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To update the parameters of a mathematical model of a mechanical system
usually a cost function is minimised which consists of the di!erence between
calculated and measured quantities. This paper deals with the special case where
the forces are unknown. Instead of following the usual way of handling this type of
updating problem by assuming a model for the forces, in this paper the variable
projection method is applied to estimate the unknown forces in addition to the
model parameters. Under certain conditions this two-fold inverse problem can be
solved by eliminating the force from the parameter estimation process. The
remaining equation to estimate the model parameters consists of the projection of
the response data, where the associated projector depends on the model
parameters. This application of the variable projection method is essentially an
extension of the output residual method and leads to an estimation equation which
is non-linear with respect to the model parameters. The variable projection method
is introduced and investigated for two general types of unknown forces. Two
theoretical examples, wind excitation of a tower and a rotary machine under
unknown unbalance con"guration, and the experimental case of a free}free steel
beam tested by hammer excitation, are presented and discussed.

( 1999 Academic Press
1. INTRODUCTION

The successful design, maintenance and monitoring of modern mechanical
structures depends on the reliability of the underlying mathematical model. In
general, the mathematical model a priori will not re#ect the dynamic properties of
the system with su$cient accuracy. Thus, the model has to be updated, which
requires data from dynamic tests. To perform such tests is always costly and in
some cases not feasible, mainly due to di$culties in measuring the excitations.
Thus, an appealing approach is to use data due to the &&natural'' excitation of the
system, such as

f wind excitation of towers and tall buildings,
f excitation of bridges by tra$c,
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f machines under work load,
f o!-shore platforms subject to sea wave excitation.

The main drawback of using these data is that the excitation is generally unknown.
One way to solve this problem is to assume an excitation, such as a stochastically
based excitation of wind forces or sea wave motion. For many purposes, the
involved deviations between the real and the modelled excitation have negligible
in#uence on the result. However, for the purpose of model updating these
deviations may lead to signi"cant estimation errors, since the underlying inverse
problem is generally ill-posed and therefore sensitive to these deviations. This paper
investigates the possibilities of estimating the unknown forces in addition to the
model parameters, using the variable projection method (VPM).

In the next section, the parameterization of a spatially discretized model in the
frequency domain is introduced. The basic estimation equation of the output
residual method (ORM) is recalled and extended to the case of unknown forces
using the VPM. Modi"cations of the resulting estimation equation for two types of
forces are investigated. The "nal section contains two academic simulation
examples and an experimental example. The simulated examples are the damage
detection of a tower subject to wind force with unknown excitation spectrum, and
the foundation estimation of a rotor due to unknown unbalance con"guration. The
experimental example is a steel beam which has been hammer-tested in elastic
slings with and without an added mass. The method has been applied to update
a "nite beam element model of the steel beam and to estimate the change in the
mass matrix due to the added mass.

2. COMBINING OUTPUT RESIDUAL METHOD WITH VARIABLE
PROJECTION METHOD

In this section, the parameterization of the mathematical model is introduced.
The ORM is recalled brie#y and is extended using the VPM. For two general types
of unknown forces an estimation equation is derived, which leads to the de"nition
of a cost function. This section concludes with some aspects concerning the
ill-posedness of the resulting non-linear inverse problem.

2.1. PARAMETERIZATION OF THE MATHEMATICAL MODEL

The description of a spatially discretized mathematical model with
n degree-of-freedom (d.o.f.) of a linear mechanical system in the frequency domain
is given by the dynamic sti!ness matrix at frequency u3XL[0,u

max
]

F (u) :"!u2A
2
#juA

1
#A

0
3Cn]n, (1)

which maps the response vector u(u) to the excitation vector p (u) that is

F (u)u (u)"p (u)3Cn. (2)

The model matrices A
i
3Rn]n, i"0, 1, 2, represent the contributions of sti!ness,

damping and inertia respectively. To update the uncertain model parts each matrix
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can be understood as a linear function

