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1. INTRODUCTION

Plates supported by elastic foundations present very common technical problems
in structural and geotechnical engineering. The majority of research work in this
area has been done using the classical Winkler model [1] where a coef®cient k
called the subgrade reaction of the foundation is employed [2]. Many other
models have been used but the Winkler model is often adapted [3] because of its
simplicity. The problems of vibrations and stability of beams on elastic
foundations by using a Winkler model are solved by several researchers such as
Clastornik et al. [4], Eisenberger et al. [5], Eisenberger and Clastornik [6], De
Rosa [7] and Ding [3]. Recognizing the behavioural inconsistency of the Winkler
model, many researchers attempted to make the model more realistic by
providing some interaction among the Winkler springs, and introducing a two
parameter foundation model. Despite their simplicity, two parameter foundation
models failed to gain acceptance in the engineering community [8] because of
their lack of consistency. Dynamic analysis of beams resting on elastic
foundations using two parameter models have been performed by Franciosi and
Masi [9], De Rosa [10] and Yokoyama [11]. Vlasov and Leont'ev [12] introduced
an improved model by introducing a third parameter, g, to represent the
distribution of the displacements in the vertical direction. This Vlasov model is
applied to the dynamic analysis of beams on elastic foundations by Ayvaz and
DalogÆ olu [13] and DalogÆ lu and Ayvaz [14]. But no references have been found
for the application of a consistent Vlasov model to dynamic analysis of plates
resting on elastic foundations subjected to external loads.
The authors have developed a mathematical model for the dynamic analysis of

rectangular plates on elastic foundations using three parameters such as k, t, and
g. A computer program is coded in FORTRAN for the dynamic out-of-plane
response of plates resting on elastic foundations. Rectangular ®nite elements are
used to model the plate±soil system and the Newmark-b method is used for time
integration. The computational technique is an iterative process which is
dependent upon the g parameter. A number of graphs are presented to show the
effects of the subsoil depth, plate dimensions, and their ratios on the dynamic
response of rectangular plates on elastic foundations subjected to both uniformly
distributed load and concentrated load at the center of the plates.

Journal of Sound and Vibration (1999) 224(5), 941±951
Article No. jsvi.1998.2144, available online at http://www.idealibrary.com on



942 LETTERS TO THE EDITOR

2. MATHEMATICAL MODEL

The dynamics of elastic structures based on Hamilton's variational principle is

d
�t2
t1

P dt � 0, �1a�

where

P � Pk ÿPie, �1b�
in which Pk is the kinetic energy which can be expressed as

Pk � 1
2

�
O

_wmmm _w dO, �2a�

where w represents the vector of generalized displacement components relevant
to inertial forces, the dot denotes the partial derivative with respect to the time
variable, t, mmm is the mass density matrix, O is the domain of the plate. The
integration is performed in an arbitrary time interval t1E tE t2. Pie are the
potential energies of internal and external forces and can be written as

Pie � 1
2

�
O
eeeTsss dOÿ

�
O
qw dO �2b�

where eee and sss are strain and stress tensors, q is applied distributed load. The
displacement function, w, can be expressed as

w � NW, �2c�
in which N can be de®ned by shape functions in natural co-ordinates and W is
the vector of deformation parameters. Then equation (1b) in expanded form
may be written as [15],

P � 1
2

_WM _Wÿ 1
2W

TKW�WTF, �2d�
in which K represents the stiffness matrix of the soil±structure system and F is
the load vector. By substituting equation (2d) into equation (1a) and applying
the variational principle, the following expression may be obtained�t2

t1

dW�ÿM �Wÿ KW� F� dt � 0: �2e�

Finally, the dynamic equilibrium condition including inertial forces according to
the d'Alembert principle is

KW�M �W � F: �2f�
See reference [16] for an evaluation of the stiffness and mass matrices.
Equivalent nodal loads F in equation (2f) can be evaluated as

F �
�
O
NTq dO: �3�
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Boundary conditions to consider the effect of the in®nite soil domain outside the
plate need to be evaluated to solve the equation system. See references [15, 17]
for details.
It should be noted that, in this study, the Newmark-b method is used for the

time integration of equation (2f) by using the average acceleration method [18],
and that the computational technique used to get the displacements of the plates
considered is the same as used in reference [16].

