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Ultrasonic guided waves, Lamb waves, are useful for evaluating the integrity
of plate and shell structures common in many applications. Tomographic
reconstruction with Lamb waves allows for the accurate reconstruction of the
variation of quantities of interest throughout the investigated region, and it
presents the data as a quantitative map. The location, shape, and extent of
¯aws can then be easily extracted from this tomographic image. The scattering
of Lamb waves from severe ¯aws introduces artifacts in such reconstructions,
however. In this paper higher order plate theory is used to derive analytical
solutions for the scattering of the lowest order symmetric Lamb waves from a
circular inclusion, focusing in particular on isolated through holes in plates.
Plane wave and point source scattering behavior is explored for holes of
di�erent diameters, and a ®nite-beam solution is constructed by superposition
of point source solutions. These results are then used to explain the scattering
e�ects seen in Lamb wave contact scanning tomographic reconstructions.

# 1999 Academic Press

1. INTRODUCTION

Lamb wave ultrasonics has become a standard technique for detecting corrosion,
disbonds and cracks in metallic plates as well as fatigue and thermal damage in
advanced composites [1±9]. More recently, a number of researchers have used
tomographic reconstruction techniques to dramatically improve the usefulness of
Lamb waves for quantitative non-destructive evaluation [10±16]. A Lamb wave
contact scanning system has been developed that can perform tomographic
reconstruction in both parallel projection and cross borehole con®gurations [17±
19]. The reconstructions are suf®ciently accurate that one is often limited by the
simplifying assumptions in the Lamb wave models. In particular, the Lamb
waves have been assumed to propagate along straight rays without diffraction or
ray bending. This has allowed one to reconstruct the size, shape and depth of
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thinned regions in plates, since a small change in thickness causes the velocity to
change without scattering. For through holes, however, scattering of the Lamb
waves is important. Figure 1 shows parallel projection tomographic
reconstructions using the authors' Lamb wave scanner for through holes in
aluminum plates. In the top image the hole is 5/8 in in diameter, which is smaller
than the beam size so the hole is reproduced fairly accurately. The bottom image
is a 1 in diameter hole, and because it is larger than the beam size, scattering
effects are apparent. In particular, note the scalloped edge of the hole and the
characteristic starburst pattern emanating from it.

(a)

(b)

Figure 1. Parallel projection Lamb wave contact scanning tomographic reconstructions of (a)
small and (b) large through holes in thin aluminum plates. Note the scalloped edge and the radial
streaking pattern in (b) which are thought to be due to scattering effects.
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Although diffraction tomography is well established in seismology, Lamb
waves are guided waves for which scattering theories are not well developed [20±
25]. In this paper Mindlin's higher-order plate theory [26±29] is adapted
to model the scattering of the lowest order symmetric (S0) Lamb waves. The
analysis here is similar to that done in reference [30] for the scattering of
antisymmetric Lamb waves. The simplest plate theories only describe the
dispersionless region of the S0 curve, but in the present measurements one
makes use of the dispersion of the S0 wave so a theory that more accurately
models the behavior of the S0 Lamb wave is needed. One ®rst shows that the
approximate Mindlin theory is valid over the frequency range of interest in the
present experiments. Next, using this theory, analytical expressions for the
scattering of S0 Lamb waves from a cylindrical inclusion in a plate are derived
for an incident plane wave, a point source and a ®nite-area source. The
expressions are explicitly evaluated for the case of a hole in a plate, and plots of
the scattering behavior are used to explain the scattering effects seen in the
images of Figure 1. One shows for the con®guration used to acquire the data for
Figure 1 that the presence of scattering effects are indeed important. The merits
of this modelling approach in the development of Lamb wave diffraction
tomography are also discussed.