A
i
(q

i
) :"AC

i
#

ni
+
r/1

A
ir
q
ir
3Rn]n (3)

of dimensionless adjustment parameters q
i
:"(q

i1
,2, q

ini
)T3Rni such that at

q
i
"(1,2 , 1)T the initial model results. The matrices A

ir
are constant sparse

matrices re#ecting the substructures of the model, and the matrices AC
i
represent the

a priori known model parts. For example, in the case of a "nite element model,
A

01
may represent the contribution of the bending sti!ness of the "rst beam

element. Assembling all parameters in one vector q"(qT
0
, qT

1
, qT

2
)T3Rnq where

n
0
#n

1
#n

2
": n

q
, the dynamic sti!ness matrix becomes a function of the

parameter vector q. The restriction of the domain of q to the subset

S :"Mq3Rnq : det[F(q,u)]O0 ∀u3XN (4)

ensures the existence of the model response as a continuous function of q

u (u, q) :"F~1(q,u)p (u). (5)

In general, n
H
)n components u

il
, l"1,2 , n

H
(sensor position), of the response

vector and n
S
)n components f

kl
, l"1,2 , n

S
(exciter positions), of the excitation

vector will be available from dynamic tests. Introducing the selecting matrices

S
o
:"[e

i1
,2 , e

inS
]3Rn]nS , (6)

H
o
:"[e

k1
,2 , e

knH
]3Rn]nH , (7)

where e
k
3Rn is the kth unit vector consisting of zeros except in the kth component,

the available parts of the excitation and response vector are de"ned by

p(u) :"S
o
f (u) (8)

and

u8 (u, q) :"HT
o
F~1(q, u)S

o
f(u).

hgigj
(9)

": G(q,u).

Note, that other constraints can also be enforced, as for instance qa'0,
∀a"1,2 , n

q
, which guarantees the positive-de"niteness of the model matrices.

2.2. THE OUTPUT RESIDUAL METHOD

Now the ORM is recalled brie#y. An overview over di!erent updating methods
can be found in Friswell and Mottershead [1]. For a detailed discussion on various
updating methods see, for instance, Natke et al. [2]. To "t the model to the data
uM(u)3CnH, a parameter vector q has to be estimated which minimizes the distance
between model response and measurements

min
q|S G

m
+
i/1

Eu8 (u
i
, q)!uM(u

i
)E2H . (10)
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In case of the Euclidean norm E . .E the minimization problem (10) is equivalent to
the non-linear inverse problem to estimate q that minimizes the equation error of

g"B(q)h , (11)

where the generalized output vector g3R2mnH and input vector h3R2mnS contain
the real and imaginary parts of the measured response vector and the excitation
vector respectively, for m frequencies, w

i
3X, i"1,2 , m, i.e.

g"A
ReMvN
ImMvNB, h"A

ReMrN
ImMrNB , (12)

where the complex-valued vectors v and r are de"ned by

v :"A
uM(u

1
)

F

uM(u
m
) B , r :"A

f(u
1
)

F

f (u
m
) B . (13)

The matrix B(q) has the form

B (q)"C
ReMX(q)N
ImMX(q)N

!ImMX(q)N
ReMX(q)ND , (14)

with the block-diagonal matrix

X (q) :"

G(q, u
1
) 0

}

0 G (q,u
m
)

. (15)

Now the special case is investigated in which the force vector can be decomposed as

f (u)"Z (u)f
o
, (16)

with the known excitation spectrum represented by Z(u)3CnS]nS and the unknown
exciter con"guration f

o
3RnS . The basic equation (11) becomes

g"B(q)f
o
, (17)

where B(q)3R2mnH]nS is now given by

B(q)"C
ReMX(q)N
ImMX(q)ND (18)

and the complex-valued matrix X (q) is de"ned as

X(q) :"

G(q, u
1
)Z(u

1
)

F

G (q,u
m
)Z(u

m
)

(19)
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2.3. THE VARIABLE PROJECTION METHOD

In this section, the VPM is linked to the output-residual-based estimation
equation. The VPM is introduced brie#y. For further reading see, for instance,
Golub and Pereyra [3].

For both types of unknown forces the following derivation is formally the same.
Thus, let y be either h ("rst case, equation (11)) or f

o
(second case, equation (17)) and

consider the estimation equation

B(q)y"g. (20)

If it is assumed that the parameter vector q is given, equation (20) can be solved in
the least-squares sense for y,

y6 "B`(q)g . (21)

Here the superscript # denotes the Moore}Penrose inverse (see, for instance,
Boullion and Odell [4]). Inserting this result into equation (20) the relative
quadratic equation error becomes

e
R
(q) :"Eg!B(q)B`(q)gE2/EgE2 (22)

"E[I
2mnH

!P (q)]gE2/EgE2 (23)

"EN(q)gE2/EgE2 (24)

"1!gTP(q)g/EgE2, (25)

where P(q) :"B(q)B`(q) is the projector into the subspace spanned by the columns
of B(q), and N(q) :"I

2mnH
!P(q) is the projector into the orthogonal complement.

