16), the following equation is obtained:

Jb = —JL i Y.:(r)gi(t) dr — mL Z L) (1) — i ). (17)

i=1 i=1
Combining equations (13) and (17) and considering the ith mode, we have

EIY]"q; + (Q — % p0L* — mLO? + 3 p0*r?) Y{q; + p0*rYiq; + pY i

L
— p0?Yiq; + ? <J prYg;dr + mLY(L)g; + QYi(L)CIi> = 0.

0

Therefore,

EIY!" 4+ (Q — 4 p0*L> — mL0* + 1 p0*2) Y + pb*rY; — p0?Y;

pr ‘ Gi
+ 7 QY (L) = [pY + 7 { j orY;dr + mLYi(L)}} E (18)

Assuming harmonic vibration, the equation for the generalized co-ordinate is
Gi(t) = — wiq;(t), (19)
where w; is the vibration frequency of the rotating beam.

Using equations (18) and (19), the following equation for the mode shape
function can be obtained:

EIY! +(Q — % p0*L> — mL0* + 1 p0*2) Y} + pb*rY; — p0?Y;

2 L
+ ﬁ—r OYi(L) — pYi? — "rji U prY.dr + mLYi(L)} -
t t 0

Defining
L
= — f prO?Yi(ndr — mLoYi(L) + QYi(L), (20a)
0

we obtain
EIY}" +(Q — 1 p0?L? — mLG? + 1 p0%) Y/
+ 0¥ = pofYi — p0Yi = — pryfJ. (20b)

Substituting equation (12) into equations (11a)—(11d) yields the following boundary
conditions in Y;:

Yi(0)=0, Y}0)=0, Y/(L)=0, (21a,¢)

EIY/(L) + QY}(L) = 0. (21d)
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Introducing the non-dimensional parameters

r m QL?
5 L, b
J

oL EI

P 472 P 2
Jo = = [LorLz, Q= | L
0 pL3: n EI 5 i Elwl 5

the following equation for the mode shape function can be obtained:

Y7+ (U —3n® = Nn? + 5n*8)Y{ + n?8Yi — QY —n?Yi = — (o/Jo)E, (22)
where a prime ( ) denotes the derivative with respect to the non-dimensional
co-ordinate & and

o = — J L EQPY(O)dE — NORYA(1) + UYA(), 23)
0

Defining
Ci=U—in*=Np*, Cr=1in%

Cy= —@ -1 Co= 12

the equation of motion (22) of the flexible beam becomes
Yi" 4+ (Ci+ C82)Y] +2C8Y + C3Y; = C4¢, (24)

where Y; is now a function of & instead of r.
Substituting the non-dimensional parameters into equations (21a)-(21d), the
four boundary conditions become

Y0)=0, Yi0)=0, Y/(1)=0, (25a-c)
NY!"(1) + Y/ (1) + UY)(1) = 0. (25d)

Equation (24) is a non-homogeneous differential equation with variable
coefficients. The total solution of this equation can be expressed in terms of a
homogeneous solution and a particular solution in the form

Yi(Q) = Yield) + FE, (26)

where Y;(&) is the total solution, Y;.(¢) is the homogeneous solution and F¢ is the
particular solution. Substituting equation (26) and their derivatives into equation
(24), the equation for the homogeneous solution Y,;.(¢) and the constant F are found
to be

Yii' +(Cy + Co&) Yie + 2C5EYi + C3Yi = 0, (27)

. 1
Pt | [ arviaac e varva —ovan | e
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The homogeneous equation (27) is solved by the power series method as described
in the next section.

3. POWER SERIES SOLUTION OF THE MODE SHAPE EQUATION

Equation (27) is a variable coefficient differential equation that cannot be solved
analytically by using ordinary trigonometric or hyperbolic functions. Hence, the
power series method is used in this case by expressing the homogeneous solution
Y..({) as a power series in the independent variable &.

