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1. INTRODUCTION

Fatigue cracks often exist in structural members that are subjected to repeated
loading, which will certainly lower the structural integrity. Many studies have been
carried out on the dynamic response of fatigue cracks, in an attempt to "nd viable
vibration methods for non-destructive inspection and health monitoring. The crack
models used in these analyses fall largely into two categories: (1) open crack models
and (2) opening and closing or breathing crack models. Most researchers have used
open crack models in their studies and have claimed that the change in natural
frequency might be a parameter used to detect the presence of cracks [1}4].
However, the assumption that cracks are always open in vibration is not realistic
because compressive loads may close the cracks.

Recently, increasing e!orts have focused on vibration analysis using opening and
closing models to simulate a fatigue crack, as in Crespo et al. [5] and Prime and
Shevitz [6]. Their fatigue crack model considers the bilinear behavior of an elastic
crack and ignores the crack surface interference during fatigue. In their model, the
structure has only two characteristic sti!ness values: a larger value corresponding
to the state of crack closing and a smaller value for crack opening. This fatigue
crack model, however, only represents an idealized situation in which the crack has
two perfectly #at surfaces and can only exist in the fully open or fully closed states.
In reality, partial crack closure often occurs due to (1) roughness interference, (2)
wedging by corrosion or wear debris, and (3) elastic constraint on the wake of the
plastic zone. Therefore, the sti!ness of a structure containing a real fatigue crack
may change continuously with time as the load oscillates. A more general
approach, employing many terms of a Fourier series to simulate the continuous
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change of sti!ness in crack breathing, has been proposed by Abraham and Brandon
[7]. However, the computational e!ort is not trivial.

In this paper, a simple non-linear fatigue crack model is developed. For simplicity,
the dynamic behavior of a cracked beam vibrating at its "rst mode is analyzed
using this fatigue crack model. Analyses are carried out in both time and frequency
domains, which aim to identify the distinguishing features of the dynamic response
associated with the existence of a fatigue crack.

2. THE BREATHING MODEL FOR A NON-LINEAR FATIGUE CRACK

Studies [8}11] have shown that the load}displacement response of a fatigue
crack can be represented by the curve shown in Figure 1, where P

1
, P

2
, and P

3
signify the points when the crack is fully open, partially open and fully closed
respectively. If one derives the sti!ness of the structure from

k"
dP
du

"k(t) (1)

such a type of load}displacement relation leads to a continuous function
such as

k"k(t). (2)

Here, time t is chosen as the independent variable because the state of crack
opening depends on the level of load, which varies with time due to vibration. For
mathematical argument, the continuous sti!ness in equation (1) can be decomposed
into many terms of a Fourier series [7]. Examining the dynamic response of
a fatigue crack at its "rst mode in a single-degree-of-freedom system, the sti!ness
may be expressed as
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Figure 1. Schematic load}displacement curve [9].
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where u
1

is the crack breathing frequency, which is equal to the excitation
frequency, k
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"k

0
is the sti!ness of the structure when the crack is fully open, and

the amplitude of the sti!ness change is given by
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where k
c
is the sti!ness when the crack is closed, and hence the sti!ness change is
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t). (5)

The above sti!ness model assumes that the crack is completely closed when
u
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and thus the crack is in the fully open state. Otherwise the crack is in a state
of partial closure.

The present model simulates the change of the structural sti!ness as a continuous
function of time, i.e., when the crack opens and closes at a rate of u

1
. The

coe$cients k
0

and k
c
are determined from the sti!ness properties of the structure

when the crack is completely open and completely closed respectively. When the
crack is completely closed, the structure acts as one without a crack, and the
sti!ness k

c
is determined using structural mechanics methods. When the crack is

completely open, the sti!ness k
0

can be determined using fracture mechanics. An
example will be shown in section 3 for a cantilever beam.

Incorporating the breathing crack model into a single-degree-of-freedom system,
the governing equation for forced vibration can be expressed as

muK#cuR #[k
o
#k*c

(1#cosu
1
t)]u"f, (6)

where m is the mass, c is the damping coe$cient, k is the sti!ness, f is the exciting
force and u is the displacement.

3. ANALYSIS OF A CRACKED BEAM

For the sake of simplicity, a cantilever beam is modelled as a one-degree-of-freedom
lumped parameter system. This simpli"ed model simulates the beam vibrating at its
"rst mode. Both open crack and breathing crack models will be incorporated in the
system to identify the di!erence in their responses.

