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This paper presents a formulation for determining the non-linear dynamic
response of sag cables equipped with discrete oil dampers and subject to harmonic
loading. The state-space method is "rst employed to convert the second order
non-linear partial di!erential equations of motion of the system to "rst order
non-linear partial di!erential equations. Then, in terms of the complex modes of
vibration and their orthogonality properties achieved by a hybrid method, the
generalized modal superposition method is used to reduce the "rst order non-linear
partial di!erential equations to "rst order non-linear ordinary di!erential equations
with respect to time functions only. Finally, the harmonic balance method is
applied to obtain the non-linear algebraic equations, from which the real solutions
for the time functions and non-linear dynamic responses of the cable}damper
system are found. The application and veri"cation of the suggested approach are
presented in Part II of this paper.

( 1999 Academic Press
1. INTRODUCTION

Cable structures can span a long distance or cover a large area with little material
weight. Thus, they have found many applications, such as in long-span cable-
supported bridges, guyed masts, and ocean mooring systems. However, due to their
overall #exibility and low-energy dissipation capacity, cables are susceptible to
large-amplitude vibration that may eventually degrade their performance [1]. To
overcome cable vibration problems, oil dampers have been installed to some long
cables to increase their energy dissipation capacity [2].

To evaluate the e!ectiveness of oil dampers, some theoretical studies have been
carried out [3}6], but the oscillation of cable}damper systems was assumed to be
small and the linear cable vibration theory was applied. While this treatment makes
the problem manageable, the cable}oil damper system with a relatively large-
amplitude vibration may still be possible due to either improper design of oil
0022-460X/99/330447#17 $30.00/0 ( 1999 Academic Press
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dampers or for long cables with large sag. This motivates the writers to study
non-linear vibration of a sag cable with oil dampers.

Dynamic non-linearity occurring in large-amplitude vibration of a sag cable
mainly arises from the quadratic and cubic non-linear terms in its equations of
motion. These non-linear terms come up due to the stretching of the cable
associated with the large-amplitude vibration [7]. The existence of the quadratic
and cubic non-linear terms makes the in-plane cable motion couple with the
out-of-plane cable motion and induces modal interaction [8]. To determine non-
linear dynamic response of a sag cable, the Galerkin method is often used to
convert non-linear partial di!erential equations of motion to non-linear ordinary
di!erential equations with respect to time functions only. Then, either the perturba-
tion method [9,10] or the harmonic balance method [7] is applied to "nd the
solution for the time functions.

When a sag cable is equipped with oil dampers and exhibits non-linear vibration,
the cable}damper system becomes a non-classically damped non-linear system.
Very little information is available on how to determine the dynamic response and
behavior of such a system. This paper thus aims to present a general approach for
studying non-linear vibration of a sag cable with oil dampers. The second order
non-linear partial di!erential equations of motion of the cable}damper system are
"rst converted to "rst order partial non-linear di!erential equations in terms of the
state-space method. The complex modes of vibration of the linear cable}damper
system and their orthogonality properties are then derived, by which the generaliz-
ed modal superposition method is applied to obtain the "rst order non-linear
ordinary di!erential vibrations with respect to time functions only. The harmonic
balance method is "nally applied to seek the real solutions for the time functions
and non-linear dynamic responses of the cable}damper system. The application
and veri"cation of the suggested approach are presented in Part II of this paper.

2. BASIC EQUATIONS

Three-dimensional equations of motion of an inclined sag cable with one pair
of dampers being symmetrically installed (see Figure 1) can be expressed as
follows [5]:
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where x, y and z are the Cartesian co-ordinates in the horizontal, vertical and
lateral directions respectively (see Figure 1); u, w and v are the cable dynamic
displacement components in the x, y and z directions respectively, measured from



Figure 1. Schematic diagram of an inclined sag cable with oil dampers.
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the position of static equilibrium of the cable; F
x
, F

y
and F

z
are the external

dynamic loading per unit length in the x, y and z directions, respectively; f
x
, f

y
and f

z
are the forces exerted by the pair of oil dampers on the cable at the location of x

c
in

the x, y and z directions, respectively; d is the Dirac's delta function; m the mass of
the cable per unit length; t the time; c

1
and c

2
the in-plane and out-of-plane internal

damping coe$cients of the cable, respectively; H the horizontal component of the
static cable tension ¹; h the horizontal component of the dynamic cable tension q;
y
x

the "rst derivative of cable static equilibrium y with respect to x; and x
c
is the

co-ordinate of the pair of dampers measured from the right support of the cable.
The non-linear relationship between the horizontal dynamic cable tension and

dynamic response is taken as
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where E is the cable elastic modulus and A the cable cross-sectional area.
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Assume that the pair of oil dampers have the same damping coe$cient c, and
de"ne the direction of each damper from the ground to the cable as the positive
direction. The direction cosines of each damper can be expressed in terms of two
independent angular variables a and c (see Figure 1). The relationship between the
damper force components and cable displacement components is found to be
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The static pro"le of the inclined sag cable is of the form [11]
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where s is the arc-length co-ordinate associated with the cable static pro"le, ¸
0

the
arc length of the cable under free load condition, g the acceleration due to gravity;
and < the vertical component of the cable static tension at the left support of the
cable.