Let

[ee]

u(é) = Z @l =ag+ a;& + a8 + az& + -,
k=0

=Y kad ' = Y (k+ Dags (&
k=1 k=0

=Y k(k— a2 = f Dk & 1= Y (k +2)(k + Dag. &
k=2 k= k=0
W0 = ¥ k= k= D = Y (k+ Dk = Dot
k= k=2

i (k + 2)(k + Dkay,, &1 = i (k + 3)(k + 2)(k + 1)ay 43"
u"(¢ i k(k — 1)k = 2)(k — 3)a&*™* = i k(k — 1)(k — 2)ag &3

(k + Dk + Dklk — Dagea 2= 3 (k + 3k + 2)(k + Dags 5!

2 k=1

MS

k

(k + 4)(k + 3)(k + 2)(k + 1)ay+4E~ (29)

i

K
Substituting equation (29) into equation (27) gives
(k + 4 (k + 3)(k + 2)(k + Dag+4E* + Cy(k + 2)(k + Dag 4 ,E* + Cok(k — V)aE*
+ 2Ckapé* + Cya E* = 0.
Equating coefficients of like power of ¢ yields the recurrence formula

Ciay 2

s = T ¥ Hk 1 3)

kC, C;
B [(k Tk kT2 kKT IK Tk + 1)] a, k>0 (30)
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There are four arbitrary constants ag, a;, a,, az in equation (29). Four linearly
independent solutions ug, u;, #,, #z can be obtained by selecting these four
arbitrary constants as follows:

foruy, ap=1 and a; =a,=a; =0,

foruy;, ao=0 and a;=1,a,=a3=0,

foru,, ap=a,=0 and a,=1, a;=0,

forus;, ap=a,=a,=0 anda;=1. (31)

These four linearly independent functions can be written explicitly as

up(é) =1 —%54 + (:712%3 &4 ..,

m@ =g 22 G [ BOE LGy
n@=c-Se A8 Gu
wo-e-Se GG Ga, Ly

The linear combination of these four linearly independent functions is the
homogeneous solution of equation (27), and can be written as

Yi(€) = Aoto(&) + A1u1(S) + Azua(S) + Azus(S). (33)
The total solution of equation (24) is
Yi(&) = Zouo(&) + A1ur (&) + A2us(8) + 43u3(S) + FE, (34)

where A, 41,45, 43 are constants to be determined by the four boundary
conditions given by equations (25a)-(25d). From equations (25a), (32) and (34)

Y:(0)=40=0. (35)
From equations (25b), (32) and (34)
Yi(0)=4,+ F=0. (36)
Substituting equation (35) into equation (34), we obtain
Yi() = 2u(§) + Aau2(8) + Asus(E) + FC. (37)
From equations (25¢) and (37),
Yi(1) = A (1) + Zou5(1) + Azu3(1) = 0. (38)
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From equation (37), we have
Yi(1) = Ajui (1) + Aus(1) + Asui(1) + F,
Y (1) = Aui'(1) + Au5’ (1) + A;u5' (1),
Y7 (1) = Aui”" (1) + Au5" (1) + Zsu3”(1). (39)
Substituting equation (39) into equation (25d) gives
[Nui”(1) + u{'(1) + U(ui(1) — D241 + [Nu3"(1) + u5' (1) + Uus(1)] 4,

+ [Nus"(1) + us'(1) + Uus(1)]A3 = 0. (40)

Equations (36), (38) and (40) can be written in the following matrix form:

0 0
ui(1 ) uz(1) uz(1)
Nu{" (D) +uf' (1) + U@i(1) —1) Nuy'(1)+u5'(1) + Uus(1)  Nuz”(1) +u5'(1) + Uui(1)
(41)
which yields
A= —F, (42)
R _ INVus"(1) + u5'(1) + Uus(D]uz (D) — [Nuy"(D) + ui'(1) + Ui (1) — D]us() o @3)
[Nuz"(1) + us'(1) + Uus(D]u3(1) — [Nu5"(1) + w3 (1) + Uup(D]us(1) 7

