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A simpli"ed method of evaluating the fundamental frequency for the bending
vibrations of cracked Euler}Bernouilli beams is presented. The method is based on
the well-known approach of representing the crack in a beam through a hinge and
an elastic spring, but here the transverse de#ection of the cracked beam is
constructed by adding polynomial functions to that of the uncracked beam. With
this new admissible function, which satis"es the boundary and the kinematic
conditions, and by using the Rayleigh method, the fundamental frequency is
obtained. This approach is applied to simply supported beams with a cracked
section in any location of the span. For this case, the method provides closed-form
expressions for the fundamental frequency. Its validity is con"rmed by comparison
with numerical simulation results
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1. INTRODUCTION

The knowledge of natural frequencies and natural modes of vibration of cracked
beams has aroused considerable interest in the last 30 years. Nash [1] investigated
the problem of a simply supported beam with an edge crack at mid-span to analyze
the dynamic behaviour of a notched beam subjected to impact test. Kishimoto et al.
[2, 3] derived simple formulas for the dynamic stress intensity factor of elastic
three-point and one-point bending specimens in which the fundamental frequency
is an important parameter. It has been demonstrated that cracks reduce the natural
frequencies of a structure and that this can be used to detect the damage size and its
location. This motivates the dynamic analysis of cracked structures.

The natural modes of simply supported beams with symmetric cracks were
investigated by Christides and Barr [4] using a two-term Rayleigh}Ritz solution
to obtain the variation in the fundamental frequency of beams with a mid-span
crack. They considered a crack function which represents the perturbation in
the stresses induced by the crack. This function decays exponentially from the
crack along the longitudinal axis of the beam. The decay rate has to be found
from experimental or numerical analyses. Shen and Pierre [5, 6] used an
approximate Galerkin solution to analyze the free bending vibrations of simply
22-460X/99/320345#08 $30.00/0 ( 1999 Academic Press
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supported cracked beams. This method is also based on the knowledge of the stress
decay rate along the beam.

In other cases, the presence of a crack and the reduction in the sti!ness of the
beam has been modelled by the introduction of a linear spring [7]. Ju et al. [8].
theoretically related the magnitude of the equivalent linear spring constants to the
length of the crack in the beam, based on Fracture Mechanics. Haisty and Springer
[9] developed a beam element to be used in "nite-element codes. The crack was
simulated as a linear spring for axial vibrations and as a torsional spring for
bending vibrations. These form the base for models that have been applied to
simply supported [10, 11], cantilever [12] and free}free beams [13].

To the knowledge of the authors, closed-form expressions for the fundamental
frequency have not been found.

This work presents a simpli"ed analytical method of obtaining the fundamental
frequency of a cracked Euler}Bernouilli beam. For the simply supported beam
a closed form for the fundamental frequency has been achieved. All the results
obtained by using the proposed method are compared with numerical calculations.

2. PROPOSED METHOD

Consider the bending vibrations of a uniform Euler}Bernouilli beam in the x}y
plane (see Figure 1) which is assumed to be a plane of symmetry for any
cross-section. The length and height of the beam are, respectively, ¸ and=, and it
has a crack, of depth a, at a distance b from the left support. The crack is assumed to
be always open. The presence of the crack introduces a discontinuity in the slope of
the beam, which is proportional to the bending moment transmitted through the
cracked section. Thus, if H(x) represents the slope, the above-mentioned
discontinuity DH can be written as

DH"C
m
M, (1)

where M is the bending moment transmitted by the cracked section and C
m

is
a #exibility constant which from dimensional considerations can be expressed as

C
m
"

=
EI

m(a/=, cross-section geometry), (2)
Figure 1. Schematic model of the cracked beam.
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where E is Young's modulus, I is the geometric moment of inertia, and m (a/=) is
a function depending on the crack ratio, a/=, and on the section geometry. This
function can be evaluated by Fracture Mechanics, and for the case of a rectangular
section, it takes the form [14]
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The vertical displacement, y (x, t), of a section located at a distance x from the left
end of the specimen at the time t, is assumed to be

y (x, t)"u (x) cosut, (4)

where u is the frequency of the harmonic vibration and u (x) is the transverse
de#ection of the cracked beam.

In comparison to other approaches, the beam is not divided into two sub-beams
at the crack, but the transverse de#ection of the cracked beam, u(x), is assumed to
be that of the uncracked beam, u

nc
(x), plus a polynomial function of x:
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(5)

The eight constants B
i
and C

i
(i"0, 1,2 , 3) that appear in equation (5) have to be

evaluated to satisfy the boundary conditions (four boundary conditions, two for
each end of the beam) and the kinematic conditions, as follows: equality for the
transverse de#ection, bending moment and shear force at the cracked section
(x"b) (three conditions), i.e.,
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, (6)

slope discontinuity at the cracked section (x"b) (one condition),

DH"

du
2
(x)

dx
!

du
1
(x)
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"=m A
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2
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. (7)

To obtain the fundamental frequency, the Rayleigh method [15] is used, so the
maximum values of potential energy, ;

.!9
, and kinetic energy, ¹

.!9
, must be

calculated. Taking into account the #exural rigidity of the beam and the slope
discontinuity at the cracked section, one "nds that the maximum potential energy
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of the beam is
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The bending moment transmitted by the cracked section can be written as

M"EId2u
1
(x)/dx2 D

x/b
.

