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A fundamental problem in the field of structure-borne sound is the
characterization of dynamic sources with respect to vibrational power. Though one
of the proposed approaches based upon the ability of a source to deliver power is
promising, it necessitates estimating the spatial distribution of the forces at the
multiple contacts between the source and receiver structure. Hence, by way of both
an analytical and a statistical study, in this paper methods are investigated through
which the force ratios manifested in a system can be estimated. The analytical study
considers methods of estimating the force ratios absolutely whilst the statistical
study considers their statistical domain. For the analytical study all attempts in
estimating failed under the condition of approximately equal point and transfer
mobilities. With respect to the statistical part of the study, the mobilities and free
velocities in a system are considered as “populations” and grouped functions are
introduced to describe their distributions. Based upon these grouped functions,
simple expressions are derived for the statistical distribution of the force ratios.
A generalized approach is used throughout so that the work is applicable to many
systems.

© 1999 Academic Press

1. INTRODUCTION

In a previous paper by Fulford and Gibbs [1], the characterization of
structure-borne sound sources has been re-examined and a suggestion made that
the approach based upon the work of Mondot and Peterson [2] warrants further
study. The promise of their approach is that the source characterization is
determined with respect to the sources ability to deliver power rather than to the
power delivered. This circumvents the fundamental problem that, due to strong
dynamic structural coupling, the power delivered is dependent upon both the
source and receiver structures. Two functions are introduced; the source descriptor
and the coupling function. The former describes the sources ability to deliver the
power while the latter represents a filter determining how much of this power is
manifested. Together, as a product, the two functions establish the power delivered.
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Although considered promising, the formulation does suffer in that where the
structural coupling involves multiple points [1] (and/or multiple degrees of
freedomT) both the source descriptor and coupling function can be calculated only
if the force distribution amongst the contact point is known: i.e.,

St = (Vi 2V, Of = YUY /IYE + YT, (1,2)

where

Ylnan Z Z er;m Fm/Fn (3)
=1j=1
The “scale” of the problem is illustrated whence the forces in a system are related to
the structural properties and the free velocities,

[F1=[Ys+ Y] '[Visl, )

the dimension of the equation set being M N, where N is the number of contact
points and M the number of degrees of freedom. It can be seen that the number of
mobility and free velocity terms needed to be obtained prior to a calculation of the
forces ensures that the formulation quickly becomes impractical. Moreover, the
forces are seen to depend upon both the source and receiver structural properties so
that any use of equation (4) means the hoped for (receiver) independence of the
source descriptor function is compromised. (A list of symbols is given in the
Appendix A).

A small “glimmer of hope” comes from the formulation upon the realization that
it is not forces themselves which are involved with the source descriptor and
coupling function formulation but the distribution of these forces: i.e., the force
ratios in the system. The hope is then that these distributions are less sensitive to
structural variations than the forces themselves. Thus it is hypothesized that it may
be possible to assume or estimate them in some manner.

In their initial study [1], the authors used simple estimates of force ratios to
calculate the transmitted power in connected beam structures and compared these
results with those of the exact transmitted power. Whilst the results were promising,
a conclusion from the work was that further attention should be given to those
parameters which determine the force ratios; namely the source and receiver
mobilities and the source free velocities, see equation (4). This was undertaken in
a second paper by the authors [3] where it was attempted to establish generalized
relationships amongst the parameters for each of the mass, stiffness, and
resonant-controlled regions which can be expected for a structure. Though the
attempt was only partially successful, adequate results were procured to allow this
follow-on study to be likewise generalized and thus not restricted to specific
“named” systems.

Hence, in this paper, methods of estimating the force ratios in multi-point-
connected source-receiver systems are considered. An analytical study is first
conducted, followed by a statistical study.

TAs used in this paper, the term degrees of freedom refers to directional components, i.e. tanslational
(x, y, z) and rotational (¢, ¢,, ¢.).
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The investigation is limited to the simplified but nonetheless important case in
which only translational forces act and wherein only four contact points exist.
Though it is acknowledged that moment-induced power can be of equal
importance [4], this simplified model was adopted to allow the development of
a methodology. However, the “moment problem” was always “kept in mind”
allowing the developed methodology to take into account such a criterion at a later
stage.

2. ANALYTICAL STUDY

While equation (4) shows that the forces at the contacts between the source and
receiver are dependent upon both structures, it also reveals that for a system with
structures of greatly differing mobility trends the forces will be dominated by the
structure with the largest mobility magnitude. Where the source mobilities are large
compared to those of the receiver, its structure can therefore, with respect to an
approximate calculation of the forces, be ignored. Moreover, such an assumption
can be realistic for building engineering where the machine mobilities are often of
order 10? greater than those of a thick concrete floor (commonly of order
10~ ° m/Ns [5]).

For source characterization such a constant force source’ (CFS) assumption is of
clear interest, since when invoked, the problem of the forces being dependent upon
both the source and receiver is removed. To simplify the study, a CFS is therefore
assumed for the analytical study. The general case where the receiver structure also
influences the force ratios, i.e., the matched situation, is revisited and considered in
the statistical analysis.

2.1. ESTIMATE OF FORCE RATIO BY ITERATION

An exact calculation of the force ratios based upon equation (4) involves
acquisition of all the mobility terms, formation of the mobility matrix and then
inversion of this matrix. As an alternative (because the equation is in essence only
aset of M N linear equations) an approximate solution can be obtained by using the
method of iteration. If convergence is rapid and the forthcoming solution, accurate
with respect to engineering limits, the method has the advantage that it is
computationally more efficient than a complete matrix inversion. Moreover,
a study based upon an iterative scheme is useful because if the initial
approximations to the solution are based upon the diagonal elements of the matrix,
ie., the point mobilities, the influence upon the solution of the off-diagonal
elements, i.e., the transfer mobilities, is revealed. Rapid convergence for example
indicates that the transfer mobilities have a limited influence while
non-convergence indicates strong influence.

"There may be a possible ambiguity for some readers in the use of the term constant force source. In
the paper this simply refers to situations where the receiver mobilities do not influence the force ratios,
i.e. it does not purport to the case where the force distribution is constant for all points.
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Three fictive sources were considered; see Figures 1-3. Source A was mass
controlled with high I,, and low I,, subjected to translational excitation, source
B the same structure but subjected to rotational excitation about the y-axis and
source C was a resonant controlled structure. The characteristic of mass, stiffness
and resonance, determined in the author’s earlier paper, was utilized [3].

Figure 1. Mass-controlled behaviour of a source with high I,, and low I, and translational
excitation.

Figure 2. Mass-controlled behaviour of a source with high I,, and low I, and rotational excitation
about the y-axis.

Figure 3. A source with resonance-controlled behaviour.
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Upon the introduction of fictive sources, a methodology was devised through
which the mobilities and free velocities could be described and the influence of the
off-diagonal mobility terms could be assessed.

Initially, to reduce the number of independent parameters, all of the point
mobilities and all of the free velocities were assigned equal magnitude. Later a range
within which the transfer mobility magnitude could exist was defined and the
individual mobility values assigned at random from within it. For the study, the
range was defined as 10"~ D/19 < | Y| < 10"1° where n = 1, 2, ..., 10. This meant
that for each source, 10 different mobility conditions were considered. As regards
the phase of the parameters, this was determined in accordance with the authors’
earlier paper [3] wherein for source A,

0{Y"2} = 0{Y >} = 0{Y"'} = 0{Y*?} = 0{Y**} = 0{Y**} = —m/2,  (5)
O{Y 2} = 0{Y™} = 0{Y**} = 0{Y**} = m/2, 0{Vys} = 0{V,7}
= 0{V3} = 0{V5} =0, 6.7
for source B,
0{Vig} =0{Vigt =0, 0{V3} =0V} =m, 8.9
whilst for source C,
o{Y™} = 0{Vy;} = random. (10)

In the format of an Argand diagram, the parameter fields are illustrated in
Figures 4-6.