- INug() + (1) + U (1) — DJus(1) = [Nug(1) + w5 (1) + Uy (1] (1)

43 = (44)

[Nuz"(1) + u3'(1) + Uuz(D)]Juz(1) — [Nuz"(1) + u2'(1) + Uus (1)]Jus(1)

Substituting equations (37) and (42)-(44) into equation (28), one obtains the
following frequency equation relating the non-dimensional modal frequencies ©; to
the axial force U, the end mass N, the beam angular velocity # and the total
moment of inertia about the hub J,:

DQ? + D,NQ? — D,U — J,QF =0, (45)
where
D, =
[Nu{"(1) +u{'(1) + Uuy(1) — D]uz(1) — [Nug"(1) + u5'(1) + Uus(D)]ui(1)
[Nu3"(1) + w3 (1) + Uus(D]uz(1) — [Nuy"(1) + u5'(1) + Uuy(1)]us(1)

[Nu3"(1) +u3'(1) + Uuz(D]ui(1) — [Nui"(1) + ui'(1) + Ui (1) — D]us(1)
[Nu3"(1) + u3'(1) + Uz (D)]Juz (1) — [Nuz"(1) + u2'(1) + Uus(1)Jus(1)

f Eu(8)de
0

1 1 1
y J éus(é)duf Gur(§)dé — 5 (46)
0 0
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[Nu{"(1) + uy' (1) + Uy (1) — D]u5 (1) — [Nug"(1) + u5'(1) + Uus(1)]uf (1)

D2 = [Nu3"(1) + u3' (1) + Uu5(1)Juz(1) — [Nuy"(1) + uy'(1) + Uub(1)Ju3(1)

u (1)

[Nuz"(1) + u5'(1) + Uuz(D]ui(1) — [Nuy”(1) + uy’(1) + Ui (1) — 1)Ju3(1)

[Nu3"(1) + u5'(1) + Uz (D] u3(1) — [Nuz"(1) + uz'(1) + Uy (1)]u3(1) )

+u (1) — 1L (47)

Using equations (29) and (31), the spatial derivatives and integral of u;, u, and
u3 can be obtained. For uy, ap=0and a; =1,a, =a3 =0

1 de=tq oy Gurs 48
|, amtae =5+ ¥ e 9)
w® =1+ Y a, 9)
(D) =1+ Y (k + Hag s, (50)
k=0
W)= 3 (k+ 4k + Dape s, (51)
k=0
f (k + D)k + 3)(k + g4, (52)
uy”(1) = i (k+ 4k + 3)k + 2)(k + Dag 4. (53)
k=0
ForuZ,a():al =0anda2=1,a3=0,
[ an@ae—g+ ¥ 2 (54
u(1) =1+ i Ak +4, (55)
k=0
i k + 4 ak+4, (56)
(1 = i k + 4 k + 3)ak+4> (57)
uy'(1) = i (k +4)k + 3)(k + 2)ag + 4, (58)
k=0
uy'(1) = i (k+ 4k +3)k+ 2)(k + 1)ag+4. (59)

k

0
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TABLE 1
Non-dimensional first modal frequencies 2, under different end masses N, axial forces
U and beam angular velocities n for Jo = 3

First mode Q;

N U n=0 =05 n=10 n=15 n=20 n=25 n=30

=)

0 3:340 3-347 3:366 3:398 3-441 3-494 3:556
0-617 2:957 2-965 2-988 3-026 3-077 3-140 3-213
1-234 2-:496 2-:506 2-536 2-:584 2:648 2726 2-815
1-851 1-902 1-916 1-957 2:024 2-111 2215 2:332
2:465 0-945 0975 1-061 1-189 1-343 1-514 1-693
1 0 1-298 1-311 1-348 1-404 1-473 1-550 1-631