The maximum kinetic energy is
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where o is the mass density of the material and A is the cross-sectional area of the
beam.

Finally, by equating expressions (8) and (9), the fundamental frequency, u
1
, can

be obtained.

3. APPLICATION TO SIMPLY-SUPPORTED BEAMS

To check its applicability, the method was applied to a simply supported
Euler}Bernouilli beam.

The equation for the transverse de#ection of the uncracked beam can be written
as

u
/#

(x)"D sin (nx/¸), (10)

where D is an arbitrary constant with dimensions of length.
In this case the boundary conditions which must be satis"ed are

for x"0, u
1
"0 and d2u

1
/dx2"0, (11)

for x"¸, u
2
"0 and d2u

2
/dx2"0. (12)

The expressions for the transverse de#ection of the cracked beam, which satisfy the
above boundary conditions and the kinematic conditions expressed by equations
(6) and (7), are
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The bending moment transmitted by the cracked section and the slope
discontinuity are, respectively,
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. (15, 16)

Therefore, the expressions for u
1
(x) and u

2
(x) (equations (13) and (14)) and the

values of M and DH (equations (15) and (16)) are substituted in equations (8) and
(9), and the values of ;

.!9
and ¹

.!9
are evaluated as
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where g and c respectively, taken the values,

g"(=/¸)m(a/=) and c"1!cos (2nb/¸).

By equating equations (17) and (18), the following closed-form solution is obtained
for the fundamental frequency of the cracked beam:

u
1
"u

0 C
1#g ) c

1#2gc#(n4/3)g2[(b/¸)4 c!2(b/¸)3c#(b/¸)2c]D
1@2

. (19)

Here u
0

is the fundamental frequency for the simply supported uncracked beam,
i.e.,

u
0
"(n/¸)2JEI/oA .

When the crack is located at mid-span of the beam (b/¸"1/2), the above
expression reduced to

u
1
"u

0C
1#2g

1#4g#(n4/24)g2D
1@2

. (20)

The same methodology can be applied to cracked beams with other end conditions,
but closed-form solutions have not been obtained as yet.

4. NUMERICAL COMPARISON

To validate the proposed method, the results were compared with those obtained
from numerical simulation of cracked beams with di!erent boundary conditions.
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The fundamental frequencies of the beams were calculated by using the ABAQUS
"nite-element code [16].

The cases analyzed were (a) a simply supported beam with a crack at mid-span
(b/¸"1/2), and (b) a simply supported beam with a crack at 0)75 of the total length
(b/¸"0)75). For all cases the beam geometry was ¸"200 mm and="10 mm.
The beam material had a mass density o"7850 kg/m3 and Young's modulus
E"200 GPa.

A "nite-element mesh of 1000 eight-node plane stress elements was used as
shown in Figure 2. The beam was divided into four zones, each part at both sides of
the crack having 300 elements. The height of each element was h/¸"1/200 and the
width varied from d /¸"1/200 near the crack to d /¸"1/80 far away. The other
Figure 3. Variation of fundamental frequency with crack ratio of a simply supported beam
(b/¸"0)5). *r*, Proposed method; } } h } } , numerical results.

Figure 2. Mesh used in the numerical analysis.

1 2



Figure 4. Variation of fundamental frequency with crack ratio of a simply supported beam.
(b/¸"0)75). *r*, Proposed method; } } h } } , numerical results.
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two parts are of 200 elements each and their dimensions were d
2
/¸"1/80 and

h/¸"1/200. For each case, 10 di!erent analyses were made for values of the crack
ratio, a/=, ranging from 0 to 0)9.

The comparison of the results of the numerical simulation with those of the
proposed method is given in Figure 3 (crack at mid-span) and Figure 4 (crack at
0)75 of total length), which show the variation of the fundamental frequency
(dimensionless, corresponding to the uncracked beam, u

0
). For the analyzed cases

the numerical value of u
0

is 3595)3 rad/s.
In all the cases studied, the estimated values of the fundamental frequency of the

cracked beam are very close to those obtained from "nite-element calculations.
For other bean support conditions, closed-form solutions for the fundamental

frequency are not available yet. For cantilever, "xed}simply support and "xed}
"xed cracked beams however, the proposed method gives values of the fundamental
frequency which di!er only by about 2% from those obtained from fully numerical
simulation of the problem.

5. CONCLUSIONS

This work presents a simpli"ed method of evaluating the fundamental frequency
for the bending vibrations of a simply supported cracked Euler}Bernouilli beam.

The transverse de#ection of the cracked beam is constructed by adding
polynomial functions to that of the uncracked beam. With this new admissible
function, which satis"es the boundary and the kinematic conditions, and using the
Rayleigh method, closed-form expressions for the fundamental frequency are
obtained. In all the cases considered in this paper, the results are very close to those
obtained numerically by the "nite-element method.
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