Three iteration techniques were considered of which the Gauss—Jacobi and the
Gauss-Seidel techniques have a mathematical history [6], while the other was
based upon the effective point mobility, where the updated force was obtained via
an updated calculation of the effective mobilities,

F(':'z+1) = Vsnf/st(';tZ), (11)

where it is the iteration number.
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Figure 4. Using an Argand diagram format, the (a) point mobilities, (b) transfer mobilities and (c)
free velocities of a mass-controlled source with high I,, and low I, and translational excitation about
the y-axis.
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Figure 5. Using an Argand diagram format, the free velocities for rotational excitation.
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Figure 6. Using an Argand diagram format, the (a) point mobilities. (b) transfer mobilities and
(c) free velocities of a resonance-controlled source..

In all cases, the initial estimate of the force was the quotient of the free velocity
and source point mobility,

Fr = Vi /ym, (12)

which, in accordance with the ideals of the study, involves only the leading diagonal
of the mobility matrix.

For reasons of brevity, only a selection of the results obtained are shown,

For source B, the normalized estimates of the magnitude of F?/F* resultant from
the effective point mobility iteration scheme is shown in Figure 7. Each line-type
represents a different range from which the magnitude of the transfer mobilities
were selected. It is suggested that only rapid and accurate convergence is apparent
for Y"/Y? ranges of {10°, 10°#} and below. For the other ranges there is either
non-convergence or large discrepancies.

The Gauss-Jacobi method was more promising, where the estimates were found
to converge quickly to the true value for the Y"/Y? ranges of {10°°, 107} and
below. However, for higher ranges the estimate either converged to an incorrect
value or did not converge at all. The Gauss-Seidel method was most favourable
though, in that, the estimates converged to the true value for all Y”/Y?" ranges
except for the extreme case of Y" ~ Y7

Similar results were seen for source A.
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Figure 7. Effective mobility iteration for mass-controlled source with high I,, and low I, and
rotational excitation about the y-axis.
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Figure 8. Convergence of magnitude for Gauss-Jacobi iteration applied to a resonance-controlled
source.

Since for a mass-controlled source, the phase of the mobilities and free velocities
is discretized, it can be deduced that the phase of the force ratios is likewise discrete
and hence its convergence for this source type need not be considered. For
a resonance-controlled source, the phases of the mobilities and free velocities are
however variable whereupon the phases of the force ratios are also random. For
this source type, the convergence of both magnitude and phase is therefore of
interest. Hence, for where the Gauss-Jacobi iteration scheme applied to source C,
the magnitude of F?/F! is as shown in Figure 8 and for application of the
Gauss-Seidel scheme the phase of F2/F! is as shown in Figure 9.
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Figure 9. Convergence of phase for Gauss-Seidel iteration applied to a resonance-controlled
source.

The estimate of the magnitude is seen to converge towards the true for all Y"/Y?
ranges of {107, 10°°} and below. This is very similar to that observed for the
mass-controlled sources; hence it is suggested that the condition for
non-convergence is similar for all three source types.

As regards Figure 9, the phase estimate is seen to be accurate only for Y*/Y¥
ranges of {10°%,10°°°} and below. Clearly, this is in contrast to that seen for sources
A and B where, for the Gauss—Seidel method the estimate was accurate for all cases
except Y" ~ Y

Both the magnitude and phase estimates were accurate for ranges of {104,
103} and below, using both the effective point mobility approach and the
Gauss-Jacobi approach; successful application of these schemes was therefore
similar for all three source types.

2.2. ESTIMATE OF FORCE RATIO BY MATRIX INVERSION

Where the dimension (number of contact points x degrees of freedom) of the
system is small, i.e., less than 6, it is mathematically practical to invert the mobility
matrix of equation (4) and obtain closed-form expressions for the true forces. Upon
doing so for the four contact point system, the expression for F! normalized by the
determinant of the mobility matrix is

L ) 1 Y34Y43 Y23 Y32 Y24Y42
Fnorm = Vssr Yyt - ylly33y44 - ylily22y33 - Yylly22y44

Y23 Y34Y42 Y24Y32 Y43
+ Y11Y22Y33Y44 + Y11Y22Y33Y44>
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+ st - ylly44 + ylly22y44 + ylly33y44 - ylly22y33y44
Y13Y24Y32 Y14Y23Y32
— Vyiiv2zyvisyad T yiiyzayvas 44)' (13)
Y 'Y-CY°UY Y ''Y-CYPY

If the magnitudes of the transfer mobilities are assumed to be small with respect to
those of the point mobilities, then those terms involving one transfer mobility in the
numerator will be greater than those involving two. In turn, these will be greater
than those with three. From this insight, simplified force expressions can therefore
be obtained by truncating equation (13) with respect to the number of transfer
mobilities in the numerator: i.e., (i) ignoring those terms which have a numerator
involving a product of one or more transfer mobilities; (ii) ignoring those terms
which have a numerator which involves a product of two or more mobilities;
(iii) ignoring only those terms which have a numerator that involves a product of
three.

For source B and with respect to an estimate of F?/F!, application of these three
estimates produces Figure 10. When Y™ ~ Y?* discrepancies can be expected (and

10
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Figure 10. Truncation estimates for mass-controlled source with high I,, and low I, and rota-
tional excitation about the y-axis. ——, Estimate (i); - —, estimate (ii); - - - - , estimate (iii).
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indeed are seen) but discrepancies are also apparent for other mobility ranges. The
most complete expression for example introduces an error of about 10°°> for the
range of {10°°°,10°7}. Similar results were also seen for source A.

Application of the three estimates to source C produces Figure 11 for the
magnitude and Figure 12 for the phase. As regards both components, the
discrepancies introduced are greater than those seen for the mass-controlled
sources.

2.2.1. Discussion

For both iterative and matrix inversion schemes applied to the estimation of the
force ratios, discrepancies are seen, cf. the exact solution. Moreover, for all cases,
the discrepancies were particularly large, where the point and transfer mobilities
are of approximately equal magnitude. This is important, since for both mass- and
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Figure 11. Truncation estimates for the magnitude of a resonance-controlled source. ——,
Estimate (i); — -, estimate (ii); - - - - , estimate (iii).
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Figure 12. Truncation estimates for the phase of a resonance-controlled source. ——, Estimate (i);

- —, estimate (ii); - - - -, estimate (iii).
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resonant-controlled sources it is known that such mobility conditions are
physically possible [3]. Unfortunately, it can be deduced therefore that for these
source types none of the schemes considered will, in the practical situation, produce
reliable estimates.

As regards a stiffness controlled source, though the phase of all the mobilities is
7/2, the phase of the free velocities can assume a random value [3]. Via equation
(13) the forces will therefore be complex, thus, it can be deduced that the results for
the resonance-controlled source are also applicable for this source type. With
a flange-like base, the magnitude of the transfer mobilities can be a decade below
that of the point mobilities [3] to permit the suggestion that all three iterative
methods would successfully estimate the force ratios after only 3 or 4 iterations.
Moreover, with respect to the matrix inversion approach, even the simplest
estimate would be likewise reliable. With a plate-like base, it is however known that
the point and transfer mobilities can, as for a resonance-controlled source,
approximate each other [3]. For these, both the iterative and matrix inversion
schemes can therefore again be expected to be unreliable.

Physically, the success of the estimates for a stiffness-controlled source with
a flange-like base is due to the points being uncoupled. For both mass- and
resonance-controlled sources where this is not always so, the study reveals the force
ratios to be sensitive to the transfer mobilities. This is important, for it suggests that
to obtain the force ratios via a full inversion of the mobility matrix not only requires
all the transfer mobilities but also accuracy of all these data. If the number of
contact points and degrees of freedom is large and/or the frequency range of
interest extended, the practical difficulties of obtaining such data are clear: i.c.,
consider the amount of spectra needed and the inherent problems of obtaining, via
either measurement or prediction, accurately [8]. Further, it is also remembered
that the above study only considers the constant force source case. Clearly, in the
matched case where the force ratios are influenced by both source and receiver
structures, the problems are compounded. This is especially significant with respect
to maintaining the independence of the source descriptor.