Note that 0)e
R
(q))1, because of the orthonormal decomposition

g/EgE"N(q)g/EgE#P(q)g/EgE . (26)

Equation (25) represents a non-linear inverse problem to be solved for q,

min
q|S

Me
R
(q)N , (27)

which is independent of the unknown excitation. If a parameter vector has been
estimated, equation (21) is an estimate of the force. In the "rst case the projectors
are not trivial, i.e. POI

2mnH
, NO0, if n

H
'n

S
. In the second case the projectors are

not trivial if 2mn
H
'n

S
.

Remark. A common solution method of equation (27), as for instance discussed in
Kaufman [5], assumes di!erentiability- of the projector, which is numerically
related to the singular values of B (q), and which, since in general B(q) is
ill-conditioned, is di$cult to decide and to monitor during the iterative solution
procedure. Like all parametric model estimation methods the condition is closely
related the number of modes contained in the frequency range X. Numerically, the
-A su$cient condition is rank[B(q)]"constant.
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decision of the rank of B(q) is usually made by considering its singular values. It is
well known that the contribution of the small singular values of B(q) can amplify
the e!ect of data errors in g on the estimate y6 . The use of a positive-de"nite
weighting matrix W"VTV, which can be introduced formally by substituting g by
Vg and B(q) by VB(q), can minimize the e!ect of the data errors on the estimates; in
general, however, further regularization is necessary to obtain unique and stable
solutions. Since the introduction of regularization methods is beyond the scope of
this paper, no noise was considered in the simulation examples, and for the test case
of a free}free beam only an output weighing matrix has been used for
regularization.

3. EXAMPLES

The next two examples are simulation studies to clarify the theoretical approach
introduced in the preceding section. The "nal example is a real test case.

3.1. DAMAGE DETECTION OF A FIVE-STOREY STRUCTURE SUBJECT
TO WIND EXCITATION

The following example stems from Andersen [6]. A model of a tower will be
considered in which only the horizontal displacement at each of the "ve #oors is
assumed non-zero, i.e. n"5. The masses are assumed to be concentrated in the
centre of each storey. The "rst d.o.f. corresponds to the top of the tower ("fth #oor).
The entire model is scaled such that the mass matrix is the unit matrix A

2
"I

5
. The

damping and sti!ness matrices are given by

A
1
"

2)41 !2)4 0 0 0

!2)4 4)81 !2)4 0 0

0 !2)4 4)81 !2)4 0

0 0 !2)4 4)81 !2)4

0 0 0 !2)4 3)01

, (28)

A
0
"

4800 !4800 0 0 0

!4800 9600 !4800 0 0

0 !4800 9600 !4800 0

0 0 !4800 9600 !4800

0 0 0 !4800 6000

. (29)

The problem is to detect damage using responses due to wind excitation. The
damage is modelled by a horizontal sti!ness loss between the "rst and second
storey, which is already incorporated into the de"nition of A

0
. The sti!ness

between the "rst and second storey is 4800 N/m. Referring to the parameterization
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introduced in Section 2.1 the damage detection is equivalent to the estimation of
the positive adjustment parameter q of the sti!ness matrix

A
0
(q)"Ac

0
#q

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 4800 !4800

0 0 0 !4800 4800

, (30)
Figure 1. Simulated wind force spectrum.
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where the &true' parameter value q"1. To simulate the wind excitation the
spectrum of the forces depicted in Figure 1 are assumed, which covers the
eigenfrequencies 2)14, 7)59, 13)29, 17)97, 20)99 Hz. The force at the top of the tower
("rst d.o.f.) is the largest because a plate has been attached there to increase the
wind force. The force at the "rst #oor is assumed to be zero. To complete the test
simulation the responses due to this excitation are assumed to be measured at the
"fth, at the third and at the "rst storey (see Figure 2) with m"50 frequencies
covering a spectrum X"2n[0, 24)5] rad/s. The selecting matrix of the response is
given by H

o
"[e

1
, e

3
, e

5
]. Thus, the matrix B(q) de"ned in equation (14) has

2mn
h
"2 ) 50 ) 3"300 rows. To evaluate the number of columns of B(q) the

selecting matrix of the excitation has to be de"ned. For the purpose of simulating
the response data, the selecting matrix was chosen to be S

o
"[e

1
, e

2
, e

3
, e

4
].