2. THEORY OF KANE AND MINDLIN

Consider a thin homogeneous, isotropic, and linearly elastic plate lying in the
xy-plane bounded by air at the planes z=2h. Because the thickness is small,
the components of displacement for dilatational plate waves can be
approximated by

ux � vx�x, y, t�, uy � vy�x, y, t�, uz � �z=h�vz�x, y, t�, �1�
where vx , vy , vz are not functions of z. These can be expressed in terms of three
independent scalar potentials, f1(x , y), f2(x, y), C(x, y) as

vx � @f1

@x
� @f2

@x
� @C
@y

� �
eÿiot, vy � @f1

@y
� @f2

@y
� @C
@x

� �
eÿiot,

vz � �s1f1 � s2f2�eÿiot, �2�
which are chosen to satisfy the scalar Helmholtz equations

�r2 � k21�f1 � 0, �r2 � k22�f2 � 0, �r2 � K2�C � 0: �3�
Here r2 is the 2-D Laplacian, and the effective wavenumbers are given by

k2i � �3k2=2bh���a� b�o2=o2
0 ÿ 1ÿ �ÿ1�ic�, i � 1, 2,

K2 � o2=c2T, si � h�l� 2m�
kl

k2i ÿ
o2

c2L

� �
, i � 1, 2,
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c � ���a� b�o2=o2
0 ÿ 1�2 � 4ab�o2=o2

0��1ÿ o2=o2
0��1=2,

a � c2L=c
2
P, b � c2T=c

2
P, o2

0 � p2�l� 2m�=4h2r,

c2L � �l� 2m�=r, c2T � m=r, c2P � 4m�l� m�=r�l� 2m�:
In these equations, r is the mass density, l and m are the LameÂ parameters, and
cL , cT and cP are the compressional, shear, and plate wave speeds in isotropic
media. Also, o0 is the frequency corresponding to the ®rst mode of pure
thickness vibration of an in®nite plate, and the parameter k2=p2/12 is inserted
ad hoc to improve the results.
If any one of the functions f1, f2 , or C is taken to be proportional to

eigx while the remaining two are set equal to zero, there results a plane
wave propagating in the x direction and having a wavelength and velocity equal
to 2p/g and o/g respectively. In order to satisfy the above conditions, g= k1, k2 ,
or K depending on which potential is non-zero.
To compare this plate theory with the exact theory, the phase velocity, c, is

considered. For fi 6� 0, i=1, 2, C=0,

c � �2ac2To2=o2
0��aÿ b�o2=o2

0 ÿ 1ÿ �ÿ1�ic�ÿ1�1=2 �4�
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Figure 2. Dispersion curves of the exact Rayleigh±Lamb theory for the two lowest order sym-
metric modes compared to approximate Mindlin theory and simple plate theory. The solid line is
the exact S0 curve and the dotted line is the corresponding Mindlin theory for that mode. The
straight dashed line is the simple dispersionless theory for this extensional mode. The straight
dashed line is the simple dispersionless theory for this extensional mode. The dot-dot dash line is
the exact S1 mode and the long dash is the corresponding mode from the Mindlin theory.
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and for fi=0, i=1, 2, C 6� 0,

c � cT: �5�
Equation (5) obviously shows that the C 6� 0 wave matches the shear horizontal
wave of the exact theory. However, in order to verify these expressions for the
S0 (i=1) and S1 (i=2) Lamb waves, plots of these expressions for phase
velocity versus ``frequency±thickness'' can be examined. Figure 2 shows the two
lowest order symmetric (S0 and S1) Rayleigh±Lamb dispersion curves for an
aluminum plate, as well as the corresponding dispersion curves using the Mindlin
theory. Notice that the present theory is in qualitative agreement with the exact
theory over the full range of frequency±thickness shown. Most importantly, the
dispersion behavior of the S0 and S1 modes has been captured by the higher
order plate theory. The simple plate theory (also shown) does not model the
dispersion behavior of the S0 mode, while the full three-dimensional theory is
too complicated to use for scattering calculations. These two-dimensional higher-
order plate theory expressions for the S0 and S1 Lamb wave modes contain
enough of the mathematical complexity of the symmetric Lamb waves to model
that part of their behavior which is employed in the measurement, but are not
too complicated to prevent their use in analytical scattering analysis.