Hence, it is inferred from the analytical study that the development of
a methodology to estimate exactly the force ratios in a system is unlikely to ever be
“fruitful”. It is suggested therefore that a statistical approach towards estimating
the force ratios be considered instead.

3. STATISTICAL STUDY

Invoking a statistical approach will inevitably incur a subsequent loss in the
accuracy of the force ratio estimates and in any functions subsequently calculated
from them: ie., in the effective point mobilities, source descriptors, coupling
functions and power. Whilst this is clearly unfortunate it can be somewhat
alleviated if the statistical distribution of the functions are determined and
confidence limits introduced. Provided that the range of, i.e. the 90% confidence
limit, is small, the solution can be considered accurate to this small extent and
henceforth of use. Before embarking upon the study it is important to note though
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that, due to its cyclic nature, it is difficult to introduce confidence limits for the
phase of the force ratios. This misfortune is very significant for without accurate
phase information, a prediction of the possible maximum or minimum power
transmitted cannot be made [2]: i.e., the relevance of the phase information with
respect to the coupling function; see equation (2). With this in mind, an outcome of
the study would therefore be to acknowledge the possibility of such extreme values
but to find that they are statistically unlikely.

3.1. STATISTICAL DESCRIPTION OF SOURCE-RECEIVER SYSTEMS

Because the force ratios are influenced by a large number of parameters, i.c., all of
the mobilities and all of the free velocities, a complete parametric study of their
statistical properties is difficult. Hence, in order to “open the door” to an analysis,
a simplified method for describing a system is proposed in which the number of
independent parameters involved in greatly reduced.

The basis of the simplified description is to introduce the concept of grouped
mobility functions. To realize these, the structural field, as described by a mobility
matrix at a discrete frequency, is first considered as an Argand diagram; see Figure
13. Second, the mobility vectors are defined with respect to their individual
magnitude and phase components and these then collated to form two populations;
see Figure 14. Finally, the two populations are designated statistical distributions;
see Figure 15. Together, these form the grouped mobility function.

Upon defining in a similar manner a grouped free velocity function, the
considered multipoint-connected source-receiver system is then completely
described by using only (i) the grouped source mobility function, (ii) the grouped
receiver mobility function and (iii) the grouped free velocity function.

If the form of these distributions is known (or assumed) a description of the
system is then achieved by using only six independent parameters, three defining
a normalized value, i.c., the mean if the distribution is normal, and three defining
the “spread”, i.e., the standard deviation if the distribution is normal. Moreover,
with regard to a specific study of the force ratios, these six independent parameters

Im Yll

Re

A,_\ -

Figure 13. A mobility matrix represented using an Argand diagram format.
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[y

Figure 14. The mobility matrix represented as a population of (a) magnitudes and (b) phases.

Poflyl
Pof0{Y}

Figure 15. The populations of (a) the magnitudes and (b) the phases represented as statistical
distributions.

can be further reduced to only four. To do so, a common denominator is
introduced into equation (13) such that the normalized force can, essentially, be
considered as a summation

1

n
Fnorm -

24
Y T FL (14)

Y common (=1
where all the terms involved have the form
Er = VA(YE + YI(YE + Y (Y™ + Y (15)
(all of h, i, j, k, I, m, n denote position) and the common denominator is
Yeommon = (V' + Y)Y + Y22V + Y29V + Y. (16)

Upon taking the ratio of two forces the common denominator term cancels so that

24 24
F"[F" = Froom/Frorm < ). FL"/Z Fi. (17)
u=1 t=1

By concentrating then only on equation (15), this can be rewritten as
Fi = (ELVF] + eV ELYT] + e{ Y} + E[Y7T + e{Y/)
X(E[YS] + e{Y¥} + E[YZ] + e{YE.})
X E[YJ] +e{Y{U} + E[Y7] + e{Y711)), (18)
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so that if e{V/s} is divided by E[V,] and the mobility terms are all divided by
E[Y¢] a normalized version can be produced:

e{Vs_}}} e{Yéj} E[YS] e{Yrij}
E[V&])(l TErve TEfYa T E[Yﬁ])

e{Y¥} ELYS] YN\  e(vi"} E[YS] e{¥™
X<1+E[YSG] E[YSG]+E[YSG]><1+E[YSG]+E[YSG] E[Yf])' 9

Ft’jnorm = (1 +

The number of independent parameters in use is thus seen to be only four: (i) e { Vs
normalized by E[V$]; (i) e{Y¥} normalized by E[Y¢], (ii) the ratio
E[YZ/ELYST; (iv) e{ Y7} normalized by E[Y]. Finally, to separate the source
and receiver mobility conditions as much as possible the receiver mobility
distribution can be renormalized by E[Y?] so that

YY) elv¥) [E[YE]
E[YS] E[Yﬁ]/ E[YO] (20)

Prior to continuing the present study, it can be noted that the grouped function
approach is not restricted to only one directional component and the “moment
problem” can be incorporated. Were rotational motion also included in the model
for example, then a further grouped “moment” mobility function could be
introduced to take into account such a coupling. An associated grouped
“rotational” free velocity function then, clearly, also is needed. A feature of
introducing other directional components would then be to increase the number of
independent parameters in the model. It is hoped that the relevance of this would be
studied and supported in a forthcoming paper.

3.2. STATISTICAL DISTRIBUTIONS OF THE GROUPED MOBILITY FUNCTIONS

Beginning with the mobility phase, the distributions which define the grouped
functions are now considered. The distributions are determined with respect to
each of a structure characteristic mass, stiffness, resonant-controlled and infinite
regions for which results from the authors’ earlier paper [3] has been utilized.

Though it has already been shown that for a stiffness controlled, constant force
source with a flange-like base the forces can (due to the contact points being
uncoupled) be obtained via an analytical approach, this system type is included in
the study in order to establish the statistical likelihood of such uncoupling (with
flange number). Moreover, it is also retained so that it can be studied within the
situation of mobility matched source and receivers.

Depending upon inertial properties, the phases of the mobilities of a
mass-controlled source are discretized at either + 7m/2. Also deterministic is the
phase of the mobilities of a stiffness-controlled source which for both point and
transfer mobilities is /2. Hence, in both cases, the distribution of the mobility
phase does not have to be considered. For a resonance-controlled source the
mobility phase can however assume any value between + m and within the
grouped mobility concept has to be therefore be defined. For want of further
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studies, a uniform distribution is, as assumed in Statistical Energy Analysis [8],
suggested.

For an insight into the distribution of the mobility magnitude, the general modal
expansion formulation for the mobility of a distributed structure is considered,

0 & Yalxo)¥a(x)

Y =__ 21
(X, XO) m ngl wr% - CUZ - i(l),,CLW] ( )
where the ratio Y¥/Y* is obtained as
N
Y9/YR =% Y(x)/a(xo), 22)

n=1

to reveal that in a resonance region the distribution of the mobility magnitude can
be obtained only if all the eigenfunctions are known. This provides a dilemma since,
on the one hand, these cannot be determined without an exact definition of the
structure while, on the other, a purpose of the grouped mobility concept is to avoid
having an exact definition of the structure.

To help circumvent the dilemma, an assumption is introduced whereby the
eigenfunctions of a “general” structure in a resonance controlled region are “said to
be” sinusoidal with unit magnitude and random phase. By invoking this and,
assuming too' that the modal summation can be truncated at N = 5, permits
creation of “general” point and transfer mobilities. From a population of such
mobilities a “general” distribution of the magnitude can then be obtained. The
process is illustrated in Figure 16.

For a total population of 1000, the cumulative probability distribution function
PDF [10] of log 10(] Y™"/Y™|) is shown Figure 17. (A total of 1000 only was chosen
so as to generate a statistically “reliable” population.) Also shown in the
corresponding function for an “exact” log 10 normal distribution as calculated by
using the mean and standard deviation of the population. Thus, because of the
closeness of the two results, it is suggested that the grouped mobilities of
a resonance-controlled source have a log 10 normal* magnitude distribution.

