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1. INTRODUCTION

The problem of non-linear singular oscillator systems is considered in references
[1-5]. In reference [1] systems with “‘soft” and “hard” singularity are analyzed.
For a special type of non-linear equation with soft singularity the exact solution
which can be written in closed form is shown. The non-linear equation

¥4 x = —ax(3 +x%)/(1 - x%), (1)

which contains a hard singularity is also discussed. It is concluded that the exact
solution of this equation cannot be expressed in simple, closed form. In
references [1-5] the approximate solutions of (1) for small non-linearity when
A < 1 are obtained by applying the slowly varying amplitude and phase method
and the harmonic balance method. The case of strong non-linearity is not
considered.

In this paper the strong non-linear system (1) with 4 > 1 is analyzed. It is a
pure non-conservative system. In this paper the conservation laws for such non-
conservative systems are obtained. Noether’s theorem adopted for non-
conservative systems is applied. Besides using the first integrals of the equation
(1) the exact solutions for the strong non-linear system with hard singularity of
the type (1) are determined.

2. CONSERVATION LAW

The dynamical system being considered (1) is characterized by the Lagrangian
function

L=1 - L2 — L2+ L — (0/4)x%, (2)
and a generalized force
Q = —(1 4+ )xi?, (3)

where x is a generalized co-ordinate and X is a generalized velocity. The system
i1s a purely non-conservative holonomic dynamical system. In reference [6] it is
shown that in non-conservative systems conservation laws may exist. Noether’s
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theory used for obtaining conservation laws for conservative systems [7] (to
every infinitesimal transformation of the dynamical variables that leaves the
action integral invariant there corresponds a conserved quantity) is generalized
for non-conservative systems. The theory is based on the variational principle of
Hamilton’s type for purely non-conservative systems [8]. The main idea of the
principle is that the variations of the generalized velocity X are not completely
determined by the variations of the generalized co-ordinates x but by these
quantities and by the generalized dissipative force Q. Following this idea it is
assumed that the variations of time and generalized co-ordinates are independent
and that these transformations together with the dissipative force determine the
infinitesimal transformation of the generalized velocity. It means that for a
continuous one-parameter transformation of time, the generalized co-ordinate
and generalized velocity

Ixt4ef (1, x, %), Xxx+eF(t,x, X), Xxk+e(F—xf+ @), (4)
there exists an infinitesimal transformation of the form
Atxef, Ax~eF, Axme(F—if+ @), (5)

where ¢ is a small parameter of the transformation and f, F and ¢ are functions
of time, generalized co-ordinates and generalized velocities. Further, by assuming
that the infinitesimal transformation (5) induces a Lagrangian function L that is
gauge invariant, i.e., is invariant up to an exact differential in the sense

L(%, % 1) di — L(x, %, 1) dr = e dP(x, &, 1), (6)

then combining (2), (4) and (6) developing the term L(X,X,?) in series and
retaining only members linear in the small parameter ¢ becomes

g[F(—xjc2 — x4+ =) +x(1 = ) F - if + D)

+f (%xz — i - L Lt - %x“)] dt =¢dP(x, x, 1), (7)

where P is a known function of x, X and ¢.
After simple manipulation, one has

of g |31 == 1) 47 (10 - 12 = 1 4 ot = )|
+ @3(1 — x?) + (1 + A)xi>(F — &f)
— [X(1 = x%) + x(1 = x%) + Ax(X* + x| (F - xf)} dt=¢dP.  (8)

Assuming that the function f, F and @ satisfy the algebraic equation

Pi(1 — x*) = —(1 + A)xi*(F — xf), (9)
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and that the dynamical system moves in agreement with the Euler—Lagrange
equation (1) one may deduce the following theorem:

Theorem 1 (Noether’s theorem): If under the continuous infinitesimal one-
parameter transformation (5) which satisfies the algebraic equation (9) the
Lagrangian is gauge invariant in the sense of the equation (6) then the quantity

Dl i 1) = (1 = 2)(F = i) +£ (52 — 122 — 1+ 1 — (1/4)¢) = P, (10)

is constant for the non-conservative system (1).