0-617 1-191 1-206 1-248 1310 1-387 1-470 1-557
1-234 1-071 1-088 1-137 1-208 1-293 1-385 1-479
1-851 0-934 0-954 1-011 1-094 1-191 1-293 1-396
2-465 0-770 0-796 0-867 0-966 1-079 1-194 1-308
2 0 0-870 0-886 0-929 0-990 1-060 1-133 1-206
0-617 0-830 0-847 0-893 0-958 1-032 1-109 1184
1-234 0-786 0-805 0-856 0-926 1-004 1-084 1-162
1-851 0-739 0-760 0-815 0-891 0-974 1-058 1-140
2-465 0-688 0-711 0-773 0-855 0-944 1-032 1-117
3 0 0-664 0-681 0-726 0-787 0-854 0921 0-985
0-617 0-656 0-674 0-721 0-784 0-852 0920 0-986
1-234 0-648 0-667 0-716 0-781 0-851 0920 0-987
1-851 0-639 0-659 0-711 0-778 0-850 0920 0-987
2-465 0-629 0-650 0-705 0-775 0-848 0920 0-988
4 0 0-539 0-557 0-603 0-662 0-725 0-786 0-844
0-617 0-551 0-570 0-616 0-676 0-738 0-798 0-857
1-234 0-563 0-581 0-628 0-688 0-751 0-811 0-869
1-851 0-574 0-593 0-640 0-701 0-763 0-823 0-881
2-465 0-584 0-603 0-652 0-713 0-775 0-836 0-893

Foru3,ao=a1=a2=0 anda3=1

[ a@ac—g+ 3 e (60)

us(l) =1 + k;) Bosa, 61)

us(1) =3 + kﬁo (k +4)ak+4, (62)

u3(1) =6+ kio (k +4)(k + 3)ay + 4, (63)

u3' (1) =6+ kgo (k +4)(k + 3)(k + 2)ay +4, (64)

uy’(1) = i (k +4)(k +3)(k + 2)(k + Dag 4. (65)
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TasLE 2
Non-dimensional second modal frequencies 2, under different end masses N, axial
forces U and beam angular velocities n for Jo = 3

Second mode 2,

N U n=0 =05 n=10 n=15 nn=20 n=25 n=30

0 0 22:007  22:038  22:132 22286  22:500 22773  23-102
0-617 21544 21576 21-671 21-828 22:046 22-324  22:659
1-234 21070  21-102  21-199 21-359 21581 21-864 22-205
1-851  20-583 20616 20:715 20-878  21-105 21-393 21740
2465 20086 20-120 20221  20-387  20-618 20912  21-265
1 0 16222 16343 16701 17280 18:058 19010  20-110
0-617 15962 16085 16448 17036 17-825 18790 19902
1-234 15696 15822 16:191 16788 17589 18567  19-692
1-851 15426 15554 15930 16537 17350 18340 19480
2465 15153 15282 15665 16282 17-108 18112  19-266
2 0 15838 16:051 16674 17-661 18952  20-485  22:208
0-617 15590 15807 16440 17441 18748 20298  22:036
1-234 15339 15559 16202 17-218 18541 20-108  21-863
1-851 15083 15307 15961 16992 18333 19917 21-688
2465 14823 15052 15717 16763 18122 19725  21-513
3 0 15700 16:005 16886 18254  20-:003  22-036  24-275
0-617 15457 15767 16661 18-:048 19816 21868 24-124
1-234 15211 15526 16434 17-839  19:628 21698  23:972
1-851 14960 15281 16203  17-628 19437 21-528  23-819
2465 14705 15032 15970 17415 19246  21-356  23-665
4 0 15630 16026 17-157 18-883  21:048  23-521  26-208
0-617 15390 15792 16940 18-:687 20-874 23:367 26071
1-234 15145 15555 16720 18490 20-699 23212 25933
1-851 14-897 15314 16497 18289  20-522  23:056 25794
2-465 14645 15069 16271 18-:088 20344 22899  25:656

where a; +4 can be determined by the recurrence formula given by equations (30)
and (31). The numerical bisection method for root-finding is then used to solve for
the non-dimensional modal frequencies Q; of the frequency equation (45) for
different values of J,, U, N and #. The results are shown in the next section.