For a mass-controlled source, the mobility ratio is given by

YO (K + yoy(h/kE) — xox) o
YH B (k)%y + y% (kgy/k?cx) - X%) ’
and this is seen to be dependent upon the positions of the contact points, the ratio
of the two radii of gyration along with the value of one of the radii of gyration (k, in
this case although if the expression had been normalized by using kj,, then
k%, would be the dependent parameter). Likewise for a resonance-controlled source

fFrom SEA it is known that if the number of modes included in the sum is at least 5 then the phase
of the mobility can be considered random with a uniform distribution. With five modes, the
distribution of the phase is therefore in agreement with that assumed for the mobility phase in
a resonant region.

It can be noted that in traditional statistics a lognormal distribution is given to base e [10].
Because in this study the mobility data is transformed using log 10 the term log 10normal is used. The
only difference between the two definitions is in the value of the standard deviation.
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Figure 16. Generating the statistical distribution of a ‘general’ grouped mobility function for
a resonance-controlled source.
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Figure 17. PDF for resonance-controlled source.
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the inherent dilemma is therefore that without an exact definition of the system the
mobility distribution cannot be determined but that such information is converse
to the grouped mobility concept. Again, therefore, an assumption has to be made.

As a “stab in the dark”, and therefore without recourse to a further study, it is
simply suggested that for a mass-controlled source the magnitude of the grouped
mobilities has, and likewise the resonance-controlled source, a log 10 normal
distribution. For a symmetric, as opposed to a non-symmetric mass-controlled
source, a distinction can be made where the mobilities are paired in accordance
with the machine’s symmetrical properties. This is illustrated in Figures 18
and 19.

Upon consideration of a stiffness-controlled source, it is realized that Y™"/Y™ is
dependent upon the mount size, the type of mounting (plate- or flange-like), the
position of the contact points and the boundary conditions of the mounts [3]. The
dilemma encountered with the resonance and mass-controlled sources is therefore
apparent and hence it is necessary to introduce an assumed distribution for the
grouped mobility magnitude. Again without reference to a further study, but to
keep the descriptions consistent, it is suggested that when the base is plate-like,
a log 10 normal distribution be adopted, and likewise for a mass-controlled source,
although a distinction can be made between symmetric and non-symmetric
structures.

For a flange-like base, the important phenomena, owing to which the magnitude
of the transfer mobility is an order of magnitude less than that of the point mobility,

1.Select ¥, ¥ ¥" " from

Figure 18. Obtaining from the grouped mobility function, the mobility matrix for a mass-
controlled source with symmetric geometry.
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1. Select all mobilities from

Figure 19. Obtaining from the grouped mobility function, the mobility matrix for a mass-
controlled source with non-symmetric geometry.

can be incorporated into the grouped mobility concept by assuming a log 10normal
distribution only for the point mobilities and with the introduction of

ym — L;’Y)/lo. (24)

Similarly, for a strong discontinuity for which the tranfer mobility is negligible
Yym™=0 (25)

can be introduced. These ideas are illustrated in Figure 20.

With respect to the receiver, similar properties are suggested for its grouped
mobility distributions. Hence, for a stiffness-controlled receiver the phase is
considered deterministic at n/2 and the magnitude assumed to form a log 10
normal distribution. Likewise, for a resonance-controlled receiver a log 10 normal
distribution is assumed for the magnitude of the mobilities and a uniform
distribution for the phase.

In addition to these two cases, an infinite region can also exist for the receiver
where, if all contact points are separated by distances greater than one-eighth of
a wavelength, the magnitude of Y™ /Y™ is (increasingly) distance-dependent and
therefore undeterministic. To be consistent with the rest of the study, the
distribution is also suggested to be log 10 normal in this situation. Regarding the
phase, while in the infinite region this is deterministic at /2 for the point mobilities,
it is undeterministic for the transfer mobilities, where a uniform distribution is
suggested. As for both the mass- and stiffness-controlled sources, the semi-
deterministic nature of the region means the mobilities can, if symmetric geometry
is assumed, be paired.

Thus upon assuming a log 10 normal distribution for the magnitude of the
grouped mobility function, typical values for the standard deviation need to
be considered. So to coerce the study, physically realistic values need to be
imposed.
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1. Select Y”, Y and ¥ *from

2. Y11= Y22
Y33= Y44
Y2 =(r"+Y")12)/10
P = = (" +r™y2)10
=0
Y13= Y24

Figure 20. obtaining from the grouped mobility function, the mobility matrix for a 3-flange stiffness
controlled source with non-symmetric geometry.

To obtain a practical lower limit, it is recognized that the condition can exist
where all the mobility magnitudes are equal, or are very nearly so. This can occur,
for example, at the fundamental resonance of a plate-like structure. In this
situation, the standard deviation of the mobilities is clearly small and can, approach
zero, and this was therefore imposed as a lower limit.

For an insight towards obtaining a practical value for the upper limit
anormalized standard deviation was extracted from a number of experimental case
studies by using the ratio,

¢y = log 10(max{Y“}/min{Y}), (26)

and assuming this to represent four standard deviations. A typical result based
upon the mobility data of an industrial fan unit [3] is shown in Figure 21. In all
cases studied ¢y was never found to exceed 4 (ie., Y™*/Y™" < 10%), so an
upper limit of log 10(10!) = 1 was adopted. To rationalize the study, the same
limits were assumed regardless of the structural controlling mechanism (mass,
stiffness, etc.)’.

TRefinement of the conditions can be considered as part of a further study, i.e., the mobilities for
a finite plate are more likely to have a high standard deviation than for an infinite plate where mobility
differences occur only because of divergence.
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Figure 21. Y™*/Y™" for typical fan unit.

Finally, to complete the statistical description of the mobilities, the ratio of
log 10(E[YE]/E[YE]) had to be considered. Based upon an assumption that the
magnitude of the receiver mobility never exceeds that of the source, an upper limit
of log 10(1) = 0 was introduced. A lower limit was determined based upon the
assertion that for the study to be thorough it should be such that the constant force
situation is attained. This, it was suggested, can be ensured by using a lower limit of
107 >:i.e., as log 10(107°) = — 5, the mean of the receiver mobilities is 100 dB less
than that of the source mobilities.

The source conditions are summarized in Table 1 and the receiver conditions in
Table 2.

3.3. STATISTICAL DISTRIBUTION OF THE FREE VELOCITIES

To complete the description of the system the grouped free velocity function is
needed. A clear difficulty here is that the free velocities depend upon the many
different excitation mechanisms of the source. Where, for a general insight, nothing
about this is defined, it is difficult to conceive of a study through which anything at
all about them can be determined. Even, for example, a general formulation
comparable to the modal expansion utilized for the mobilities, i.e., equation (21),
cannot be suggested. Upon consideration of this misfortune, but with
determination to forward the study, it is therefore, most simply suggested that the
magnitude of the grouped free velocity function be considered to have, for the
grouped mobility function, a log 10 normal distribution for all source types. As
regards the phase, this can be considered as being discretized at either 0 or n for
a mass-controlled source or, to have a uniform distribution for both a resonance-
and stiffness-controlled source.

Suitable practical values for the standard deviation of the magnitude distribution
were, likewise for the mobilities, obtained from measured data. From an industrial
fan unit, Figure 22 is a typical result for ¢,-. For all cases studied, ¢, was found to be
between 10° and 10* where a range of 0-1 was again adopted.

The free velocity conditions are summarized in Table 3.
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Set-up conditions for source mobility
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TABLE 2

Set-up conditions for receiver mobility

Receiver mobility

Stiffness controlled plate Resonance-controlled

Infinite plate region

Description ~ Symmetric ~ Non-symmetric  Finite plate Non-symmetric Symmetric

Magnitude As As As
) @ @
Phase 0{Y™ =n/2 0{Y ) = 0{Ym =0
random 0{Y"} = random
10000 3
1000 £
'i L
g\ 100 E_
B~
10
1 L L MR | L L MR | L —
10 100 1000 10000
Frequency (Hz)

Figure 22. V™*/™n for typical fan unit.

