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FREE VIBRATION OF A SYSTEM OF TWO ELASTICALLY
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The free vibration problem of a system of two rectangular plates connected by
a non-homogeneous elastic layer is considered. An integral formulation of the
problem by using properties of Green's functions is achieved and by application of
a quadrature method to the integral equation, the frequency equation of the
combined system is obtained. The comparison of an exact solution with the
numerical results obtained by using the presented method for a system of two
identical plates is given. The numerical investigations have shown the e!ect of the
area size as well as the sti!ness of an elastic layer connecting the plates on the
vibration frequencies of the combined systems. ( 1999 Academic Press
1. INTRODUCTION

The analysis of the vibrations of compound systems is of a great importance for
engineering applications. The determination of the in#uence of component sub-
structures on the vibration of the whole compound system has a particular
signi"cance for designers. The prediction of the vibrational behaviour enables the
proper choice of the system's parameters so that the resulting system has the
desired vibrational characteristic.

The subject of the present paper is the free vibration problem of a system of two
plates connected by means of an inhomogeneous elastic layer. The natural frequen-
cies of the considered combined system depend on the vibration frequencies of the
component plates as well as on properties of the connecting layer. Some frequencies
of the plate system may equal the frequencies of a single plate on an elastic
foundation. The free vibrations of rectangular plates on an inhomogeneous founda-
tion have been investigated in references [1, 2].

The Green's function synthesis to a class of layered distributed parameter
systems has been applied in reference [3] to an example of sandwiched Eu-
ler}Bernoulli beams. Reference [4] is devoted to the free vibrations of rectangular
plates connected by a homogeneous elastic layer. The free vibration of a system of
many plates connected by a discrete elastic elements was investigated in reference
[5]. Reference [6] is devoted to the free vibration problem of a system of two line
connected rectangular plates.
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The solution of the free vibration problem of a compound system may be often
obtained only by the use of an approximate method. The analytical solution can be
achieved for example for the vibration system, which consists of beams or rectangu-
lar Levy plates connected by discrete elastic elements. This solution (frequency
equation, mode shapes) may be expressed by Green's functions, which correspond
to substructures of the compound system (e.g. reference [5]). The application
of the Green's functions for the solution of such vibration problems is particularly
pro"table. The Green's functions for beams and Levy plates are well known [7].

The natural frequencies of the combined system depend on the vibration frequen-
cies of the component substructures as well as on a method of their connections.
If the sti!ness of the elastic connections is small then the vibration frequencies
of the compound system are near the frequencies of the substructures. The
increase of the connection sti!ness results in an increase of the eigenfrequencies of
the compound system. Therefore, among the eigenfrequencies of the compound
system there can be distinguished subsequences, which correspond to separate
substructures.

A particular situation appears when the substructures of the compound system
are identical. For instance, in the case of two elastically connected identical beams
are distinguished by two di!erent sets of mode shapes which characterize the
following property [3]: the corresponding points of the beams during the free
vibration of the system, are moving together or in opposite directions. Moreover,
the vibration frequencies of the compound system, which correspond to the modes
when the beams move together, are independent of the connection sti!ness of the
beams. An analogous situation occurs in the case of a system of two identical
elastically, line connected plates [6].

In the present paper, the free #exural vibrations of a system of two rectangular
plates, which are connected by an elastic non-homogeneous layer, are analyzed.
The plates of the system have the same geometrical dimensions and various
physical properties and boundary conditions are considered. The non-homogene-
ous elastic layer is treated as a system of linear unconnected springs which is
de"ned by a sti!ness modulus k(x, y). The application of the Green's functions to
the di!erential eigenproblem corresponding to the considered system leads to
integral equations of the Fredholm type. For numerical calculations of the eigen-
frequencies of the combined system a quadrature method has been applied to the
integral equation.

2. THEORY

Consider a system of two rectangular plates, which are connected by an elastic
layer with the sti!ness modulus k"k(x, y), 0)x)a, 0)y)b. The equations for
small vibrations of the plates, according to the Love}Kirchho! theory, are
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where D
i
, o

i
(i"1, 2) are the #exural rigidity and plate mass per unit area,

respectively, w
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2
are the transverse displacements of the plates and $4 is the

biharmonic operator.
In order to "nd the natural frequencies of the system, u, one assumes that
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Substituting equations (3) into equations (1) and (2) and introducing dimensionless
quantities, one obtains
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The functions=
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and=
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satisfy homogenous boundary conditions, which corres-
pond to attachments of the plate edges (simply supported, clamped or free edges).
The conditions can be written symbolically in the following form:
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For the determination of the vibration frequencies of the compound system,
Green's functions G

i
of the corresponding di!erential problems has been applied.