However, it is known that due to the attached plate the wind excites mainly the top
of the tower. Thus, neglecting the wind force at all other d.o.f. one "nds that with
Figure 2. Model of a "ve-storey tower.
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reference to Section 2.2

S
o
"e

1
, (31)

and therefore the matrix B(q) has the format 300]100.
In Figure 3 the relative error e

R
(q) de"ned in equation (25) is plotted for

parameter values q3[0)5, 1)5]. The minimum value is obvious. It can now be used
to estimate the wind force. In Figure 4 the wind force at the "rst d.o.f. and the
estimated force using equation (21) are depicted. Although the assumed selecting
matrix (31) was not correct, the "t is acceptable. The deviation in the upper
spectrum is due to the poor excitation of the "fth mode corresponding to an
eigenfrequency of about 21 Hz. This completes the example of the case in which the
spectrum of the force is unknown. In the next section an example is presented where
the frequency dependence of the force is known, but the location and magnitudes
are unknown.

3.2. ESTIMATION OF A FOUNDATION MODEL OF A ROTARY MACHINE

The rotor is simulated by an Euler}Bernoulli beam (see Figure 5) which is
spatially discretized using four beam elements. The length of the beam is 2)3 m, the
diameter is 0)1 m, the density is 7850 kg/m3, and Young's modulus is
2)1]1011 N/m2. Each beam element is de"ned by two nodes. Each node has two
d.o.f: one translational and one rotational. Thus the dimension of the beam model
Figure 3. Relative quadratic equation error e
R
.



Figure 4. Simulated (dotted) and estimated (solid) wind force at "fth #oor.

Figure 5. Model of a rotor mounted on a foundation via journal bearings.
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is 10. The "rst and the last node of the rotor model is viscoelastically connected
to a foundation. The viscoelastic interface represents the oil "lm of journal bearings
which are, for the sake of simplicity, modelled by two massless springs with
sti!nesses k

1
"1)77]108 and k

2
"3)54]108 N/m, and by two dampers with

d
1
"d

2
"5]107 Ns/m respectively. The foundation is modelled by an

unconnected pair of masses m
1
"90, m

2
"135 kg and springs with sti!nesses

k
f1
"k

f2
"1)77]107 N/m. Thus, the dimension of the entire model is n"12. It is

assumed that the responses are measured at the d.o.f. of the two masses m
1
,

m
2

during a slow rundown of the machine, covering the frequency range
X"2n[0)5, 100] rad/s with equally spaced steps of 0)5 Hz. Thus, m"200 and
n
H
"2, and with reference to Section 2.3 the matrix B(q) has

2mn
H
"2 ) 200 ) 2"800 rows. To evaluate the number of columns of B(q) the

selecting matrix of the excitation has to be de"ned. It is well known that in this case
the unbalance force is given by (see equation (16) for Z(u)"u2I

5
)

f(u)"u2f
o
, (32)

where the real-valued con"guration vector f
o

contains the unbalance masses and
eccentricities, which are assumed to be unknown. For simulation purposes it is
assumed that there exists a continuous unbalance distribution along the rotor,
discretely modelled by

f
o
"(0)005, 0)01, 0)1, 0)05, 0)02)T (33)

with the selecting matrix S
o
"[e

1
, e

3
, e

5
, e

7
, e

9
] which correspond to the

translational d.o.f. of the rotor. In Figure 6 the responses at the two d.o.f. are shown.
Since there are three resonances in the rundown range the problem will be
restricted to the estimation of the unbalances at three balance planes given by the
selecting matrix

S
o
"[e

3
, e

5
, e

7
] (34)

and to the estimation of the foundation sti!nesses k
f1

, k
f2

using the
parameterization

A
k
f1

k
f2
BPA

q
1
k
f1

q
2
k
f2
B , (35)

where the &true' parameter vector is q"(1, 1)T. Thus, the matrix B(q) has the format
800]3.