3.4. DISTRIBUTION OF THE FORCE RATIOS

A methodology through which the suggested grouped functions can be used to
study the statistical distribution of the force ratios is now considered. While
conceptually this could be based upon mathematical “meanderings” around the
expression for the force ratios, it is suggested that this would be rather difficult and
the development obtuse. The expression for the force ratios does after all involve
the ratio of two summations,

Fr/F" = 224 Fy / 224 F, 27)

u=1 =1

where each term in the summations has the form

R} = (Ve DAY + (YEHAYSS + YRy +{yee),  (28)



STRUCTURE-BORNE SOUND POWER, 3 261
TaBLE 3

Set-up conditions for free velocity

FREE VELOCITY

Mass controlled

Vertical Stiffness Resonance
Description motion X-axis rotation Y-axis rotation  controlled controlled
Magnitude {(Vif, Vit Vi3, Vif} = log 10normal PDF
Phase 0{VY} =0 0{V}} =0 0{V,i} =0 0{V,}} = random

0V =0 (V=0
0V =n OV =nr
0V =n 0V =n

such that, to the authors, it is not obvious along what path a mathematical study
would follow. Therefore, a methodology based upon a Monte Carlo sampling
method [12] was developed.

Firstly, magnitudes and phases for mobilities and free velocities were randomly
selected from the appropriate grouped functions. These were then used to form
a fictive system for which, by using equation (4), the force ratios were calculated.
The procedure was repeated N times to form a population of force ratios and, of
this, the statistical distribution was assessed. The methodology is illustrated in
Figure 23 for the case of a resonance-controlled source attached to a resonance-
controlled receiver.

For a sample population of 1000, the PDF of |(F?/F')| is shown in Figure 24 for
a “typical” resonance-controlled source described by using a grouped mobility
function with a magnitude standard deviation of 10°“ and a grouped free velocity
function with a magnitude standard deviation of 102, For the same magnitude
conditions but, as appropriate, different phase relationships, the PDF of |(F?/F?)|
for a non-symmetric mass-controlled source is also shown (see Figure 25). An
equivalent log 10 normal PDF as calculated by using the mean and standard
deviation of the populations supplements both figures. Comparing the true and
equivalent PDFs reveals close agreement. (This, it is suggested, is a consequence of
the central limit theorem [10].) That such unison was also seen for other source
conditions establishes that the distribution of the force ratio magnitude can be
assumed log 10 normal. With such an assumption, the resultant PDF of a force
ratio can then be defined upon knowing only the mean and the standard deviation.

As regards the phase of the force ratios, it can be deduced that for those source
conditions where either the phase of the grouped free velocity function or of the
grouped mobility function is random, it also will be random. Regardless of the
source-receiver mobility matching condition and of the receiver controlling
mechanism, this will therefore, because of the nature of the grouped free velocity
function at least, be so when the source is either stiffness or resonance controlled.
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Figure 24. PDF of F?/F! for resonance-controlled source.
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Figure 25. PDF of F?/F! for mass-controlled source, high I, low I,,, rotational excitation about
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For a mass-controlled source, a random condition will be apparent only when it is
attached to a resonance-controlled receiver and when both structures’ are mobility
matched. For all other cases involving a mass-controlled source the force ratios will
have a phase which is discretized at either O or + = but which of these cannot be
assessed. This is so since the forces as given by equation (4) have the form

24
F::orm = Z i Re{ I/s;}, t} Im { Y;{t} Im { Y?,lt} Im { Y;',"tt 5 (29)
t=1

which is essentially a summation of + terms of random magnitude. In the study,
therefore, one can consider only the magnitude of the force ratio distribution.

3.5. FORCE RATIO MAGNITUDE DISTRIBUTION FOR A CONSTANT FORCE SOURCE

Whilst for a mass-controlled source four different grouped mobility functions
and three different grouped free velocity functions have been defined there is, with
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regards to the resultant system description, some redundancy. A source with high
I..,low I, rotated around the x-axis for example is equivalent to a source with low
I, high I,, rotated around the y-axis. When all such redundancies are omitted,
six distinct mass-controlled CFS systems remain. In relation to a stiffness or
resonance-controlled source, the number of distinct conditions is, by nature of their
having only one free velocity condition, simply the number of different grouped
mobility functions proposed: i.e., eight for a stiffness-controlled source and one for
a resonance-controlled source.

Upon implementation of the methodology, the size of the sampled population
was, due to the number of different situations considered and the limiting speed of
the CPU, limited to 2000. Also due to time constraints, the standard deviation of
the grouped functions were considered only in increments of 0-2.

A selection representative of the forthcoming results are presented.

3.5.1. Mass-controlled source

For a source that is symmetric and mass controlled with high I,,, low I, and
undergoing translational excitation (see Figure 1), the resultant standard deviation
(upper family of curves) and mean (lower family of curves) of log 10 |(F?/F')| and
|(F4/F')| are shown in Figure 26. The x-axis is the standard deviation of the
normalized source mobilities and each line type on the figure represents a different
a{VS}. For the same source type but with non-symmetric geometry imposed
(likewise Figure 19) the corresponding results are shown in Figure 27.

For both cases it is suggested that the mean of the force ratios is independent of
(or insensitive to) both ¢{V;$} and ¢{Y?¢} and simply tends to 10° = 1. As regards
the standard deviation, the suggestion is however that for a symmetric source it has
a dependency upon both ¢ {V;¢} and ¢{Y &} while for a non-symmetric source the
dependency is only upon ¢ {Y¢}. Although for the symmetric case it is difficult to
determine the inter-relationship between the variables, for the non-symmetric case
a linear relationship can be proposed. Moreover, for this case a unison between
[(F?/F')| and |(F*/F")|" is suggested such that the same relationship applies to both.

Hence, by using the method of least squares [10] a resulting empirical equation
for o {(F"/F")} for a non-symmetric mass-controlled source with high I,, and low
I... undergoing translational excitation can be suggested,

G{(F"/F"} ~ 0:5x a{YE} + 05, (30)

where each standard deviation characterizes a log 10 normal distribution.

For ¢{Y¢} = 0-2, equation (30) gives ¢ {(F™/F")} = 0-6 whilst for ¢ {YZ} =1, it
gives o {(F"/F")} = 1. These are larger than the comparable values for the
symmetric case so that it can be said that the uncertainty of (F™/F") increases for
non-symmetrical, cf. symmetrical geometry. This can be expected since the number
of independent mobilities for the non-symmetrical case is 10 compared to just 4 for
the symmetric case.

TThroughout the remainder of the paper the magnitude bars are ignored and the notation (F™/F")
used to done the magnitude of a general force ratio for which no specific points are named.
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Figure 26. Force ratio statistics for symmetric mass-controlled source, high I,,, low I,
translational excitation. The x-axis represents the standard deviation of the grouped source mobilities.
Their distribution is assumed to be log 10normal. The y-axis represents the distribution of the force
ratios whereby the lower family of curves is the mean and the upper family of curves is the standard
deviation. Again the distribution is assumed log 10normal. Each line on the figures is a different
standard deviation of a free velocity log 10normal distribution: -0- ¢ {V§} = 10, -O-, ¢ {V,§} = 0'8;
-A-, o {V§} =06, -x-, a{V§} =04; -O-, a{V.} =02.
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Figure 27. Force ratio statistics for non-symmetric mass-controlled source, high I,,, low I,,,
translational excitation. The x-axis represents the standard deviation of the grouped source mobilities.
Their distribution is assumed to be log 10normal. The y-axis represents the distribution of the force
ratios whereby the lower family of curves is the mean and the upper family of curves is the standard
deviation. Again the distribution is assumed log 10normal. Each line on the figures is a different
standard deviation of a free velocity log 10normal distribution: -0- 6 {V.} = 10, -0, o {V.§} = 08;
-A-, 6 (VG =06, - x -, a{V§} =04; -O-, a{V,§} = 02.

