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1. INTRODUCTION

The problem of non-linear singular oscillator systems is considered in references
[1±5]. In reference [1] systems with ``soft'' and ``hard'' singularity are analyzed.
For a special type of non-linear equation with soft singularity the exact solution
which can be written in closed form is shown. The non-linear equation

�x� x � ÿlx� _x2 � x2�=�1ÿ x2�, �1�
which contains a hard singularity is also discussed. It is concluded that the exact
solution of this equation cannot be expressed in simple, closed form. In
references [1±5] the approximate solutions of (1) for small non-linearity when
l5 1 are obtained by applying the slowly varying amplitude and phase method
and the harmonic balance method. The case of strong non-linearity is not
considered.
In this paper the strong non-linear system (1) with le 1 is analyzed. It is a

pure non-conservative system. In this paper the conservation laws for such non-
conservative systems are obtained. Noether's theorem adopted for non-
conservative systems is applied. Besides using the ®rst integrals of the equation
(1) the exact solutions for the strong non-linear system with hard singularity of
the type (1) are determined.

2. CONSERVATION LAW

The dynamical system being considered (1) is characterized by the Lagrangian
function

L � 1
2 _x2 ÿ 1

2x
2 _x2 ÿ 1

2x
2 � 1

4x
4 ÿ �l=4�x4, �2�

and a generalized force

Q � ÿ�1� l�x _x2, �3�
where x is a generalized co-ordinate and _x is a generalized velocity. The system
is a purely non-conservative holonomic dynamical system. In reference [6] it is
shown that in non-conservative systems conservation laws may exist. Noether's
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theory used for obtaining conservation laws for conservative systems [7] (to
every in®nitesimal transformation of the dynamical variables that leaves the
action integral invariant there corresponds a conserved quantity) is generalized
for non-conservative systems. The theory is based on the variational principle of
Hamilton's type for purely non-conservative systems [8]. The main idea of the
principle is that the variations of the generalized velocity _x are not completely
determined by the variations of the generalized co-ordinates x but by these
quantities and by the generalized dissipative force Q. Following this idea it is
assumed that the variations of time and generalized co-ordinates are independent
and that these transformations together with the dissipative force determine the
in®nitesimal transformation of the generalized velocity. It means that for a
continuous one-parameter transformation of time, the generalized co-ordinate
and generalized velocity

�t1t� ef �t, x, _x�, �x1x� eF�t, x, _x�, �x
:
1 _x� e� _Fÿ _x_f� F�, �4�

there exists an in®nitesimal transformation of the form

Dt1ef, Dx1eF, D _x1e� _Fÿ _x_f� F�, �5�
where e is a small parameter of the transformation and f, F and F are functions
of time, generalized co-ordinates and generalized velocities. Further, by assuming
that the in®nitesimal transformation (5) induces a Lagrangian function L that is
gauge invariant, i.e., is invariant up to an exact differential in the sense

L��x, �x
:
, �t� d�tÿ L�x, _x, t� dt � e dP�x, _x, t�, �6�

then combining (2), (4) and (6) developing the term L��x, �x: , �t� in series and
retaining only members linear in the small parameter e becomes

e
�
F�ÿx _x2 ÿ x� x3 ÿ lx3� � _x�1ÿ x2�� _Fÿ _x_f� F�

� _f 1
2 _x2 ÿ 1

2x
2 _x2 ÿ 1

2x
2 � 1

4x
4 ÿ l

4
x4

� ��
dt � e dP�x, _x, t�, �7�

where P is a known function of x, _x and t.
After simple manipulation, one has

e
�

d

dt

�
_x�1ÿ x2��Fÿ _xf � � f 1

2 _x2 ÿ 1
2x

2 _x2 ÿ 1
2x

2 � 1
4x

4 ÿ l
4
x4

� ��
� F _x�1ÿ x2� � �1� l�x _x2�Fÿ _xf �

ÿ ��x�1ÿ x2� � x�1ÿ x2� � lx� _x2 � x2���Fÿ _xf �
�

dt � e dP: �8�

Assuming that the function f, F and F satisfy the algebraic equation

F _x�1ÿ x2� � ÿ�1� l�x _x2�Fÿ _xf �, �9�
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and that the dynamical system moves in agreement with the Euler±Lagrange
equation (1) one may deduce the following theorem:

Theorem 1 (Noether's theorem): If under the continuous in®nitesimal one-
parameter transformation (5) which satis®es the algebraic equation (9) the
Lagrangian is gauge invariant in the sense of the equation (6) then the quantity

D�x, _x, t� � _x�1ÿ x2��Fÿ _xf � � f �12 _x2 ÿ 1
2x

2 _x2 ÿ 1
2x

2 � 1
4x

4 ÿ �l=4�x4� ÿ P, �10�
is constant for the non-conservative system (1).