3. SCATTERING FROM CYLINDRICAL INCLUSIONS

One next considers the in®nite plate with an in-plane disk of radius r= a and
semithickness h 0, at the origin of a cylindrical co-ordinate system. The disk has
material parameters (r 0, l 0, m 0) that are arbitrarily different from those of the
plate (r, l, m).
For thin plates one assumes that the components of displacement in

cylindrical co-ordinates are approximated suf®ciently well by

ur�r, y, t� � vr�r, y, t�, uy�r, y, t� � vy�r, y, t�, uz�r, y, t� � �z=h�vz�r, y, t�: �6�
Introducing three independent displacement potentials f1(r, y), f2(r, y),

C(r, y) allows one to write the displacement components as

vr � @f1

@r
� @f2

@r
� 1

r

@C
@y

� �
eÿiot, vy � 1

r

@f1

@y
� 1

r

@f2

@y
ÿ @C
@r

� �
eÿiot,

vz � �s1f1 � s2f2�eÿiot :
�7�

These displacement potentials each satysfy a scalar Helmholtz equation (3) as
before with ki , K, si , c, a, b, o0 , and k also the same as in the previous section.
In cylindrical co-ordinates, the plate stresses de®ned in terms of three-

dimensional stress theory are given by
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�Nrr, Nyy, Nzz, Nry� �
�h
ÿh
�srr, syy, szz, sry� dz,

�Rrz, Ryz� �
�h
ÿh
�srz, syz�z dz:

�8�

For the geometry of this problem one need only be concerned with Nrr , Nry and
Rrz . The necessary plate stresses are given by

Nrr � 2h��l� 2m�@vr=@r� l��1=r�@vy=@y� vr=r� vz=h��,

Nry � 2hm��1=r�@vr=@y� @vy=@rÿ vy=r�, Rrz � �2mh2=3�@vz=@r: �9�

3.1. PLANE WAVES

Now the case of an incident plane S0 wave is considered. Suppressing eÿiot

throughout the following analysis one writes

fINC
1 � eik1x � eik1r cos y �

X1
n�ÿ1

inJn�k1r�einy, fINC
2 � CINC � 0: �10�

For a cylindrical scatterer at the origin of the co-ordinate system, the general
solutions of the scattered and transmitted waves are expanded as

fSCAT
1 �

X1
n�ÿ1

Ani
nHn�k1r�einy, fSCAT

2 �
X1
n�ÿ1

Bni
nHn�k2r�einy,

CSCAT �
X1
n�ÿ1

Cni
nHn�Kr�einy, fTRANS

1 �
X1
n�ÿ1

A0ni
nJn�k01r�einy,

fTRANS
2 �

X1
n�ÿ1

B0ni
nJn�k02r�einy, CTRANS �

X1
n�ÿ1

C0ni
nJn�K0r�einy, �11�

where An, . . . , C0n are unknown modal coef®cients to be determined from the
boundary conditions, Jn(�) are Bessel functions and Hn(�) are Hankel functions of
the ®rst kind. The Bessel and Hankel functions have been chosen so that the
transmitted waves are ®nite at the origin and the scattered waves take the form
of outgoing cylindrical waves at in®nity.
The boundary conditions for welded contact are continuity of displacements

at r= a

vINC
r � vSCATr � vTRANS

r , vINC
y � vSCATy � vTRANS

y , vINC
z � vSCATz � vTRANS

z , �12�
and continuity of plate stresses at r= a,

NINC
rr �NSCAT

rr � NTRANS
rr , NINC

ry �NSCAT
ry � NTRANS

ry , RINC
rz � RSCAT

rz � RTRANS
rz :

�13�
These six equations in six unknowns can be written as
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Note also the de®nitions

B41 � �a1Hn�k1a� ÿ �k1a�H0n�k1a��,
B42 � �a2Hn�k2a� ÿ �k2a�H0n�k2a��,
B43 � ��inKa�H0n�Ka� ÿ �in�Hn�Ka��,
B44 � ÿ�m0=m��h0=h��a01Jn�k01a� ÿ �k01a�J0n�k01a��,
B45 � ÿ�m0=m��h0=h��a02Jn�k02a� ÿ �k02a�J0n�k02a��,
B46 � ÿ�m0=m��h0=h���inK0a�J0n�K0a� ÿ �in�Jn�K0a��, �15�

B51 � ��2ink1a�H0n�k1a� ÿ �2in�Hn�k1a��,
B52 � ��2ink2a�H0n�k2a� ÿ �2in�Hn�k2a��,

B53 � ���Ka�2 ÿ 2n2�Hn�Ka� ÿ �2Ka�H0n�Ka��,
B54 � ÿ�m0=m��h0=h���2ink01a�J0n�k01a� ÿ �2in�Jn�k01a��,
B55 � ÿ�m0=m��h0=h���2ink02a�J0n�k02a� ÿ �2in�Jn�k02a��,

B56 � ÿ�m0=m��h0=h����K0a�2 ÿ 2n2�Jn�K0a� � �2K0a�J0n�K0a��, �16�

B61 � ��s1a2=h��k1a�H0n�k1a��, B62 � ��s2a2=h��k2a�H0n�k2a��,

B64 � ÿ�m0=m��h0=h�3��s01a2=h0��k01a�J0n�k01a��,

B65 � ÿ�m0=m��h0=h�3��s02a2=h0��k01a�J0n�k02a��, �17�

C41 � ÿ�a1Jn�k1a� ÿ �k1a�J0n�k1a��,
C51 � ÿ��2ink1a�J0n�k1a� ÿ �2in�Jn�k1a��,
C61 � ÿ��s1a2=h��k1a�J0n�k1a��: �18�

One can solve this matrix equation for the unknown modal coef®cents

An � D1=D0, Bn � D2=D0, Cn � D3=D0,

A0n � D4=D0, B0n � D5=D0, C0n � D6=D0, �19�

where D0±D6 are the Cramer's rule determinants.
One now can write explicit expressions for the modal coef®cients for the case

of a plane wave incident upon a general cylindrical scatterer. However, in order
to explain the scattering effects seen in Figure 1, the speci®c case of the
cylindrical scatterer being a through hole will be considered. In this case, the
normal tractions at the boundary must equal zero, and one sets
A0n � B0n � C0n � 0. Now one has three unknown modal coef®cients (An, Bn, Cn).
Therefore, only the three plate stress boundary conditions of equation (13) are
considered. For this case, the matrix equation becomes
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B41 B42 B43

B51 B52 B53

B61 B62 0

0@ 1A An

Bn

Cn

0@ 1A � C41

C51

C61

0@ 1A, �20�

where the Bij's and Cij's are as de®ned in equations (15±18). Again applying
Cramer's rule the D's are now easily expanded to give

D0 � �s1a2=h��k1a��a2�Ka�2 � 2n2�1ÿ a2��H0n�k1a�Hn�k2a�Hn�Ka�
� 2�s1a2=h��k1a��Ka��a2 ÿ n2�H0n�k1a�Hn�k2a�H0n�Ka�

� �k1a��k2a��Ka�2�s2a2=hÿ s1a2=h�H0n�k1a�H0n�k2a�Hn�Ka�
ÿ 2�k1a��k2a��Ka��n2 ÿ 1��s2a2=hÿ s1a2=h�H0n�k1a�H0n�k2a�H0n�Ka�

ÿ �s2a2=h��k2a��a1�Ka�2 � 2n2�1ÿ a1��Hn�k1a�H0n�k2a�Hn�Ka�
ÿ 2�s2a2=h��k2a��Ka��a1 ÿ n2�Hn�k1a�H0n�k2a�H0n�Ka�, �21�

D1 � ÿ�s1a2=h��k1a��a2�Ka�2 � 2n2�1ÿ a2��J0n�k1a�Hn�k2a�Hn�Ka�
ÿ 2�s1a2=h��k1a��Ka��a2 ÿ n2�J0n�k1a�Hn�k2a�H0n�Ka�

ÿ �k1a��k2a��Ka�2�s2a2=hÿ s1a2=h�J0n�k1a�H0n�k2a�Hn�Ka�
� 2�k1a��k2a��Ka��n2 ÿ 1��s2a2=hÿ s1a2=h�J0n�k1a�H0n�k2a�H0n�Ka�

� �s2a2=h��k2a��a1�Ka�2 � 2n2�1ÿ a1��Jn�k1a�H0n�k2a�Hn�Ka�
� 2�s2a2=h��k2a��Ka��a1 ÿ n2�Jn�k1a�H0n�k2a�H0n�Ka�, �22�

D2 � ÿ2i=p s1a2

h

� �
��a1�Ka�2 � 2n2�1ÿ a1��Hn�Ka� ÿ 2�Ka��a1 ÿ n2�H0n�Ka��,

�23�

D3 � 4n

p
�k2a� s2a2

h
ÿ s1a2

h

� �
�a1 ÿ 1�H0n�k2a� ÿ

s1a2

h

� �
�a2 ÿ a1�Hn�k2a�

� �
: �24�

The behavior of the S0 Lamb wave ®eld for the case of a plane wave incident
upon a hole can now be examined using the equations for fINC

1 , fSCAT
1 , and An .

The standard representation for scattering results predicted by theory is a polar
plot of the magnitude of the amplitude of the scattered wave as a function of y.
Figure 3 shows this plane wave scattering amplitude for holes of radius
a=0�25610ÿ2 m, a=0�75610ÿ2 m, and a=1�27610ÿ2 m. In order to match
the experiments, the values l=6�29361010 kg/ms2, m=2�67761010 kg/ms2,
r=2700 kg/m3, o=2p(1�1)6106 Hz and h=1�143610ÿ3 m have been chosen.
For the smallest hole (Figure 3(a)), the largest lobe is in the 180� direction and
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the other lobes are of approximately the same amplitude and are about evenly
spaced over the remaining range of angles. For the middle hole (Figure 3(b)), the
largest lobes are near 90� and 270�, there is only a small forward scattered
component, and the remaining lobes are all in the backscattered direction.
Finally for the largest hole (Figure 3(c)), the largest lobes are still near the 90�

and 270� directions, there are more lobes in the backscattered direction, and
there is still a small forward scattered component.
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Figure 3. Polar plot of the magnitude of the scattered amplitude of a plane wave incident from
the left upon a hole with radii: (a) a=0�25610ÿ2 m; (b) a=0�75610ÿ2 m and (c)
a=1�27610ÿ2 m.
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3.2. POINT SOURCE AND FINITE SOURCE

The case of the incident S0 Lamb wave being generated by a point source at
distance r0 from the origin is next considered. The incident potential is written as

fINC
1 �

X1
n�ÿ1

�ÿ1�nHn�k1r0�Jn�k1r�einy, �25�

with the same general forms for the scattered and transmitted potentials. The
boundary conditions for this problem are again given by equations (12) and (13),
providing six equations for the six unknowns. By Cramer's rule the coef®cients
are

An � Hn�k1r0��D1=D0�, Bn � Hn�k1r0��D2=D0�, Cn � Hn�k1r0��D3=D0�,
A0n � Hn�k1r0��D4=D0�, B0n � Hn�k1r0��D5=D0�, C 0n � Hn�k1r0��D6=D0�, �26�

where the D's are the same as in the case of a plane wave incident on a general
cylindrical scatterer so that the algebra does not have to be repeated. The
behavior of the S0 Lamb wave ®eld for the case of a point source can thus be
examined using the equations for fINC

1 , fSCAT
1 , and An .