For the same source but with rotational excitation about the y-axis, i.e., rotation
about a low inertia axis (see Figure 2), ¢ {(F?/F')} is shown in Figure 28 for an
imposed symmetric geometry. Upon comparison with the case of translational
excitation (Figure 26) the statistics are suggested to be similar. Such unison was also
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Figure 28. Force ratio statistics for symmetric mass-controlled source, high I, low I, rotational
excitation about the y-axis. The x-axis represents the standard deviation of the grouped source
mobilities. Their distribution is assumed to be log 10normal. The y-axis represents the distribution of
the force ratios whereby the lower family of curves is the mean and the upper family of curves is the
standard deviation. Again the distribution is assumed log 10normal. Each line on the figures is
a different standard deviation of a free velocity log 10normal distribution: ~0- ¢ {V$} = 1-0; -O-,
a{VG} =08, -A-, a{V§} =06 -x—, a{V.§} =04; -O-, a{V.§} =0-2.

seen for the other force ratios and also when a non-symmetric condition was
imposed. Moreover, with rotational excitation about the x-axis, i.e., rotation about
a high inertia axis, the resultant force ratio statistics were also found to be similar.
This means that with respect to the force ratio statistics, the distinct CFS systems
are not distinguishable and equation (30) applies for all systems with
a non-symmetric condition.

3.5.2. Stiffness-controlled source

For a stiffness-controlled source with a plate-like base (see Figure 29), the mean
and standard deviation of (F?/F') are shown for symmetrical geometry in Figure 30
and for non-symmetrical geometry in Figure 31. Likewise for the mass-controlled
source the standard deviation is dependent upon both ¢{V.$} and ¢{Y¢} for
symmetric geometry but only upon ¢{Y¢} for non-symmetric geometry. Also
likewise the mass-controlled source, the mean is independent of both ¢{V,}} and
o{Y¢} and tends to unity. Similar results were seen for the other force ratios.

Fitting a linear regression line to the standard deviation of the non-symmetrical
geometry gives the relationship between ¢ {(F™/F")} and ¢ {Y¢} as

G {(F"/F")} ~ 07 x ¢ { Y} + 03, (31)

where, compared to the non-symmetric mass-controlled source, a slight decrease in
the uncertainty of ¢ {(F"/F")} for low values of ¢{Y¢} is revealed.

The statistics of (F?/F') resultant for a stiffness-controlled source with
a 2-flange-like base (see Figure 32) are shown in Figure 33 for an imposed
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Figure 30. Force ratio statistics for symmetric stiffness-controlled source with a plate-like base. The
x-axis represents the standard deviation of the grouped source mobilities. Their distribution is
assumed to be log 10normal. The y-axis represents the distribution of the force ratios whereby the
lower family of curves is the mean and the upper family of curves is the standard deviation. Again the
distribution is assumed log 10normal. Each line on the figures is a different standard deviation of
a free velocity log 10normal distribution: —O- ¢ {V,¢} = 1:0; -O-, o {V.§} = 08; -A-, ¢{V.§} = 0-6;
-x-, a{V§} =04, -O-, a{V.§} =02.

symmetric geometry and in Figure 34 for non-symmetric geometry. Once again it is
suggested that as regards the standard deviation this depends only upon ¢ { Y} for
non-symmetric geometry but upon both o{V$} and ¢{Y¢} for symmetric
geometry. As regards the mean, this is, also as before, simply unity for all
conditions. While the results for both ¢ {(F?/F')} and ¢{(F*/F')} were found to
differ from those of ¢{(F?/F')} this can be considered unimportant since their
influence is between points where a strong discontinuity has been assumed, i.e.,
both Y!* and Y'* have been defined as 0.
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Figure 31. Force ratio statistics for non-symmetric stiffness-controlled source with a plate-like
base. The x-axis represents the standard deviation of the grouped source mobilities. Their distribution
is assumed to be log 10normal. The y-axis represents the distribution of the force ratios whereby the
lower family of curves is the mean and the upper family of curves is the standard deviation. Again the
distribution is assumed log 10normal. Each line on the figures is a different standard deviation of
a free velocity log 10normal distribution: —~0- ¢ {V,§} = 10; -O-, 6 {V;$} = 08; -A-, a{V§} = 0-6;
-x-, a{V§} =04; -O-, a {V§} = 02.

Figure 32. A source with a 2-flange base with stiffness-controlled behaviour.

Similar results were seen for both 3-flange and 4-flange models, so that for
non-symmetric geometry, it is suggested that regardless of the total number of

flanges involved the standard deviation of the force ratio resultant across a flange is
realized by equation (31).
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Figure 33. Force ratio statistics for symmetric stiffness-controlled source with 2-flanges. The x-axis
represents the standard deviation of the grouped source mobilities. Their distribution is assumed to be
log 10normal. The y-axis represents the distribution of the force ratios whereby the lower family of
curves is the mean and the upper family of curves is the standard deviation. Again the distribution is
assumed log 10normal. Each line on the figures is a different standard deviation of a free velocity
log 10normal distribution: -O- ¢{V§} =1-0; -O-, o{V§} =08 -A-, o{VF} =06 -x-,
a{V§} = 04; -O-, a{V,§} = 02.
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Figure 34. Force ratio statistics for non-symmetric stiffness-controlled source with 2-flanges. The
x-axis represents the standard deviation of the grouped source mobilities. Their distribution is
assumed to be log 10normal. The y-axis represents the distribution of the force ratios whereby the
lower family of curves is the mean and the upper family of curves is the standard deviation. Again the
distribution is assumed log 10normal. Each line on the figures is a different standard deviation of
a free velocity log 10normal distribution: ->- ¢ {V,§} = 10; -0O-, o {V,§} = 0-8; -A-, ¢ {V.§} = 0°6;
-x-, a{V§} =04; -O-, a{V,§} = 02.
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3.5.3. Resonance-controlled source

For a resonance-controlled source (see Figure 3) the statistics of (F2/F!) are
shown in Figure 35. The result is common to that seen for a non-symmetric
stiffness-controlled source where o {(F™/F")} is dependent only upon ¢{Y¢} and the
mean is consistently unity. Moreover, upon fitting a linear regression to the
standard deviation, equation (31) is also again the result.

3.5.4. Discussion

In Table 4, the force ratio statistics for each of the mass, stiffness and
resonance-controlled constant force sources are summarized.

1-4

—
3%
T

log10 (FYF")

log10 (a{Y,})

Figure 35. Force ratio statistics for resonance-controlled source. The x-axis represents the standard
deviation of the grouped source mobilities. Their distribution is assumed to be log 10normal. The
y-axis represents the distribution of the force ratios whereby the lower family of curves is the mean and
the upper family of curves is the standard deviation. Again the distribution is assumed log 10normal.
Each line on the figures is a different standard deviation of a free velocity log 10normal distribution:
-O- 6 {V G} = 10; -0, 6{V.§} =08 -A-, o {V.§} =06, -x -, ¢ {V§} =04; -O-, a{V§} = 0-2.

TABLE 4

Force ratio statistics for non-symmetrical CFS

Source condition

Mass controlled Stiffness controlled
Non-symmetric Non-symmetric
High I, Low I, 2- 3- 4- Plate  Resonance-
Description Low I,, HighlI,, flange flange flange controlled
Standard deviation c{F"/F"} ~ a{F"/F"} ~ 07 xa{YS} + 03
of log 10normal 0-5xa{Y& +05

distribution
Mean 0
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An interesting feature is that for all cases where the source is non-symmetric the
force ratio statistics are independent of the free velocity statistics. This is exciting,
for if it translates to the situation of mobility matched source and receivers, the
number of parameters determining the force ratio statistics in the general case is
reduced from four to only three.

In view of equation (4) the difference between the formulation for the matched
situation and for the CFS is the inclusion of the Y, terms. Clearly though, providing
both the receiver and source mobilities have a non-symmetric condition, the
statistical “condition” of (Y, + Y,) is as for (Y,) inasmuch as the magnitude has
a log 10 normal distribution while the phase has either a discretized or
random-phase distribution (dependent upon the source and receiver conditions
and which is dominant). It can be deduced therefore that for a source of
non-symmetric geometry connected to a receiver of non-symmetric geometry,
a{(F"/F")} is also independent of ¢{V\5} regardless of the mobility matching
condition.