The functions are solutions of the di!erential equation
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where d ( ) ) denotes the Dirac delta function. These functions with respect to
variables m and g satis"es boundary conditions (6). The Green's functions for Levy
plates are given in reference [7].

Using the Green's functions G
1
and G

2
the di!erential problem (4)}(6) is replaced

by a corresponding integral problem, which consists in "nding the eigenfrequencies
u, for which there exists a non-trivial solution of the system of Fredholm equations
of the second kind:
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Assuming that the functions=
1

and=
2

are not identical in the square 0)m)1,
0)g)1, by subtraction both sides of equations (8) and (9), are obtains one
equation
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By substituting (m, g)"(m
i
, g

i
) for i"1, 2,2, m, successively into equation (12), one

obtains a set of m equations with unknown =I (m
j
, g

j
), j"1, 2,2, m. For a non-

trivial solution of this set of equations the determinant of the coe$cient matrix of
the system of equations must vanish, yielding the frequency equation. The case of
this plate system was the subject of reference [5].

For the Levy-type plates, the functions=
i
and G

i
(i"1, 2), can be written in the

form (the plate is simply supported at the boundary m"0 and m"1)
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If the sti!ness modulus depends on the variable g only: K(m, g)"K(g) for
0)m)1, 0)g)1, then after the use of equations (13) and (14), one obtains from
equation (10) the integral equations in the form
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Consider now the case of the function k(g) in the form
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The case corresponds to the system of line connected plates. Equation (10) can be
written now as follows:
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By substituting g"g
i
for i"1, 2,2,m, successively into equation (17) one obtains

for every n"1, 2,2, a set of m equations with unknown >I
n
(g

j
), j"1, 2,2, m.

Similarly as in the case of point connected plates the non-trivial solution of this set
of equations exist, when the determinant of the coe$cient matrix of the system
vanishes, yielding the frequency equations for n"1, 2,2. The vibration problem
of this system of plates was the subject of reference [6].

In the general case of the function k(g) which occurs in equation (15), the
frequency values are determined by the application of an approximate method. For
this purpose the integral in equation (15) is replaced by a sum which follows from
use of a quadrature rule (for instance of a Newton}Cotes type [8]). In this case,
from equation (15) the following equations arise:
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where A
i
are the weighting coe$cients and h

i
are the knots of the quadrature.

Assuming that g"h
j
in equation (18), successively for j"0, 1,2, m, one obtains

a set of linear homogeneous equations with unknown >i
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). For the non-

trivial solution to exist, the determinant of the coe$cient matrix A must vanish. It
yields the frequency equation

detA"0. (19)

This equation is then solved numerically.

3. A SYSTEM OF TWO SIMPLY SUPPORTED RECTANGULAR PLATES

In the particular case of the system of rectangular simply supported plates, which
are connected by a homogeneous elastic layer, the exact solution of the problem
can be obtained. The functions =

i
and G

i
corresponding to the plates simply

supported at all edges, can be written in the form of double series:
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From the above equations one obtains the frequency equation of the compound
system:
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However, Q`
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'0 and Q~
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(0 for all pairs of m, n. On the basis of equations (28)

it can be said that during the free vibration with the frequency values X`
mn

the plates of the system move in the same direction. Similarly, during the free
vibration with the frequency values X~

mn
the plates of the system move in the

opposite directions.

4. RESULTS AND DISCUSSION

Consider a system of two identical plates (the same boundary conditions and
physical properties) connected by an elastic layer. If =

1
(m, g)"=

2
(m, g) for

0)m)1, 0)g)1, then the right-hand side of equations (4) and (5) are zero, the
eigenvalues of the compound system are equal to the eigenvalues corresponding to
a single plate (the degenerate frequencies of the system [9]). These eigenfrequencies
are independent of the sti!ness of the connecting elastic layer. In the case of
=
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(m, g), subtraction of both sides of equations (4) and (5), gives an

equation, which has the form of the di!erential equation of a single plate on an
elastic Winkler foundation. Therefore, the non-degenerate frequencies of the system
of two identical plates connected by an elastic layer with sti!ness modulus K are the
same as for a single plate on the elastic foundation with sti!ness coe$cient 2K. The
transverse vibration of single rectangular plates on inhomogeneous elastic founda-
tion has been investigated by using the Rayleigh}Ritz method in reference [1] and
by means of the modal constraint method in reference [2].

The present method is tested numerically for a system of two identical, rectangu-
lar plates connected by homogeneous elastic layer with dimensionless sti!ness
coe$cient K"1000. The plates of the system are assumed as simply supported at
all edges (S-S-S-S) or simply supported at two opposite edges and free at the others
(S-F-S-F) with U"0)5. The eigenfrequencies of a system of identical S-S-S-S plates,
on the basis of equation (27), are expressed by X#

mn
"Jk4

mn
#2K and X~

mn
"k2

mn
.