In the laboratory experiments one uses standard contact piezoelectric
transducers to generate the Lamb waves in the plate. Although angle beam
transducers are very ef®cient at generating particular Lamb wave modes via
Snell's law, one ®nds that normal incident shear or longitudinal contact
transducers effectively generate Lamb waves in thin plates [31±33]. They generate
all possible modes with varying ef®ciencies so one typically limits the frequency±
thickness range so that the higher-order modes are either fully cut off or at least
highly attenuated. The transducers are, of course, ®nite sources which generate
®nite beams, so the plane wave and point source incident waves cannot be
expected to accurately describe the Lamb wave propagation in the experiments.
However, by Huygen's principle, one can model any ®nite source by a
superposition of point sources.
The shear contact transducers used in the present parallel projection

tomography (PPT) experiments generate a directional Lamb wave ®eld which
has been measured to be 100% at 20�, 50% at 220�, and 26% at 230�. A
good aproximation to this beam pattern has been found to be a line of ®ve point
sources at a distance r0 from the center of the co-ordinate system as shown in
Figure 4. For j~r0j � 8�75 cm, the point separation to simulate the measured
beam pattern is B=0�32 cm, and the necessary relative amplitudes of the point
sources are

Cj � 1�0, j � 1, 2, 4, 5, C3 � 3�0: �27�

In the experiments, the transducer pair starts at a position well above the ¯aw
and scans down past the ¯aw to a position well below the ¯aw. Straightforward
algebra now gives scattering expressions for each point source in terms of the
known parameters ~r0 � �j~r0j, y) and B, and one can sum the individual
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contributions of the point sources to obtain the scattered ®eld for the ®nite
source.
Figure 5 shows the magnitude of the scattered amplitude when the ®nite

source has been shifted by +3�0610ÿ2 m. For the small hole (Figure 5(a)), the
scattering pattern looks quite different from the plane wave case. The largest
lobes are still in the backscattered area, but they have been shifted to match the
new position of the source. Also, instead of many separate lobes, combined lobes
are seen. The results for the middle hole (Figure 5(b)) give a rotated version of
those seen for the plane wave case. There is still the small forward scattered
component, but it is joined by a small lobe. Also, combined lobes are again seen
in the backscattered region. For the largest hole (Figure 5(c)), the results are
essentially just a rotated version of those seen in the plane wave case with the
addition of a large combined lobe and slight variations in the magnitudes of the
lobes. One notes that in the plane wave and point source cases the incident wave
interacts fully with the holes, large or small. However, the ®nite beam scatters
differently from the holes depending on the offset and hole diameter.
Figure 6 shows the magnitude of the scattered amplitude when the ®nite

source has been shifted by +5�0610ÿ2 m. For the small hole (Figure 6(a)), the
scattering pattern looks quite different from the plane wave and +3 shift cases.
Only two large lobes are seen in the backscattered direction, and three smaller
lobes are seen in the forward direction. For the middle hole (Figure 6(b)), the
results are again a rotated version of those seen previously. However, the
magnitude of the backscattered lobes has increased, while that of the other lobes
has decreased. Also note that the extra lobe in the forward direction has
increased in magnitude. For the large hole (Figure 6(c)), the pattern is again
rotated. The magnitude of the backscattered lobes has increased slightly from
the +3 shift cases while that of the others has decreased slightly. There are some
additional combined lobes, one of the backscattered lobes has gotten much
smaller, and an additional forward scattered lobe has appeared.

y

x

r0

C1

C2

C3

C4

C5

Figure 4. Geometry for the ®nite source scattering from the cylindrical inclusion in the plate.
The ®ve point sources C1±C5 separated from each other by a distance B are shown, with the
amplitude of the middle point source C3 chosen as three times the others to generate a ®nite
beam propagating in the x direction. The through hole is at the origin of the co-ordinate system,
and the vertical dashed line to the right shows where the resulting place displacements are calcu-
lated.
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4. SIMULATION OF PLATE DISPLACEMENTS

Although, some differences in the scattering patterns have been noted for the
®nite source case as the hole size increases, such as the existence of the forward
scattering components and changes in the lobe structure, these differences do not
obviously cause the scattering effects seen in the tomographic images of the large
hole, and one concludes plotting the magnitude of the scattered amplitude as a
function of y is not the optimum way to present the results. It assumes far-®eld
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Figure 5. Polar plot of the magnitude of the scattered amplitude of a ®nite source wave inci-
dent from the left upon a hole with radii: (a) a=0�25610ÿ2 m; (b) a=0�75610ÿ2 m and (c)
a=1�27610ÿ2 m, when the source has been shifted by +3 cm in the y direction.
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and neglects physics that may be important here. Instead the values actually
registered by the receiving transducers in the experiments will be simulated.
In the present experiments one uses a piezoelectric transducer to receive the