2.1. Killing equations

The functions f, F and P have to satisfy the relation (7) with (9) which is
called Noether's identity

F�ÿx _x2 ÿ x� x3 ÿ lx3� � _x�1ÿ x2�� _Fÿ _x_f � ÿ �1� l�x _x2�Fÿ _xf �

� _f �12 _x2 ÿ 1
2x

2 _x2 ÿ 1
2x

2 � 1
4x

4 ÿ �l=4�x4� � _P: �11�
Writing the identity (11) explicitly it can be decomposed into a system of linear
partial differential equations of the ®rst order with respect to the generators f
and F and gauge function P by equating to zero the terms of corresponding
degrees in �x

_x�1ÿ x2� @F
@ _x
� ÿ1

2 _x2 � 1
2x

2 _x2 ÿ 1
2x

2 � 1
4x

4 ÿ l
4
x4

� �
@f

@ _x
ÿ @P
@ _x
� 0, �12�

F�ÿx _x2 ÿ x� x3 ÿ lx3� � _x�1ÿ x2� @F

@t
� @F
@x

_xÿ @f
@t

_xÿ @f

@x
_x2

� �

� 1
2 _x2 ÿ 1

2x
2 _x2 ÿ 1

2x
2 � 1

4x
4 ÿ l

4
x4

� �
�@f=@t� �@f=@x� _x�

ÿ �1� l�x _x2�Fÿ f _x� ÿ @P=@tÿ �@P=@x� _x � 0: �13�
These equations are called the generalized Killing equations.
Now assume that the unknown functions are

F � 0, f � f �x�, P � P�x�: �14�
For (14) the equation (12) is identically satis®ed and equation (13) transforms
into two equations obtained by separating the terms of corresponding degrees
in _x

1
2�1ÿ x2�@f=@x� xf �1� l� � 0, �ÿ1

2x
2 � 1

4x
4 ÿ �l=4�x4�@f=@x � @P=@x:

�15, 16�
Integrating equations (15) and (16) gives

f � 1=�1ÿ x2�l�1, P � ��1� l�=4�x4=�1ÿ _x2�l�1: �17, 18�



LETTERS TO THE EDITOR 955

Substituting (17) and (18) into (10) the conservation law is

ÿ�x2 � _x2�=2�1ÿ x2�l � const: �19�
The same conservation law is obtained using two other sets of functions:

f � 0, F � _x=�1ÿ x2�1�l, P � � _x2 ÿ x2�=2�1ÿ x2�l, �20�
and

f � 1=�1ÿ x2�1�l ÿ 2C= _x2, F � ÿ2C= _x,

P � ÿ 2

_x2
C ÿ 1

2
x2 � 1

4
x4 ÿ l

4
x4

� �
, �21�

where

C � ÿ 1

x2 ÿ 1

1� l
2

ÿ 1

2

1

�1ÿ x2�1�l �
1

�1ÿ x2�l ÿ
1

2

1

�1ÿ x2�lÿ1
 !

:

The conservation law is a speci®c functional relation between physical and
geometrical parameters that is satis®ed due to the differential equations of
motion (1). The conservation law in some speci®c way re¯ects the physical
mechanism acting in the dynamical system. This conservation law can
considerably simplify the integration of the differential equation of motion.
Now consider some speci®c cases for various values of parameter l.

3. SOLUTION OF EQUATION (1) FOR l=1

For l=1 the conservation law (10) is

�x2 � _x2�=�1ÿ x2� � K, �22�
where for the initial conditions x(0)= x0 6�21 and _x�0� � _x0 it is

K � �x20 � _x20�=�1ÿ x20�: �23�
The trajectory in phase plane is for K> 0 an ellipse

_x2=K� x2=�K=�K� 1�� � 1, �24�
with characteristic points

_x � 0, x �2
����������������������
K=�K� 1�

p
,

and

x � 0, _x �2
����
K
p

:

Based on equation (24) the phase plane diagrams for various values of parameter
K are plotted (see Figure 1).
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The solution of (24) is a harmonic function

x � A cosot, �25�

where the amplitude of vibration is

A �2
����������������������
K=�1� K�

p
, �26�

and the frequency of vibration is

o � ������������
1� K
p

: �27�

For K<ÿ1 the trajectory in phase plane is a hyperbola

x2=�jKj=�jKj ÿ 1�� ÿ _x2=jKj � 1, �28�
with characteristic points

_x � 0, x �2
���������������������������
jKj=�jKj ÿ 1�

p
:

In Figure 2 the curves in the phase plane described with equation (28) for
K=ÿ2 and K=ÿ4 are plotted.
The exact solution of (28) is a hyperbolic function

x � B coshOt, �29�
where

B �
�������
jKj

p
, O �

���������������
jKj ÿ 1

p
: �30�

1

0

–1
0–2 2

dx/dt

x 1

4

K=1/4

Figure 1. The phase plane curves for l=1 and K=1/4; 1; 4.
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4. SOLUTION OF EQUATION (1) FOR l=2

The conservation law for l=2 is

�x2 � _x2�=�1ÿ _x2�2 � K, �31�
where for the initial conditions x�0� � x0 6�21 and _x�0� � _x0 it is

K � �x20 � _x20�=�1ÿ x20�2: �32�
The mathematical description of the phase plane portrait for K> 0 is