3.1. MODELLING

The cantilever beam under analysis is shown in Figure 2. For this beam, equation
(3) could be rewritten as

k(t)"EI[a#b(1#cos u
1
t)]"k
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(t), (7)

where a and b are constants. k
1
"k

0
"EIa is the sti!ness of the beam when it is

fully open. And
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2
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Figure 2. Cantilever beam with a crack.
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The change in the #exibility of a cracked beam can be derived from the equation
developed by Dimarogonas and Paipetis [12] as
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where / is given by
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where a is the depth of the crack and b is the depth of the beam as shown in
Figure 2. Hence, the total #exibility of the beam containing an open crack is given
by [13]

c
open

"c
ii
#c

no crack
, (11)

where c
no crack

is the beam's #exibility without a crack.
The sti!ness of an open crack is k

0
"1/c

open
. The sti!ness of a closed crack is

k
c
"1/c

no crack
. Using the above relations and formulas, the coe$cients a and b can

easily be determined:

a"k
o
/EI, b"(k

c
!k

o
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The equation of motion for this model can then be expressed as

muK#cuR #EI[a#b(1#cosu
1
t)]u"Fsinu

1
t. (13)

3.2. RESULTS

For a numerical example of a rectangular cantilever beam containing a
transverse crack, as shown in Figure 2, the dimensions are chosen as ¸"9 m,
w"0)15 m and b"0)26 m [14]. Young's modulus is assumed to be
E"206]109 N/m2 and l

c
is taken as 0)9¸. Then, the generalized mass and sti!ness

of the beam can be derived as [15]

k*"k "EIn4/32¸3, m*"0)228m@¸, (14)
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where m@ is mass of unit length. The natural frequency of the beam without crack is
17)4 rad/s (2)77 Hz).

Using the above parameters, the constants a and b were calculated and the
equation of motion was solved numerically using the fourth/"fth order
Runge}Kutta method [16]. The Hanning window was introduced over the
response signal and fast Fourier transform was used to compute a frequency
response function (FRF).

Figure 3 shows the natural frequency ratio as a function of the crack severity for
an open crack and a fatigue crack. It can be seen that the natural frequency for the
beam with a fatigue crack is higher than that with an open crack and hence the
frequency shift should be smaller in a fatigue-cracked beam. This implies that: (1)
a fatigue crack is more di$cult to detect by frequency monitoring, and (2) if one
detects the presence of a crack by a frequency shift of the structure, the crack may
have penetrated to greater depth under fatigue loading conditions than predicted
by an open-crack model. Therefore, using an open-crack model for crack detection
tends to give rise to dangerous conclusions.

Figure 4 shows the displacement response in forced vibration at a crack
severity of a/b"0)3, with a damping ratio being equal to f"0)01, where damping
ratio is de"ned as f"c/(2mu). It may be noticed that after approximately
1 s of reaching the steady state, the displacement curve of the beam with a
fatigue crack falls between those of the uncracked beam and the beam with an
open crack.

In the frequency domain, the FRF shows some interesting features for (a) an open
crack and (b) a fatigue crack, as shown in Figure 5. It can be seen that the resonance
peak of the open crack is very smooth, but side peaks appear beside the resonance
peak of the fatigue crack. These side peaks indicate the non-linear nature of the
Figure 3. Frequency change with crack severity change for breathing crack (*, f/f
c
) and open

crack (- -, f
o
/f
c
). f

0
is the frequency of the beam with an open crack, f is the frequency of the beam with

a breathing crack, f
c
is the frequency of the beam.



Figure 4. Damped forced vibration with a/b"0)3, f"0)01 and crack breathing frequency 2 Hz;
open crack (- -); breathing crack (*); no crack (- )).

Figure 5. Frequency response function for damped forced vibration with f"0)01, n"1,
a/b"0)3: (a) open crack, (b) opening and closing crack.
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response of a fatigue crack. The results of this simulation indicate that a fatigue
crack can cause the frequency response to be non-linear, which has been observed
experimentally and in computer simulations [17]. The presence of side peaks may
be used as a feature to recognize the presence of fatigue cracks.

Figure 6 shows the phase plane diagrams with the initial conditions of
u"0)025 m and uR "0 m/s for a damped system with f"0)01. From Figure 6, it
may be seen that the phase plane diagram plots for both open and fatigue crack are
similar. No recognizable di!erences are observed from the phase plane plots for
&&open'' and &&fatigue'' cracks as suggested in an earlier study [18].



Figure. 6. Phase plane plots for damped vibration with f"0)01: (a) open crack, (b) opening and
closing crack.
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4. CONCLUSION

Our analysis, using a continuous breathing crack model, has shown that the
natural frequency reduction for a fatigue crack (breathing crack) is much smaller
than for an open crack. This means (1) that fatigue cracks would be di$cult to
recognize by frequency monitoring and (2) that crack detection by an open crack
model would underestimate the crack severity if the crack was actually growing
under fatigue loading conditions. Another interesting result is that side peaks
appear in the frequency response functions of a fatigue crack near the resonance
peak.

The above observations suggest that detection of fatigue cracks should be more
reliably based on non-linear features of FRF, rather than the natural frequency
shift. Indeed, pronounced anti-resonance frequency shifts and super/sub-harmonic
vibration phenomena have been observed in experimental study of naturally grown
fatigue cracks [19].
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