Lamb waves. The vibrations of the surface of the plate cause the piezoelectric
element to vibrate, and this generates the received electric signal corresponding
to the Lamb waves. Therefore, instead of the scattered amplitude as de®ned
above, one needs to examine the full motion of the top surface of the plate. In
addition, the transducer is receiving the incident wave as well as the scattered
wave, so both of these contributions need to be considered in our calculations.
In the experiments, the Lamb waves are generated at one location and

received at a separate location. For PPT, the transducers are moved together
as a pair, and for a given scan, the generating and receiving locations can
be represented by (ÿx, y) and (x, y) respectively. As the scan progresses, the
x-co-ordinate of the receiver location remains ®xed, while the y-co-ordinate
varies. Thus, one obtains data along a line parallel to the y-axis.
The vertical displacement of the combined incident and scattered S0 waves

can be calculated at each receiver location. Also, since the transducer is only
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Figure 6. Polar plot of the magnitude of the scattered amplitude of a ®nite source wave inci-
dent from the left upon a hole with radii: (a) a=0�25610ÿ2 m; (b) a=0�75610ÿ2 m and (c)
a=1�27610ÿ2 m, when the source has been shifted by +5 cm in the y direction.
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sensitive to the real motion of the plate, only the real part of the vertical
displacement is used. These calculated vertical displacement values can then be
plotted as a function of y to form vertical displacement curves. These curves
represent the vertical displacement of the top surface of the plate along a
speci®ed line, x=constant, as shown in Figure 4.
Figure 7 shows the vertical displacement curves for the case of a plane

S0 wave incident upon holes of radius a=0�25610ÿ2 m, a=0�75610ÿ2 m,
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Figure 7. Vertical displacement curve for the case of a plane wave incident from the left upon
a hole with radii: (a) a=0�25610ÿ2 m; (b) a=0�75610ÿ2 m and (c) a=1�27610ÿ2 m.
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and a=1�27610ÿ2 m. In order to match the experiments, the
values l=6�29361010 kg/ms2, m=2�67761010 kg/ms2, r=2700 kg/m3,
o=2p(1�1)6106 Hz, and h=1�143610ÿ3 m have again been chosen, and the x-
co-ordinate of the receiver line is set as 8�75610ÿ2 m. In the absence of
scattering, one would simply expect to see a uniform value for the vertical
displacement except in the ¯aw area where one would expect a shadow region
since the S0 Lamb wave cannot propagate through the hole. Instead, one sees
¯uctuations in the magnitude of the vertical displacement throughout the curve.
These variations are due to the scattering of the plane wave from the hole.
Comparing the three ®gures, one sees that the majority of the curve is negative
indicating motion of the plate below z= h. However, in the ¯aw region about
y=0, the vertical displacement is positive indicating motion above z= h. The
main difference between the curves as the hole size increases is that the maximum
negative peaks move farther away from y=0 and their magnitude decreases.
However, there are no sharp changes in the curves for the largest hole, and so
nothing to indicate the scattering effects is seen in the tomographic images.
Figure 8 shows the vertical displacement curves for the case of a point source