In Figure 7 the surface of the relative quadratic equation error e
R
(q) is plotted

over the plane q3[0)8, 1)2]2. Although there are some local minima the surface
shows a unique global minimum at the &true' parameter values. Using these values
to estimate the con"guration vector f

o
leads to

f6
o
"B`(q)g"A

0)0383

0)0422

0)1036 B . (36)

In order to verify whether the estimated unbalance con"guration is su$cient to
reproduce the data, the model responses have been calculated using f6

o
. The error



Figure 6. Simulated responses.
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magnitude between the simulated and the model responses are shown in Figure 8.
Although the error has local maxima at the resonances and increases with the
frequency the overall "t is satisfactory.

Remark. Since there are only three resonances in the rundown range the unbalance
vectors f

o
and f6

o
are equivalent.

3.3. MODEL ESTIMATION A STEEL BEAM TESTED BY HAMMER EXCITATION

A steel beam (see Figure 9) of size 0)0062 m]0)025 m]0)856 m
(thickness]height]length), Young's modulus 2)07]1011 N/m2 and density



Figure 7. Surfaces of relative quadratic error e
R
(q).
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7800 kg/m3 was supported in elastic slings. Five piezo-electric accelerometers were
attached to the beam at positions r

1
, r

2
, r

4
, r

6
and r

7
. The beam was excited using

an intrumented hammer at position r
5
. Using m"1281 equally spaced frequencies

within the range between 100 and 900 Hz the responses uM
O

(u)3C5 show "ve
distinct resonances at 123)0, 240)9, 402)4, 597)1 and at 832)8 Hz. The hammer test
was repeated with an additional mass of 33 g magnetically attached at position r

6
.

Compared with data uM
O

(beam without added mass), data uM
A

(beam with added
mass) show a distinct shift in the resonances. From both sets of data, an output
weighting matrix has been derived in order to reduce the e!ect of data noise to the
estimates. A "nite beam element model was reduced to order n"7 using the modal
contributions of the "ve resonances of the response and two additional model
resonances 62)9 and 962)2 Hz, just outside the frequency range. The seven-d.o.f. of



Figure 8. Error between simulated and model response.
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the reduced model correspond to the positions r
1
}r

7
(see Figure 9). Thus, the

output selecting matrix is

H
o
"[e

1
, e

2
, e

4
, e

6
, e

7
], (37)

and the selecting matrix of the ecitation is

S
o
"e

5
. (38)

Two estimation problems have been studied:

P1 Estimation of a damping matrix and update of the mass and sti!ness
matrices of the modal reduced model of the steel beam to "t the data uM .
O
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P2 Updating of the mass matrix of the model resulting from P1 to "t the data
uM
A

.

For the case P1, the number of model parameters is n
q
"3 ) 7 ) (7#1)/2"84 which

corresponds to the number of independent elements of the three symmetric 7]7
matrices A

0
, A

1
, A

2
. In case P2, the estimation of a change DA

2
of the mass matrix
TABLE 1

Estimation results

P1 P2

Model Reduced Updated Updated Updated mass
Data uM

O
uM
O

uM
A

uM
A

e
R
" 0)0012 1)46]10~4 0)0034 0)0013

S1
fN (u)

see Figure 11: left top right top left bottom right bottom

e
R
" 0)2432 1)77]10~4 0)3474 0)0073

S2 f6
o
"

igggggggk

!0)63

!2)38

1)45

!2)86

0)86

!2)34

!1)15

egggggggh

igggggggk

!0)002

!0)010

0)001

!0)011

1)001

!0)010

!0)002

egggggggh

igggggggk

!0)79

!2)68

1)18

!3)05

1)06

!2)53

!0)91

egggggggh

igggggggk

!0)12

!0)24

0)16

!0)29

1)19

!0)19

!0)06

egggggggh

Figure 9. Hammer test of a free}free steel beam: f
o
location of excitation, uM

i
measured responses.
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requires parameter vector q3R28. For each problem, two scenarios have been
studied corresponding to the general types of unknown forces (see Section 2.3):

S1 The exciter position S
o
"e

5
is known but the spectrum of the excitation

f (u)"1 is unknown.
S2 The spectrum of the excitation Z(u)"I

7
"S

o
is known but the exciter

position f
o
"e

5
3R7 is unknown.