2.1. Killing equations
The functions f, F and P have to satisfy the relation (7) with (9) which is

called Noether’s identity
F(—xi> = x+x° = 2x3) + 3(1 = X)) (F = ) — (1 + A)xx*(F — xf)
+ /(52 - 02 - L L - /4t = P (11)

Writing the identity (11) explicitly it can be decomposed into a system of linear
partial differential equations of the first order with respect to the generators f
and F and gauge function P by equating to zero the terms of corresponding
degrees in X

. OF . : A of OP
o (12120 12 14 A a9 OF
X(1—x )ax+< SX° 4 3XTXT — 3xT 44X 4x>8)’c 5% 0, (12)
: , . OF OF_ of. Of.
w2 3.3 (ot o of. O »
F(—x%" — x4+ x" — Ax”) + x(1 x><8t+8xx TR 8xx>

# (3 - 1 - 12t - 1) @0n + @70

— (1 + A)xx*(F — fx) — OP/0t — (OP/0x)x = 0. (13)
These equations are called the generalized Killing equations.
Now assume that the unknown functions are

F=0, f=f(x), P=P(x). (14)

For (14) the equation (12) is identically satisfied and equation (13) transforms
into two equations obtained by separating the terms of corresponding degrees
in X
11— x?)0f/0x 4+ xf (1 + 1) =0, (—%x2 + }Tx“ — (A/H)xHof/ox = OP/ox.
(15, 16)
Integrating equations (15) and (16) gives

=1/ =X P=[(1+2)/4x*/(1 =) (17, 18)



LETTERS TO THE EDITOR 955
Substituting (17) and (18) into (10) the conservation law is

—(x® 4+ %%)/2(1 — x*)* = const. (19)

The same conservation law is obtained using two other sets of functions:

f=0, F=x/(1-x))"" P=(>-x%/2(1-x»" (20)
and
f=1/1=x)" 2w/, F=-2v/x,
Pz—é?<—%x2+%x4—§x4>, (21)
where

RN N C (0 S RS SR
- x2—-1 2 2(1_x2)1+/1 (1—)62)2 2(1_x2)/1—1 :

The conservation law is a specific functional relation between physical and
geometrical parameters that is satisfied due to the differential equations of
motion (1). The conservation law in some specific way reflects the physical
mechanism acting in the dynamical system. This conservation law can
considerably simplify the integration of the differential equation of motion.

Now consider some specific cases for various values of parameter /.

3. SOLUTION OF EQUATION (1) FOR A =1

For 4 =1 the conservation law (10) is
(2 +)/(1 - ) =K, (22)
where for the initial conditions x(0) = xo# +1 and ¥(0) = X it is
K= (3 +)/(1-x3). (23)
The trajectory in phase plane is for K> 0 an ellipse
/K +xP/K/(K+1)] =1, (24)
with characteristic points
x=0, x=+VK/(K+1),
and
x=0 x=+ VK.

Based on equation (24) the phase plane diagrams for various values of parameter
K are plotted (see Figure 1).
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Figure 1. The phase plane curves for A =1 and K = 1/4; 1; 4.

The solution of (24) is a harmonic function

x = Acoswt, (25)
where the amplitude of vibration is
A=++vK/(1+K), (26)

and the frequency of vibration is

w=+vI+K. (27)

For K < —1 the trajectory in phase plane is a hyperbola
/KK = 1] = 3/|K] =1, (28)
with characteristic points
x=0, x=+IK|/(|K|l-1).

In Figure 2 the curves in the phase plane described with equation (28) for
K = -2 and K = —4 are plotted.
The exact solution of (28) is a hyperbolic function

x = Bcosh Q1, (29)

where

B=+/K, Q=K -1 (30)
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Figure 2. The phase plane curves for 2 = 1 and K = —2; —4.