The free vibration frequencies of a rectangular plate on a homogeneous foundation
may be directly obtained from the frequencies corresponding to the plate without
foundation [10]. The frequency equation for the rectangular S-F-S-F plate,
is given in references [10}12]. The comparison of the non-dimensional fre-
quency parameters obtained on the basis of equation (19) with the exact
solution is given below in Table 1. The approximate results obtained for di!erent
numbers of subintervals (m"10; 20) have shown the high agreement with the
exact solution.

The "rst example concerns the compound system of the S-S-S-S and S-F-S-F
square plates connected by an elastic layer which occupy a band of the plates. The
scheme of the system is shown in Figure 1 (line areas of the plates are connected by
the elastic layer, dashed line denotes simply supported edge). The connecting layer
is de"ned by

k(g)"Gk for g
1
)g)1!g

1
,

0 for other g.
(30)



TABLE 1
Comparison of the non-degenerate frequency values of the systems of two identical
plates (U"0)5) connected by a homogeneous elastic layer (K"1000) for the exact

and presented method

S-S-S-S plates S-F-S-F plates

The presented method The presented method

Mode Exact Number of elements Exact Number of elements
(m,n) solution 10 20 solution 10 20

(1,1) 46)3918 46)3857 46)3914 44)7845 44)7821 44)7879
(1,2) 61)3144 61)3094 61)3141 45)2476 45)5693 45)3443
(1,3) 101)6591 101)6557 101)6589 51)9182 52)8384 52)1784
(2,1) 48)8839 48)8781 48)8835 45)7467 45)7800 45)7595
(2,2) 66)5975 66)5929 66)5972 47)5429 47)8590 47)6367
(2,3) 108)3555 108)3523 108)3553 57)8686 58)6469 58)0886
(3,1) 55)0353 55)0302 55)0350 49)7611 49)8260 49)7819
(3,2) 76)1908 76)1869 76)1906 53)4145 53)7154 53)5026
(3,3) 119)7010 119)6982 119)7009 68)3172 68)9369 68)4924

Figure 1. A scheme of the system of S-S-S-S and S-F-S-F plates connected by an elastic layer
occupying the area: 0)m)1, g

1
)g)1!g

1
.
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The calculations are performed for k"100, 500 and 1000. The e!ect of the width of
the elastic layer on the eigenfrequencies of the compound system is presented in
Figure 2. The free vibration frequencies of the system g

1
P0)5 correspond to the

eigenfrequencies of the isolated plates. The sti!ness of the elastic layer as well the
width of the layer e!ect the frequencies of the compound system signi"cantly.

The next example concerns the system consisting of two square, identical S-F-S-
F plates connected by two elastic bands (Figure 3). The changes of the frequency
values of the compound system versus the width of the bands are presented in



Figure 2. Frequency parameter values X
mn
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mn
a2Jo/D as functions of g

1
for the system of two

square plates shown in Figure 1: - - - - K"100, } } } } K"500, ** K"1000.

Figure 3. A scheme of the system of two S-F-S-F plates connected by an elastic layer occupying the
areas: 0)m)1, 0)g)g

1
and 0)m)1, g

1
)g)1!g

1
.
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Figure 4. Because the plates are identical, there exist the frequencies independent of
the sti!ness of elastic layer connecting the plates and width of the elastic bands.
These degenerate frequencies of the system are equal to the frequencies of a single
S-F-S-F plate. The non-degenerate frequencies are equal to the frequencies of
a single S-F-S-F plate on an elastic foundation which is distributed in the same way
as the elastic layer for the plate system.

5. CONCLUSIONS

The solution of the free vibration problem of a system of two rectangular plates
was obtained by applying the Green's function method. In the given examples the



Figure 4. Frequency parameter values X
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for the system of two

square plates shown in Figure 3; - - - - K"100, -} } } } K"500, ** K"1000.
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plates of the system are connected by means of an elastic layer which occupies
designated bands of the component plates. The presented approach may be applied
to the system of plates connected by an arbitrary non-homogeneous elastic layer.

In the case of two identical plates the spectrum of the combined system included
the eigenfrequencies of the isolated plates. The degenerate frequencies do not
depend on the sti!ness of the connecting layer. The plates of the system vibrating
with such frequency move in the same direction. The non-degenerate frequencies of
the system of identical plates are the same as for single plate supported on an elastic
Winkler foundation.

The numerical examples have shown that the sti!ness and the area size of the
elastic layer connecting the plates signi"cantly a!ect the vibration frequencies of
the combined system, as it was expected.
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