4. RESULTS

The non-dimensional modal frequencies ; in equation (45) obtained by the
power series method is solved using the bisection method of root-finding for
different values of axial force U, end mass N, beam angular velocity n and total
moment of inertia about the hub J,. The whole calculation is performed using
double-precisioin FORTRAN programs.

In this paper, numerical results are presented for J, =3 in Tables 1-3 and
Figures 2-16. Table 1 gives the calculated values of the non-dimensional first modal
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TasLe 3
Non-dimensional third modal frequencies Qs under different end masses N, axial
forces U and beam angular velocities n for Jo = 3

Third mode Q5

N U n=0 =05 n=10 n=15 nn=20 n=25 n=30

0 0 61-688 61722  61-824 61994 62232 62535 62904
0617 61300 61335 61437 61-608 61-847 62152  62:523
1-234 60910 60944 61048 61220 61460 61767 62-140
1-851  60-517 60-552 60-:656 60-829 61070 61379 61754
2465  60-124  60-159 60263 60437 60-680 60991  61-368
1 0 50-887 51026  51-443  52:130 53-076 54268  55-690
0-617  50-614 50754  51-173 51864 52:815 54012 55441
1-234 50340 50481 50902  51-596  52:552 53:756  55-191
1-851 50064 50207 50-629  51-327  52:288 53498  54-940
2:465 49789 49931 50357 51-:058 52024 53240 54689
2 0 50-440  50-687 51419  52:617 54249 56277 58658
0-617 50171 50419 51155 52359 53999 56:036 58427
1-234 49901 50150 50-890  52-100  53-748 55794 58197
1-851  49-628 49879  50-623  51-840 53496 55551 57964
2:465 49356 49608 50357 51579 53244 55309 57731
3 0 50-284  50:638 51683  53:379 55664 58470 61-721
0-617 50017 50-372 51422  53-127 55423 58241 61-504
1-234 49747 50-104 51-160  52-873 55180  58:010 61-286
1-851 49476 49835 50-897 52618 54937 57778  61-067
2:465 49205 49566  50-634 52364  54-693  57-547  60-849
4 0 50205  50:665  52:020 54-201 57112 60:646 64698
0-617 49938 50400 51762 53954 56:878 60425 64487
1234 49669 50-134  51-503 53705 56:642 60203  64-283
1-851 49399 49866 51242  53:455 56:406 59982  64-076
2465 49128 49598 50982 53206 56:170 59761  63-868

frequencies 2, under different end masses N, axial forces U and beam angular
velocities . Tables 2 and 3 give the values of the non-dimensional second and third
modal frequencies (22, and Q23) respectively under different end masses N, axial
forces U and beam angular velocities 7. Table 4 gives a comparison of the present
numerical results of the modal frequencies for # =0 and J, = 10,000 with the
results in Ref. [16] and good agreement for the above results was found. The 2-D
plots of the non-dimensional modal frequencies 2; as functions of end mass N and
axial force U under different beam angular velocity n are shown in Figures 2-4. The
2-D plots of the non-dimensional modal frequencies 2; as functions of beam
angular velocity # under different axial force U and end mass N are shown in
Figures 5-10. The 3-D plots of the non-dimensional modal frequencies €2; as
functions of beam angular velocity # and end mass N for different axial force U are
shown in Figures 11-13. The 3-D plots of the non-dimensional modal frequencies
(2; as functions of beam angular velocity # and axial force U for different end mass
N are shown in Figures 14-16.