3. NUMERICAL EXAMPLES

3.1. Data for numerical examples

In the light of the results given in references [8, 13] the depths, H, of the
subsoil (see Figure 1) used are 5, 10 and 15 m. The aspect ratios, ly/lx, of the
plate used are 1, 1�5 and 2�0. The ratios H/ly used are 0�25, 0�50, 0�75 and 1�0 for
each subsoil depth considered. The shorter length of the plate, lx, is kept
constant at 10 m. The mass densities of the plate and the subsoil are taken to be
2500 kg/m3 and 1700 kg/m3, respectively, for the calculation of the mass matrix.
In order to obtain the response of each plate, a uniformly distributed load

(UDL) of ÿ30 kN/m2 and a concentrated load (CL) of ÿ1000 kN at the center
of the plate, are used.
For the sake of accuracy in the results, rather than starting with a set of

values for the ®nite element mesh size and time increment, the mesh size and the
time increment required to produce the desired accuracy are determined. This
analysis is undertaken separately for the mesh size and time increment. To ®nd
out the required ®nite element mesh size, the time increment is ®xed, and the
convergence of the maximum displacement is checked for different mesh sizes.
To obtain the required time increment, the ®nite element mesh size is ®xed, and
the convergence of the maximum displacement is checked for different time
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Figure 1. A sample plate resting on an elastic foundation.
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increments. In conclusion, the results have an acceptable error when using
equally spaced 106 10 elements for a 10 m6 10 m plate for the uniformly
distributed load if a 0�01 s time increment is used, and when using unequally
spaced 106 10 elements for a 10 m6 10 m plate for the concentrated load if a
0�001 s time increment is used.

3.2. Results

The purpose of this study is to present the time histories of the displacements
at different points on the plates for different subsoil depths and aspect ratios,
but presentation of all of the time histories would take up excessive space.
Therefore, only the maximum displacement for different aspect ratios and
subsoil depths are presented after several time histories are given. This
simpli®cation to the presentation of the maximum responses is supported by the
fact that the maximum values of these quantities are the most important ones for
design. These results are presented in graphical, rather than in tabular form. The
results of uniformly distributed load all over the plate and of the concentrated
load at the center of the plate are given separately.
It should be noted that, in all the time history plots, a positive sign shows

downward displacement and a negative sign shows upward displacement.

Uniformly distributed load case. The time histories of the center displacements
for 10 m610 m and 10 m620 m plates when H=5 m are presented in Figure 2.
As seen from Figures 2(a) and 2(b), the center displacements of the 10 m610 m
and 10 m6 20 m plates for H=5 m reach their absolute maximum values of
10�2 mm at 3�08 s, and of 12�8 mm at 2�01 s, respectively.
As expected in a static sense, the maximum displacement of a 10 m6 20 m

plate is larger than that of 10 m6 10 m plate, and the maximum displacement
increases with increasing aspect ratio. Figures 2(a) and 2(b) indicate that the
time histories of the center displacements of the plates differ from each other
depending on the dynamic characteristics of the system. These ®gures show that
the vibration periods of the center displacements are becoming larger with
increasing aspect ratio for a ®xed subsoil depth. This is expected because
increasing the aspect ratio and/or the subsoil depth make the system more
¯exible when one side of the plate is kept constant as in this study. These ®gures
also show that the plates vibrate just below the initial level.
The absolute maximum displacements of the plates are given in Figures 3 and