Hence, to reduce the volume of work, this result was introduced into the study of
the force ratios for mobility matched source and receivers. Because of imperfections
in design and manufacture it is suggested that such non-symmetric geometry is
often found in practical situations and therefore this is not necessarily too
restrictive.

3.6. FORCE RATIO MAGNITUDE DISTRIBUTION FOR MOBILITY MATCHED SOURCE
AND RECEIVER

Each of the eight non-symmetric sources was paired with each of the three
non-symmetric receivers to give a total of 24 distinct cases. In all cases, both ¢ { Y ¢}
and a{Y¢} were, likewise for the CFS study, considered from 0-2 to 1 in increments
of 0-2. The ratio of the receiver mobility mean to the source mobility mean,
E[YF]/E[YE], was considered from 10° to 10~ in increments of 10°°5.

For all, the mean of the force ratios approximated to unity so that the following
results are concerned only with the standard deviation. Moreover, the statistics of
one force ratio were found to be representative of all the force ratios so that only
(F?/F') is shown.

3.6.1. Mass-controlled source

For a mass-controlled source with high I,,, low I,, undergoing translational
excitation and connected to a resonant-controlled receiver (see Figure 36) the
standard deviation of (F?/F') is shown in Figure 37 for the two extreme conditions
of ¢{Y¢}. On both figures, the x-axis represents the ratio E[YS]/E[ Y] and each
line type a different case of ¢{Y¢}.

Two regions are clearly apparent, which suggests that above and below
approximately E[YS]/E[YS] =10"% the matched and CFS situation exist
respectively. For the case of ¢{Y¢} = 0-2 and the matched region, the standard
deviation is seen to be dependent upon both ¢{Y¢} and E[YF]/E[YE]. Where
c{Y¢ =10 the influence of ¢{Y¢} does however diminish, this being, it is
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Figure 36. A source with mass-controlled behaviour and translational excitation attached to
a receiver with resonance-controlled behaviour.

forg{¥,}=0-2 forg{Y}=1-0
14

12

1-0

0-8

06 I

04 F

02 |

00 1 | | 1 1 | | | |
0 -1 -2 -3 -4 -5

Figure 37. Standard deviation for a mass-controlled source, high I,,, low I,,, translational
excitation, attached to a resonance-controlled receiver. The x-axis represents the ratio of the mean of
the grouped receiver mobilities to the mean of the grouped source mobilities, i.e., E[Y]/E[ Y S]. Each
of the grouped mobility distributions is assumed to be log 10normal and the scale is therefore
logarithmic;i.e. — 2 represents the condition where the source mean is 2 decades less than that of the
receiver. The y-axis represents the standard deviation of force ratio. Again the distribution is assumed
to be log 10normal. On each figure, each line represents a different standard deviation of receiver
mobility distribution: ~0- ¢{Y?} = 1-0; -O-, a{YS} = 0-8; -A-, 6 {YF} =06; —-x -, a{Y 5} = 04;
-O-, a{YfF} =02.
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Figure 38. A source with mass-controlled behaviour and translational excitation attached to
a receiver with stiffness-controlled behaviour.

suggested, a direct result of either Y or Y, in the mobility sum (Y, + Y,) of
equation (4) being most dominant.

Similar results were seen when an infinite receiver was attached to the source.
This can be expected since, with regard to the system description, only the phase
allocated to the point mobilities: i.e., the statistical properties of the description
remain the same.

However, when the mass is attached to a stiffness-controlled receiver (see Figure
38) the standard deviation increases in the matched region, see Figure 39. This
indicates that with a stiffness-controlled receiver the source is more likely to
undergo severe motion than with a resonant or infinite controlled receiver.

With regard to the influence of the excitation, reference can be made to the
results of the CFS case where it was found that for a non-symmetric
mass-controlled source, the form of the excitation (translational or rotational) had
little influence upon the statistics of the force ratios. Since for all cases considered
the receiver does not have a spatial condition associated with it (each mobility has
an identical statistical state) the same can also be expected for the matched
situation.

For the inter-relationship between the standard deviation and all of o{Y¢},
o{Y¢} and E[YZ]/E[Y¢] an analytical expression can be achieved by assuming all
the variables have a linear dependence.* Firstly, the relationships between
c{(F"/F")} and o{Y$&},o{YS} at both E[YF]/E[YE]=10° and E[YF]/
E[YS] =102 were obtained to produce Figures 40 and 41. The latter shows

*Although compared to more significant curve-litting methods the linear approach will introduce
larger discrepencies there, it is suggested, are limited with respect to the overall accuracy of the
approach.
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for ¢{¥,}=02 foro{¥;}=1-0
1-4

12

1-0 &
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Figure 39. Standard deviation for a mass-controlled source, high I,,, low I,,, translational
excitation, attached to a stiffness-controlled receiver. The x-axis represents the ratio of the mean of the
grouped receiver mobilities to the mean of the grouped source mobilities, i.e., E[Y.9]/E[ Y §]. Each of
the grouped mobility distributions is assumed to be log 10normal and the scale is therefore
logarithmic; i.e. — 2 represents the condition where the source mean is 2 decades less than that of the
receiver. The y-axis represents the standard deviation of force ratio. Again the distribution is assumed
to be log 10normal. On each figure, each line represents a different standard deviation of receiver
mobility distribution: —0- ¢{YS} = 1-0; -O-, o {Y,%} = 08; -A—, 6{Y} =06, -x -, a{YF} =04
-O-, 6{Y%} =02.

a CFS situation and the former a matched condition, wherefore equation (30) is
suitable for Figure 41 whilst for Figure 40

o {(F"/F"} ~ 07 x (1 — 6 {Y}) x ¢ {YS)} + 0-8 x { Y5} (32)

is appropriate. Combined, equations (30) and (32) give an approximate expression
for the mass-controlled source matched to a resonance or infinite receiver,

o {(F"/F") ~ % g gg [07(1 — a{YS)o {YS) + 085 (Y} — 056 (Y5} — 0:6]
+07(1 —a{YNa{YE} + 08c{Y’}, (33)

for 10° > E[YC]/E[YS] > 1072,
For a mass-controlled source matched to a stiffness-controlled receiver the
expression is

_2E[Yf]
T3E[YE]

+05(1 = o (YD (Y} + /o {YF], (34)

for again 10° > E[YZ]/E[YS] > 10~ 2.

o {(F"/F")} [05(1 = o {Y Do (YT} + (/o{Y/} — 050{Y{} — 0:6]
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Figure 40. Standard deviation of F™/F" at log 10(E[Y]/E[Y$]) = 0 for a mass-controlled source
attached to either a resonance or infinite receiver. The x-axis represents the ratio of the mean of the
grouped receiver mobilities to the mean of the grouped source mobilities, i.e., E[ Y ¢]/E[ Y &]. Each of
the grouped mobility distributions is assumed to be log 10normal and the scale is therefore
logarithmic; i.e. — 2 represents the condition where the source mean is 2 decades less than that of the
receiver. The y-axis represents the standard deviation of force ratio. Again the distribution is assumed
to be log 10normal. On each figure, each line represents a different standard deviation of receiver
mobility distribution: ~0- ¢{Y?} = 1-0; -0, a{Y%} = 0-8; -A-, a{Yf} =06; -x -, a{YF} = 04;
-O-, 6{Y7} =02.

3.6.2. Stiffness-controlled source

Where the source has a plate-like base and is attached to a resonance-controlled
receiver the standard deviation is shown in Figure 42. Contrary to that seen with
the mass-controlled source a similar result was also observed for both an infinite
plate and stiffness-controlled receiver. This, as suggested, is resultant from the
random phase of the free velocity for the stiffness-controlled source.