4. SOLUTION OF EQUATION (1) FOR 4 =2
The conservation law for 4 = 2 is
(x> +3#%)/(1—i*)? =K, (31)
where for the initial conditions x(0) = xy # + 1 and x(0) = X it is
K=(x+33)/(1 - ) (32)
The mathematical description of the phase plane portrait for K> 0 is
P/K = (1-x>)%=(1/K)x%, (33)
1.€.,
/K = (x + 1/2VK — /T + [1/4K])(x + 1/2VK + /1 + [1 /4K])
x (x = 1/2VK = \/T+ [1/4K])(x — 1/2VK + /1 + [1/4K]). (34)

The solution of (1) exists for K > 0 and

x=(14+V1+2K)/2VK, x<(1++V1+2K)/2VK, (35, 36)
and
—(V1+4K—-1)/2VK<x<(V1+4K—1)/2VK. (37)

In Figure 3 the phase plane curves for K = 2 are plotted.
For A = 2 and (37) assume the solution of (1) in the form

x = A cn(wt + 0, k), (38)

where cn is the elliptic Jacobi function (see references [9—11]), w is the frequency,
k is the modulus of Jacobi function and 0 and A4 are arbitrary constants.
Substituting (38) and its time derivatives into (1) gives
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Figure 3. The phase plane curves for 4 = 2.

0 =(1+A4%)/(1 = 4%, k> =4*/(4*-1). (39, 40)

From equations (39) and (40) it is evident that for

A<, (41)
then
w* >0, k<0, (42)
and for
A>1, (43)
then
> <0, k*>0. (44)

This means that the special strong non-linear differential equation with hard
singularity

¥4 x=-2x(3+x%)/(1 = x?), (45)

has an exact solution in the closed form for 4 <1

x=Acen(y/(1+42)/(1 - £2)+0, — 4*/[1 - 4Y), (46)

and for 4 >1

x = Acn(ing/(1+42)/(1 - 42) +6, 4*/[4* 1)), (47)

where i = +/—1 is the imaginary unit, 4 and 0 are arbitrary constants. The
solutions for (46) and (47) are now analyzed.

Solution for A < 1. Using the relations between elliptic functions with positive
and elliptic functions with negative modulus [11] the solution (46) can be
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transformed to
x=Acd(t/(1 — A%) + 0, 4*), (48)

where 0; = 0/V'1 — A* is an arbitrary constant and cd is the Jacobi elliptic
function [9].
The constants A and 0, are obtained according to the initial conditions

x(0) = x9, *(0) = Xy, (49)
from the equations
xo = A cd(0y, 4*), X0 = —A(1 + 4%) sd(01, A*) nd(0;, 4%), (50, 51)

where sd and nd are Jacobi elliptic functions [11].
Two special types of initial conditions will be considered:
(a) For

x(0) = xp, Xx(0)=0, (52)
it is
A= X0, 91 = 2nK, (53)

where n =0, 1, 2,... and K =K(k)=K(x3) is the complete elliptic integral of
the first kind [10]. The solution of equation (46) is

x = xo cd(t/(1 — x2) + 2nK (x2), x}), (54)

for
xo < 1. (55)

(b) For

x(0) =0, (0) = %o, (56)

it is
0, = 2n+ 1K, (57)

and
Yo = —Aw = —A/(1 — 4%), (58)

i.€.,

A]’QZ(li\/4X%+l)/2)'C0, (59)

where n =0, 1, 2,..., and K = K(4?). Finally, the solution (46) is transformed
to

x=Acd(t/(1 — A%) + 2n + 1)K(4?), 4%, (60)
where A has the form (59).
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Solution for A> 1. For the initial conditions x(0) = xo > 1 and x(0) = X, the
solution of (47) is

x=Acn(in/(1+A42)/(1 - 42), A*/(4*~ 1)), (61)

where 4 = x,. The elliptic function is with imaginary argument. Using the
relation between the elliptic function with imaginary argument and elliptic
function with real argument (see reference [9]) the solution (61) is modified to

x=Ane(y/[(1+A)/(42 — )], —1/(4*~ 1), (62)

where nc is a Jacobi elliptic function. The modulus of the function is negative.
Transforming it into the elliptic function with positive argument it becomes

x=Adc(A%t/(4> — 1), 1/4%). (63)

The relation (63) represents the exact solution of (47) for 4 = xo > 1.
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