_x2=K � �1ÿ x2�2 ÿ �1=K�x2, �33�
i.e.,

_x2=K � �x� 1=2
����
K
p
ÿ

����������������������
1� �1=4K�

p
��x� 1=2

����
K
p
�

����������������������
1� �1=4K�

p
�

6�xÿ 1=2
����
K
p
ÿ

����������������������
1� �1=4K�

p
��xÿ 1=2

����
K
p
�

����������������������
1� �1=4K�

p
�: �34�

The solution of (1) exists for K>0 and

xe�1� ���������������
1� 2K
p �=2

����
K
p

, xE�1� ���������������
1� 2K
p �=2

����
K
p

, �35, 36�
and

ÿ� ���������������1� 4K
p ÿ 1�=2

����
K
p

ExE� ���������������1� 4K
p ÿ 1�=2

����
K
p

: �37�
In Figure 3 the phase plane curves for K=2 are plotted.
For l=2 and (37) assume the solution of (1) in the form

x � A cn�ot� y, k2�, �38�
where cn is the elliptic Jacobi function (see references [9±11]), o is the frequency,
k is the modulus of Jacobi function and y and A are arbitrary constants.
Substituting (38) and its time derivatives into (1) gives

5

0

–5
0 2–2

x

d
x

/d
t

–4

K=–2

Figure 2. The phase plane curves for l=1 and K=ÿ2; ÿ4.
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o2 � �1� A2�=�1ÿ A2�, k2 � A4=�A4 ÿ 1�: �39, 40�
From equations (39) and (40) it is evident that for

A < 1, �41�
then

o2 > 0, k2 < 0, �42�
and for

A > 1, �43�
then

o2 < 0, k2 > 0: �44�
This means that the special strong non-linear differential equation with hard
singularity

�x� x � ÿ2x� _x2 � x2�=�1ÿ x2�, �45�
has an exact solution in the closed form for A< 1

x � A cn�t
�������������������������������������
�1� A2�=�1ÿ A2�

q
� y, ÿ A4=�1ÿ A4��, �46�

and for A> 1

x � A cn�it
�������������������������������������
�1� A2�=�1ÿ A2�

q
� y, A4=�A4 ÿ 1��, �47�

where i=
�������ÿ1p

is the imaginary unit, A and y are arbitrary constants. The
solutions for (46) and (47) are now analyzed.
Solution for A< 1. Using the relations between elliptic functions with positive

and elliptic functions with negative modulus [11] the solution (46) can be

–10

0

10

0 2–2

x

d
x

/d
t

K=2

Figure 3. The phase plane curves for l=2.
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transformed to

x � A cd�t=�1ÿ A2� � y1, A4�, �48�
where y1 � y=

��������������
1ÿ A4
p

is an arbitrary constant and cd is the Jacobi elliptic
function [9].
The constants A and y1 are obtained according to the initial conditions

x�0� � x0, _x�0� � _x0, �49�
from the equations

x0 � A cd�y1, A4�, _x0 � ÿA�1� A2� sd�y1, A4� nd�y1, A4�, �50, 51�
where sd and nd are Jacobi elliptic functions [11].
Two special types of initial conditions will be considered:
(a) For

x�0� � x0, _x�0� � 0, �52�
it is

A � x0, y1 � 2nK, �53�
where n=0, 1, 2, . . . and K �K(k)�K(x20) is the complete elliptic integral of
the ®rst kind [10]. The solution of equation (46) is

x � x0 cd�t=�1ÿ x20� � 2nK�x20�, x40�, �54�
for

x0 < 1: �55�
(b) For

x�0� � 0, _x�0� � _x0, �56�
it is

y1 � �2n� 1�K, �57�
and

_x0 � ÿAo � ÿA=�1ÿ A2�, �58�
i.e.,

A1, 2 � �12
����������������
4 _x20 � 1

q
�=2 _x0, �59�

where n=0, 1, 2, . . . , and K=K(A2). Finally, the solution (46) is transformed
to

x � A cd�t=�1ÿ A2� � �2n� 1�K�A2�, A4�, �60�
where A has the form (59).



960 LETTERS TO THE EDITOR

Solution for A> 1. For the initial conditions x�0� � x0 > 1 and _x�0� � _x0 the
solution of (47) is

x � A cn�it
�������������������������������������
�1� A2�=�1ÿ A2�

q
, A4=�A4 ÿ 1��, �61�

where A=x0. The elliptic function is with imaginary argument. Using the
relation between the elliptic function with imaginary argument and elliptic
function with real argument (see reference [9]) the solution (61) is modi®ed to

x � A nc�
����������������������������������������
��1� A2�=�A2 ÿ 1��

q
t, ÿ 1=�A4 ÿ 1��, �62�

where nc is a Jacobi elliptic function. The modulus of the function is negative.
Transforming it into the elliptic function with positive argument it becomes

x � A dc�A2t=�A2 ÿ 1�, 1=A4�: �63�
The relation (63) represents the exact solution of (47) for A � x0 > 1.
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