S0 wave incident upon holes of radius a=0�25610ÿ2 m, a=0�75610ÿ2 m,
and a=1�27610ÿ2 m respectively. The values of l, m, r, o, h, and of the
x-co-ordinate of the receiver line are the same as above. In addition, the
x-co-ordinate of the point source is set as ÿ8�75610ÿ2 m. Since the incident
wave is cylindrical, the vertical displacement values along a line will not show if
the magnitude of the vertical displacement is uniform. Instead one focuses on the
¯aw region. For the small hole (Figure 8(a)), the vertical displacement is negative
in the ¯aw region until y=21 where it switches to a positive value until y=22.
Over this region, the magnitude of the vertical displacement is decreasing. For the
middle hole (Figure 8(b)), the vertical displacement remains negative out past
y=22 and the magnitude is relatively constant other than for small oscillations.
Finally for the large hole (Figure 8(c)), the vertical displacement is positive out to
about y=21�3 where it becomes negative. The magnitude in this region
gradually decreases until y=21�3 when it starts increasing again. This change in
phase of the vertical displacement in the ¯aw region as the hole size increases
could indicate the scattering effects seen in the tomographic images. It predicts a
change in the motion of the plate, not just a change in the amplitude of the
motion. However, the phase change is gradual for the point source case in which
the incident wave still extends far past the ¯aw region.
Figure 9 shows the vertical displacement curves for the case of a ®nite source

S0 wave incident upon holes of radius a=0�25610ÿ2 m, a=0�75610ÿ2 m, and
a=1�27610ÿ2 m respectively. The values of l, m, r, o, h, and of the x-co-
ordinate of the receiver line are the same as above. In addition, the x-co-ordinate
of the point sources in the ®nite source is set as ÿ8�75610ÿ2 m. In all three
plots, one sees that the magnitude is basically the same until one approaches the
edge of the hole. At this point the magnitude dramatically increases due to the
large contribution of the scattered ®eld with the incident ®eld at the receiver
location, and one has a large positive vertical displacement. Next, one considers
the ¯aw region. For the small and medium holes (Figures 9(a) and (b)), the
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magnitude drops to almost zero at the edge of the hole, where the vertical
displacement becomes negative, and then increases until y=0. For the large
hole (Figure 9(c)), the magnitude again decreases until the very edge of the hole,
where the curve starts to oscillate between positive and negative vertical
displacement values until y=0�25 where the magnitude increases and the
vertical displacement remains positive until y=0. While the large magnitudes
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Figure 8. Vertical displacement curve for the case of a point source wave incident from the left
upon a hole with radii: (a) a=0�25610ÿ2 m; (b) a=0�75610ÿ2 m and (c) a=1�27610ÿ2 m.
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near the edges of the holes indicate scattering effects, the rapid oscillations and
positive vertical displacement values in the ¯aw region of the large hole indicate
some additional effects. In contrast to the motion for the two smaller holes, the
motion of the plate with the large hole rapidly oscillates between positive and
negative values at the edge and just inside the ¯aw region. Then the plate settles
into a positive vertical displacement at the center of the ¯aw region in contrast
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Figure 9. Vertical displacement curve for the case of a ®nite source wave incident from the left
upon a hole with radii: (a) a=0�25610ÿ2 m; (b) a=0�75610ÿ2 m and (c) a=1�27610ÿ2 m.
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to the negative vertical displacement seen for the two smaller holes. The rapid
oscillations, which are over an area smaller than the transducer element size,
could be responsible for the streaking effects seen in the tomographic images,
while the phase change at the center of the ¯aw region may be responsible for
the scalloping or other effects.

5. DISCUSSION

Isolated through holes in plates scatter Lamb waves, giving artifacts in
tomographic reconstructions that have assumed straight, non-diffracting rays.
Modelling this phenomenon is problematic because Lamb waves are guided
waves which cannot be treated via standard scattering analysis. The Mindlin
extensional wave plate theory provides a tractable framework, which still
captures the important physical effects in our Lamb wave contact scanning
measurements. By considering in some detail the scattering of S0 Lamb waves
from isolated through holes with this theory, one has been able to explore the
scattering behavior for various sizes of holes. The ``point source'' solution has
been used to synthesize the total displacement ®elds of realistic S0 beams
incident on holes of various sizes in order to con®rm that scattering is important
when the hole size is larger than the beam size. This correlates with the
experimental results in which the starburst streaking pattern and scalloping were
seen in a parallel projection tomography image for a large hole in the aluminum
plate. This theory and the general scattering solution outlined here are also vital
for the development of Lamb wave diffraction tomography, which is necessary
to perform accurate reconstructions in the presence of strong scatterers.
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