824 E. H. K. FUNG AND D. T. W. YAU

70 I 1 1 1 1 1 1 70 1 1 1 1
60 l=3 N 60 I~
o e ol i3 |
40 | . 40 | =
30 | i=2 - 30 | i=2 B
20 f . 20 F
or i=1 @ f i=1 @
0 [ 1 1 1 1 1 | 1 0 [ 1 1 | 1 ]
g 70 I I I 1 1 1 1 'g 70 1 1 I 1
=} =}
2 60 4 2 60} |
o o
£ 50 —L & 50 -
= =
"é 40 - é 40 -
-§ 30 | - -—gx 30 | . b
£ 20 N 1 5 20 : ]
=1 =]
23 (>3
;g 10 | ‘ ®) T s 10 | © b
Zg O i 1 1 1 1 1 1 1 Zg O i 1 1 1 1
70 1 1 1 1 1 I 1 70 1 1 1 1
60 | . 60 |- 1
50 —g s 50 s
40 | 1 40 | s
30 I 1 30 7]
20 R b 20 T
10 © 7 10 1= ) 7
0 i 1 1 1 1 1 1 1 0 1 1 l 1
0 1 2 3 4 0 0.5 1.0 1.5 2.0 2.5
End mass N Axial force U

Figure 2. Non-dimensional modal frequencies €; as functions of end mass N and axial force
U for beam angular velocity # = 0. Values of U: (a) 0; (b) 1-234; (c) 2-465. Values of N: (d) 0; (e) 2;
(f) 4.

It can be seen from Figure 2 and Figures 11-13 that at # = 0, an increase in the
end mass N causes a decrease in the non-dimensional modal frequencies ; for all
the vibration modes and axial force U. The frequency shows a larger decrease rate
at lower values of end mass for the second and third modes. However, for n > 0
(Figures 3, 4 and 11-13), both the second and the third modal frequencies show
a decrease at lower values of end mass N, but increase again for larger values of N.
The greater the values of #, the larger will be the frequency increase rate for larger
values of N. For the first vibration mode, the frequency will always decrease with an
increase in N. Figures 5-10 show that an increase in 1 causes an increase in the
frequencies €; of all the vibration modes under different values of end mass N and
axial force U.
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Figure 3. Non-dimensional modal frequencies ; as functions of end mass N and axial force U for
beam angular velocity # = 1-5. Values of U: (a) 0; (b) 1-234; (c) 2-465. Values of N: (d) 0; (e) 2; (f) 4.

Figures 2-4 and 14-16 show that an increase in the axial compressive force
U causes a decrease in the non-dimensional modal frequencies Q; for the second
and the third modes of vibration under different values of # and N. In general, the
rate of decrease in frequency due to an increase in axial force is more or less
constant. For the first vibration mode, an increase in the axial compressive force
U causes a decrease in the non-dimensional modal frequency Q, for N =0 and
2 under different values of n (Figures 14 and 15). However, for N = 4, an increase in
the axial compressive force U causes an increase in the non-dimensional modal
frequencies Q, under different values of # (Figure 16).

5. CONCLUSIONS

In this paper, the equation of motion of a constrained rotating flexible arm is
developed using the Euler-Bernoulli beam theory in which the rotary inertia and
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Figure 4. Non-dimensional modal frequencies ©; as functions of end mass N and axial force U for
beam angular velocity # = 3:0. Values of U: (a) 0; (b) 1-234; (c) 2-465. Values of N: (d) 0; (e) 2; (f) 4.

shear deformation effects are ignored. Hamilton’s principle is used to derive the
equation of motion and the boundary conditions of the beam. The non-homogeneous
boundary condition is transformed into a homogeneous one by defining a new
variable. The power series method is used to solve the equation of motion of the
rotating beam. A frequency equation is derived giving the relationship between the
non-dimensional modal frequency €2; and the four non-dimensional parameters, i.e.
the axially compressed force U, the end mass N, the angular velocity of the rotating
beam # and the total moment of inertia about the hub J,. Numerical solutions of
the frequency equation for J, = 3 are obtained using double-precision FORTRAN
programs. It was found that in general the modal frequency increases with an
increase in the beam angular velocity, but decreases as the axial force U is increased
except for the first vibration mode with N = 4 where the frequencies will increase
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TasLE 4
Comparison of present numerical results (Jo = 10,000 and n = 0) with results in
reference [16]