4 for different subsoil depths and aspect ratios, and for different H/ly ratios,
respectively. Several general trends illustrated in Figures 3 and 4 are instructive.
These trends seen from these ®gures are as follows.
The maximum displacement increases as the subsoil depth and/or the aspect

ratio increase.
The subsoil depth has stronger in¯uence on the maximum displacement than

the aspect ratio for smaller values of subsoil depth, but the aspect ratio has
stronger in¯uence on the maximum displacement than the subsoil depth for the
larger values of subsoil depth.
The maximum displacement decreases as the H/ly ratio increases for any

values of the subsoil depth. This decrease is larger for smaller values of the
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Figure 2. The time history of the center displacement of the plate subjected to uniformly
distributed load (a) for H=5 m and ly=10 m; (b) for H=5 m and ly=20 m.
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Figure 3. The maximum displacement of the plate subjected to the uniformly distributed
load for different subsoil depths and aspect ratios. Key for ly/lx values: Ð&Ð, 1�0; Ð&Ð, 1�5;
Ð~Ð, 2�0.
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subsoil depth than for larger values of the subsoil depth because the maximum
displacement tends to level off with increasing H/ly ratio. This behaviour is
understandable in that a plate on elastic foundations with a larger subsoil depth
becomes more ¯exible and thus less resistant to the load in a static sense.
The maximum displacement increases as the subsoil depth increases for any

values of H/ly.
The de¯ected shapes of the 10m6 10m and 10m6 20m plates for H=15 m

for the time at which the maximum displacement occurs are given in Figure 5.
As expected in a static sense, the center displacement of the plate with smaller
subsoil depth and aspect ratios is smaller than that of the plate with larger
subsoil depth and aspect ratio. The de¯ected shapes of the other plates
considered are not presented since they are similar to the ones given here.

Concentrated load case. The time histories of the center displacements for
10 m6 10 m and 10 m6 20 m plates when H=5 m are presented in Figure 6.
As seen from Figures 6(a) and 6(b), the center displacements of the 10 m6 10 m
and 10 m6 20 m plates for H=5 m reach their absolute maximum values of
6�6 mm at 6�609 s, and of 5�8 mm at 5�482 s, respectively.
As in the case of uniformly distributed load, Figures 6(a) and 6(b) indicate

that the time histories of the center displacements of the plate differ from each
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Figure 4. The maximum displacement of the plate subjected to the uniformly distributed
load for different H/ly ratios and subsoil depths. Key for H values: Ð&Ð, 5 m; Ð&Ð, 10 m;
Ð~Ð, 15 m.
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Figure 5. The de¯ected shape of the plate subjected to uniformly distributed load for different
aspect ratios (H=15 m). ly/lx values: (a) 1; (b) 2.
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other depending on the characteristics of the plate±soil system, but in contrast to
uniformly distributed load case, the center displacement is getting smaller with
increasing aspect ratio for any values of subsoil depth.
It is seen from these ®gures that the vibration period of the center

displacement is getting larger with increasing aspect ratio and/or subsoil depth,
and that all of the plates considered always vibrate below the initial level, so that
the plate edges have upward displacement as in the case of a beam subjected to
concentrated load at mid-span [14].
The maximum displacement for different subsoil depths and aspect ratios

are given in Figure 7. In this ®gure, the bottom part shows the upward
displacements, and the top part shows the downward displacements. The curves
of this ®gure are rather irregular in contrast to those of the plate subjected to the
uniformly distributed load. The trends illustrated in this ®gure are as follows:
The maximum displacement increases with increasing subsoil depth for any

values of ly/lx, except that upward displacement decreases when it is increased
from 5 m to 10 m for ly/lx=1�5.
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Figure 6. The time history of the center displacement of the plate subjected to concentrated
load at the center (a) for H=5 m and ly=10 m; (b) for H=5 m and ly=20 m.
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The maximum downward displacement generally decreases as the aspect ratio
increases for any values of subsoil depth. This is not expected in a static
sense, but the maximum displacement changes depending on the dynamic
characteristics of the plate±soil system.
The effect of the subsoil depth on the maximum displacement is generally

larger than that of the aspect ratio.
The de¯ected shapes of the 10 m6 10 m and 10 m6 20 m plates for H=5 m