In the "rst case (S1), the vector h6 of force spectrum estimate has dimension
2 )m"2562. In case S2 the vector f6

o
of the force location estimate is

seven-dimensional. An overview of the estimation results is given in Table 1 for the
two problem formulations (P1 left-half, P2 right-half) and for each scenario (S1
upper-half, S2 lower-half). The force spectrum estimates are shown in Figure 10.
Compared to S2 the errors e

R
of scenario S1 are already small at the initial model.

Because the number of columns of B is much larger (2562 in contrast to 7) the main
part of the data vectors are already contained in the spanned subspaces. The
Figure 10. Phase plane force spectrum estimates using: modal reduced model and data set uM
O

(left
top), updated model to "t uM

O
(right top), updated model and data set uM

A
(left bottom) and model with

updated mass matrix to "t uM
A

(right bottom).
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corresponding force spectrum estimates (left-half of Figure 10) reveal that the linear
combinations that generate the data vector shows large deviations from the &true'
spectrum, which would correspond to the single point (1, 0) in the phase plane. In
all cases the force estimates of the updated models are satisfactory. The force
location estimates (second and last columns of the last row in Table 1) show only
small deviations of the &true' location e

6
. In contrast to the good "t of the force

location estimates the estimation error of the force spectrum estimates is larger
(right-half of Figure 10). At most frequencies the forces spectrum estimates are near
the point (1, 0). However, there are a few relatively large errors at some frequencies.
The estimates of the change of the mass matrix (problem P2) are almost identical
for both scenarios. For scenario S2, the elements of the estimate DA

2
are depicted in

Figure 11. It clearly indicates that the main change of mass corresponds to a single
mass of 43 g at position r

6
on the beam. Although the position has been estimated

correctly the mass is overestimated. Using the model and the force estimates the
corresponding model responses can be calculated. For both scenarios the
Figure 11. Components of the estimated change of the mass matrix.



324 U. PRELLS AND M. I. FRISWELL
calculated responses match the data well. In Figures 12, for example, the calculated
(solid) and measured (dotted) displacements are shown for the scenario S1. The
plots in the upper-half show the displacement at position r

5
near the "rst resonance

(worst "t). In the lower-half the displacement at position r
1

is shown near the "fth
resonance (best "t). Although the magnitudes of the model displacements are too
low, the resonance frequencies match exactly.

Remark. During the estimation process several local minima have been found.
Especially in case of scenario S1 (unknown force spectrum), the programme to
minimize e

R
had to be restarted for di!erent initial parameter vectors. It appears

that the increase of the dimension of the column space of B(q) increases the risk of
"nding local minima of similar low values e

R
. To overcome the resulting

non-uniqueness of the estimates regularization methods have to be applied.
Figure 12. Scenario S1: calculated (solid) and measured (dashed) displacements near the "rst
resonance at position r

5
(upper-half) and near the "fth resonance at position r

1
(lower-half) for

problem P1 (left-half) and P2 (right-half).



UPDATING MODELS OF MECHANICAL SYSTEMS 325
4. CONCLUSION

This paper has extended the output residual method for updating "nite element
models of mechanical systems in the frequency domain to account for unknown
forces. The VPM has been used to separate the estimation of the unknown model
and the estimation of the unknown excitation. Although the VPM can deal with
general unknown forces, incorporating knowledge of the forcing spectrum or
location results in a considerable improvement in the quality of the estimated
parameters. This was demonstrated in the examples. The "rst example showed that
by assuming a known location for the dominant wind excitation of a "ve-storey
tower, the force spectrum could be recovered to an acceptable accuracy. The second
example of a rotor, excited by unbalance forces, showed that the distribution of the
unbalance could be recovered because the spectrum of the excitation was known.
Finally, the method was applied to update the model of a steel beam, which was
dynamically tested by hammer excitation. Although the case of unknown force
spectrum appears to be less stable than the case of unknown force location both
estimation results were satisfactory. The application of the VPM to incorporate
incomplete knowledge of the excitation forces has shown great promise. Further
studies will concentrate on incorporating regularization into the method, and
applying the method to industrial-scale problems.
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