N U Q Reference Q, Reference Q; Reference
[16] [16] [16]
0 0 3:516 3-516 22:034 22035 61-697 61-697

0-617 3-:073 3:074 21-575 21-575 61-:309 61-:310
1-234 2-534 2-535 21-105 21-105 60-920 60-919
1-851 1-811 1-811 20-623 20-623 60-527 60-527
2-465 0-116 0-116 20-131 20-131 60-134 60-133
1 0 1-557 1-557 16250 16:250 50-896 50-896
0-617 1-352 1-352 15991 15991 50-623 50-623
1234 1-107 1-107 15727 15727 50-349 50-349
1-851 0-785 0-707 15-459 15-459 50-074 50-074
2:465 0-052 0-050 15187 15-187 49-798 49-798
2 0 1-158 1-158 15-861 15-861 50-447 50-448
0-617 1-005 1-005 15615 15615 50-179 50-179
1-234 0-823 0-823 15364 15364 49-908 49-909
1-851 0-583 0-583 15-109 15-109 49-636 49:636
2-465 0-040 0-037 14-851 14-851 49-364 49-364
3 0 0-963 0-963 15720 15:720 50-291 50-291
0-617 0-835 0-836 15478 15478 50-023 50-023
1-234 0-684 0-684 15-232 15-232 49-754 49-754
1-851 0-484 0-485 14-982 14982 49-483 49-483
2:465 0-034 0-031 14729 14-729 49-211 49212
4 0 0-841 0-842 15-647 15-647 50-211 50-211
0-617 0-730 0-730 15-407 15-408 49-944 49-944
1-234 0-597 0-597 15-164 15-164 49-675 49-675
1-851 0-423 0-423 14916 14917 49-404 49-405
2-465 0-031 0-027 14-666 14-666 49-134 49-134

with increase in axial force. For stationary constrained beams (y = 0), the frequency
shows a decrease with an increase in end mass N. For rotating constrained beams
(n > 0) at the second and third modes, the frequency shows a decrease
at lower values of N but an increase for larger values of N, and its increase
rate is higher for larger values of #. For the first mode of vibration, the frequency
will always decrease with an increase in N. These results can be applied to
other practical engineering problems that involve rotation of constrained flexible
beams.
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APPENDIX: NOMENCLATURE

flexural rigidity of flexible beam
function defined in equation (9)
reaction force along n

function defined in equation (9)
moment of inertia of the hub

total moment of inertia about the hub
non-dimensional form of J,

length of flexible beam

end mass

non-dimensional end mass
non-dimensional angular velocity of flexible beam
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P((r, 1) centrifugal force arising from centrifugal effect

q; generalized co-ordinate

axial force along i

position of a point on flexible beam

time

total kinetic energy of flexible arm
non-dimensional axial force

torque developed by motor

load torque exerted on motor

torque defined in equation (20b)

non-dimensional form of y;

variable defined in equation (12)

total potential energy of flexible arm

transverse displacement of flexible beam
transverse displacement at tip of flexible beam
co-ordinates of end point of flexible beam

mode shape function defined in equation (12)

hub angle of flexible beam

angular velocity of flexible beam

constrained curve function

Lagrange multiplier associated with the constrained curve
mass per unit length of flexible beam

virtual work

modal frequency of flexible beam
non-dimensional modal frequency of flexible beam
non-dimensional spatial co-ordinate

position vector of end point of flexible beam
position vector of a point on flexible beam

a pair of orthogonal unit vectors for flexible beam
normal direction of constrained curve
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