and 15 m for the time at which the maximum displacement occurs are given in
Figure 8. The de¯ected shapes of the other plates considered are not presented
since they are similar to the ones given here.
Dynamic displacement of a plate resting on elastic foundations changes

depending on the dynamic characteristics of the plate±soil system, so that, in
contrast to the case of uniformly distributed load, the maximum displacement of
the 10 m6 10 m plate for H=5 m is larger than that of the 10 m6 20 m plate
for the same subsoil depth.
It should be noted that the results obtained by using the consistent Vlasov

model are not compared with the results of the Winkler model, which is simpler,
because the stiffness parameter, k, which has a constant value in the Winkler
model at all time increments, takes different values in the consistent Vlasov
model at each time increment.
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Figure 7. The maximum displacement of the plate subjected to concentrated load at the center
for different subsoil depths and aspect ratios. Key as for Figure 3.
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Figure 8. The de¯ected shape of the plate subjected to concentrated load at the center for
different aspect ratios (H=15 m). ly/lx values: (a) 1; (b) 2.
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The maximum and minimum values of the g parameter obtained at each run
for different subsoil depths and aspect ratios are presented in Table 1. As seen
from this table, the values of g generally increase with increasing subsoil depth
for any values of the aspect ratio, and generally decrease with increasing aspect
ratio for any values of the subsoil depth. This result agrees with the results
obtained in references [8, 13]. As the value of g increases, a mode shape, f,
de®ning the variation of displacement in the vertical direction [16] represents a
rapidly dissipating displacement, which is typical for large values of H. When the
value of g approaches zero, the function f yields a linear variation of
displacements from top to bottom [8]. It should be noted that most of the values
of g obtained at each time increment are close to the minimum g for all values of
the subsoil depths and very large g values such as 13�93 and 22�25 for the
concentrated load are seen at a few time increments for all runs made.
If a plate resting on elastic foundations is subjected to the external load, it is

not that dif®cult to talk about the effects of the subsoil depth and the aspect
ratio on the response, because, in contrast to the beam resting on elastic
foundations subjected to the vertical component of an earthquake [13], the
curves are rather regular. The curves presented herein can help the designer to
anticipate the effects of the subsoil depth and the aspect ratio on the maximum
displacement of a plate resting on elastic foundations.

4. CONCLUSIONS

The consistent Vlasov model has been applied effectively to the dynamic
analysis of plates resting on elastic foundations subjected to the external loads.
Two soil parameters are iteratively calculated in terms of the parameter, g, which

TABLE 1

The maximum and minimum 
 values for different subsoil depths and aspect ratios

gmin gmaxz����������������}|����������������{ z����������������}|����������������{
H (m) ly/lx UDL CL UDL CL

5 1�00 0�81 0�79 2�56 6�28
1�50 0�71 0�45 2�44 2�42
2�00 0�66 0�40 2�22 2�22

10 1�00 1�24 1�22 5�70 13�93
1�33 1�13 ± 4�50 ±
1�50 1�10 0�74 5�55 5�42
2�00 1�02 0�64 4�45 4�96
4�00 0�90 ± 2�48 ±

15 1�00 1�60 1�57 7�16 22�25
1�50 1�41 0�95 6�03 8�77
2�00 1�30 0�83 6�60 8�01
3�00 1�18 ± 4�73 ±
6�00 1�07 ± 3�43 ±
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controls the decay of the stress distribution within the foundation. In addition,
the following conclusions can be drawn from the results obtained in this study.
The maximum displacement generally increases as the subsoil depth and/or the

aspect ratio increase for both loading cases.
The maximum displacement decreases with increasing H/ly ratio for any

values of the subsoil depth for the uniformly distributed loading case.
The maximum displacement increases as the subsoil depth increases for any

values of H/ly ratios for the uniformly distributed loading case.
In general, the effect of the change in the subsoil depth on the maximum

displacement is larger than that of the change in the aspect ratio for both
loading cases.
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