Comparable to the mass-controlled source, a CFS situation is realized for
E[YS]/E[YY] <102 and a matched condition for E[YZ]/E[YS] > 102
Following a similar procedure to that used for the mass-controlled source, the
relationship between the parameters in the matched region is

ot FE ~ 2B 10701 oY) 6 (YE) + 08 /o TS — 076 YE} — 03]
+07(1 —a{Y}o{YS} + 08/ {YF}. (35)

3E[Y{]

For a 2-flange stiffness-controlled source attached to a resonant receiver, the
standard deviation is shown in Figure 43. For low values of ¢ { Y ¢} the statistics are
similar to those observed for the plate-like base. However, in the matched region
and when ¢{Y¢} is large the standard deviation is more sensitive to ¢ {Y¢}. That
similar results were obtained when the source was either a 3- or 4-flange model and
when the receiver was either stiffness controlled or an infinite plate means the
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Figure 41. Standard deviation of F"/F" at log 10(E[Y°]/E[Y$]) = 2 for a mass-controlled source
attached to either a resonance or infinite receiver. The x-axis represents the ratio of the mean of the
grouped receiver mobilities to the mean of the grouped source mobilities, i.e., E[ Y ¢]/E[ Y &]. Each of
the grouped mobility distributions is assumed to be log 10normal and the scale is therefore logarith-
mic;i.e. — 2 represents the condition where the source mean is 2 decades less than that of the receiver.
The y-axis represents the standard deviation of force ratio. Again the distribution is assumed to be
log 10normal. On each figure, each line represents a different standard deviation of receiver mobility
distribution: ~0- ¢{YF} = 1-0; -O-, a{YF} =08; -A-, ¢{¥F} =06, -x-, o{YVF} =04; -O-,
a{YS} =02.

foro{Y,}=0-2 foro{Y,}=1-0

1-4 14

12 12 |

1-0 1-0

0-8 0-8

0-6 06 I

0-4 04

02 02

0-0 0-0 1

0 -1 -2 -3 -4 -5

Figure 42. Standard deviation for a stiffness-controlled source with plate-like base, attached to
a resonance-controlled receiver. The x-axis represents the ratio of the mean of the grouped receiver
mobilities to the mean of the grouped source mobilities, i.e., E[YS]/E[YZ]. Each of the grouped
mobility distributions is assumed to be log 10normal and the scale is therefore logarithmic; i.e. — 2
represents the condition where the source mean is 2 decades less than that of the receiver. The y-axis
represents the standard deviation of force ratio. Again the distribution is assumed to be log 10normal.
On each figure, each line represents a different standard deviation of receiver mobility distribution:
-O-6{YF} =1:0; -O-, o {YF} = 08; -A-, 6{Y} =06, -x—, ¢{YF} =04; -O-, 6{Y} =02.
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Figure 43. Standard deviation for a stiffness-controlled source with 2-flanges, attached to a
resonance-controlled receiver. The x-axis represents the ratio of the mean of the grouped receiver
mobilities to the mean of the grouped source mobilities, i.e., E[YS]/E[Y$S]. Each of the grouped
mobility distributions is assumed to be log 10normal and the scale is therefore logarithmic; i.e. — 2
represents the condition where the source mean is 2 decades less than that of the receiver. The y-axis
represents the standard deviation of force ratio. Again the distribution is assumed to be log 10normal.
On each figure, each line represents a different standard deviation of receiver mobility distribution:
0= o{YF} =10, -O-, 6{Y 7} =08; -A-, 6{YE} =06, -x—, ¢{ Y7} =04; -O-, 6{YE} =02.

expression derived from the results

2E[YY]
3E[YY]

+04(1 —a{Yo{YE} + 08 /a{YF}, (36)

is suitable for all in the matched region.

o{(F"/F"} ~ [04(1 —o{Y Do {YE} + 08 /a{Y} —0Ta{YT} — 03]

3.6.3. Resonance-controlled source

For a resonance-controlled source attached to a resonance-controlled receiver,
the result procured is shown in Figure 44. Similar results were seen when the
receiver was either stiffness or infinite controlled. Moreover, the relationship
devised between the parameters is similar to that of a stiffness-controlled source
with a plate-like base, i.e., equation (35).

The results are summarized in Table 5.

4. CONCLUDING REMARKS

In view of the source descriptor and coupling function formulation, both an
analytical and a statistical study has been undertaken with regard to estimating the
force ratios in multi-point-connected source-receiver systems.
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for o{¥,}=0-2 for o{¥,}=1-0
1-4 14

12 | 12 |

Figure 44. Standard deviation for a resonance-controlled source, attached to a resonance-
controlled receiver. The x-axis represents the ratio of the mean of the grouped receiver mobilities to
the mean of the grouped source mobilities, ie., E[YS]/E[YS]. Each of the grouped mobility
distributions is assumed to be log 10normal and the scale is therefore logarithmic; i.e. — 2 represents
the condition where the source mean is 2 decades less than that of the receiver. The y-axis represents
the standard deviation of force ratio. Again the distribution is assumed to be log 10normal. On each
figure, each line represents a different standard deviation of receiver mobility distribution: -&—
a{YE =10; -0, 6{YF} =08, -A—, (YT} =06, - x -, 6{YF} =04; -O-, a{YF} = 02.

For the analytical study, estimate solutions based upon both iteration and
matrix inversion methods were considered. However, all schemes failed when the
magnitudes of the transfer mobilities approached those of the point mobilities.
Since this condition is common for resonance-controlled sources, and can also
occur when the source is either mass or, with a plate-like base, stiffness controlled,
these approaches are considered unreliable. The revealed sensitivity of the force
ratios to all the mobilities is also important, since it suggests that any analytical
method developed to obtain the force ratios would have to be based upon highly
accurate data.

In the statistical study, grouped mobility functions were introduced. To obtain
these, the mobilities (point and transfer) of a structure were considered as
a population, for which the statistical properties were used to define the grouped
mobility function. A log 10 normal distribution was suggested for the magnitude
while for the phase, a uniform distribution was suggested provided the behaviour
was resonance controlled. For mass- or stiffness-controlled behaviour the phase is
deterministic and hence its distribution was not considered.

Grouped functions were also defined for the free velocities.

Based upon these grouped functions, a number of source-receiver systems were
defined and a methodology based upon a Monte Carlo approach was used to
determine the statistics of the force ratios.

For all the systems, the force ratio had a log 10 normal distribution with a mean
of unity.
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For a constant force situation and where the source had symmetrical geometry
the standard deviation of the distribution was dependent upon whether the source
was mass or stiffness controlled and also upon both the grouped mobility function
and grouped free velocity function. Due to the imprecise nature of the sampled
results, empirical relationships between the variables could not be determined. For
non-symmetrical geometry, the force ratios were independent of the grouped free
velocity function. Empirical relationships between the parameters were derived,;
for a mass-controlled source the standard deviation of the force ratio
magnitude distribution is given by equation (30) and for both stiffness- and
resonant- controlled sources it is given by equation (31).

For the matched condition, only non-symmetric sources were studied. For the
CFS, the standard deviation of the force ratios was deduced to be independent of
the grouped free velocity function. As regards the grouped mobility functions, the
standard deviation of the force ratios was dependent upon which had the largest
standard deviation. For a mass-controlled source there was also some dependence
upon the phase condition of the receiver such that equation (34) was applicable for
a stiffness-controlled receiver and equation (33) applicable for both a resonance and
infinite plate receiver. If the source was stiffness controlled with a flange-like base
equation (36) was applicable while, if the source was either stiffness controlled or
resonance controlled with a plate-like base equation (35) was applicable.

Thus, a methodology has been developed through which statistical estimates of
the force ratios in multi-point-connected source-receiver systems can be obtained.
It is this that provides a step towards overcoming the inherent problem of the
source descriptor and coupling function formulation for systems. Application of the
expressions developed obtain statistical estimates of the source descriptor, coupling
function and transmitted power will be reported in forthcoming paper.
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APPENDIX: SYMBOLS AND NOTATION

coupling function
force

source descriptor
free velocity
mobility

radius of gyration
mass

position

ratio

angular frequency
eigenmode

loss factor

mean

imaginary component
real component
variable parameter
standard deviation
phase angle

~
S
&
=)
()
©w

grouped function
direction

iteration number
direction

location

location

rm normalized quantity

point
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receiver

source

equation component
tr transfer
u equation component
z effective mobility

Notation

* complex conjugate
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