The "rst derivative of the displacement y with respect to x in equations (1)}(4)
can be then calculated by

y
x
"

dy/ds
dx/ds

. (8)

The boundary conditions of the cable considered here are

u(0, t)"u(¸,t)"0; w(0, t)"w(¸, t)"0; v(0, t)"v(¸, t)"0 (9)

All these basic equations constitute a non-linear vibration problem of an inclined
sag cable with a pair of oil dampers symmetrically installed. For the convenience of
physical understanding, the basic equations described above are not non-dimen-
sionalized.

3. REDUCED FORM OF BASIC EQUATIONS

The cable}damper system being studied is a non-linear non-classically damped
system. Following the way suggested by Foss [12], Caughey and O'Kelly [13], and
Veletsos and Ventura [14] for linear non-classically damped systems, one can
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reduce the second order non-linear partial di!erential equations (1)}(3) into the "rst
order non-linear partial di!erential equations:
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in which the superscript &&in'' means the in plane while &&out'' indicates the out of
plane. The elements in equations (12), (14), (16), and (18) are further expressed as
follows:
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where [kI in] and kI out are the partial di!erential operators.

4. ORTHOGONALITY PROPERTIES

To apply the generalized modal superposition method to the reduced form of
equations of the non-linear cable}damper system, it is necessary to "nd the
orthogonality properties of the complex vibration modes of the linear
cable}damper system. For the linear cable}damper system, the reduced form of
equations of motion of the system is as follows:
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All other quantities in the above two equations are the same as those described in
the last section, except for the sti!ness matrices[Kin] and [Kout]:
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By setting

u(x, t)"U(x)eXt, (33)

w(x, t)"H(x)eXt, (34)

v(x, t)"W(x)eX*t (35)

the complex eigenfunctions U(x), H(x), W(x) and complex eigenvalues X, X*
can be determined from equations (26) and (27) in terms of the hybrid method
developed by the writers [5]. Here, U(x) and H(x) are the components of the
in-plane eigenfunction in horizontal and vertical directions respectively, W(x)
is the out-of-plane eigenfunction of the cable, X is the in-plane eigenvalue
of the cable, and X* is the out-of-plane eigenvalue of the cable. The eigenvalues
occur in complex conjugate pairs, and to each pair there corresponds a complex
conjugate pair of eigenfunctions. Thus, one can constitute the kth generalized
eigenfunctions as
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where U(k)(x) and H(k)(x) are the normalized horizontal and vertical components of
the kth in-plane complex eigenfunction of the cable}damper linear system; W(k)(x) is
the normalized kth out-of-plane complex eigenfunction of the cable}damper linear
system, and X

(k)
and X*

(k)
are the kth in-plane and out-of-plane eigenvalues, respec-

tively.
It can be proved that the generalized eigenfunctions have the following ortho-

gonality properties:
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For the cable without oil damper, the linear system can be seen as a classically
damped system. The orthogonality properties of the modes of vibration can be
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reduced to
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5. GENERALIZED MODAL SUPERPOSITION METHOD

The approximate solutions of equations (10) and (11) can be obtained by
expanding MZinN and MZoutN into modal series:
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Referring to the de"nitions of MZinN and MZoutN in equations (13) and (17), u(x, t),
w(x, t) and v(x, t) can be then written as
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where q(k)
1
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2

(t) are the unknown complex time functions associated with the
kth in-plane and out-of-plane modes respectively.

Note that the complex eigenvalues and complex eigenfunctions of a non-classi-
cally damped system occur as complex conjugate pairs. To ensure the responses
MZinN and MZoutN or u, w and v are real values, the solutions represented in equations
(42) and (43) must be the linear combinations of complex conjugate pairs, which
means that U(2j)(x), H(2j)(x), W(2j)(x), q(2j)

1
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This has been emphasized by using k"1, 2 in equations (42)}(46).

By introducing equations (42) and (43) into equations (10) and (11) and then
applying the Galerkin method in terms of derived orthogonality properties of
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complex vibrational modes, the equations about the time functions can be obtained
as follows:
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where j"1, 2,2
The complex eigenvalues and eigenfunctions of the cable}damper linear system

obtained by the hybrid method rather than sine or cosine functions should be used
in the above equations for two main reasons. One is because the existence of oil
dampers causes the eigenfunctions to have abrupt change at damper locations. The
other is because the performance of the oil damper is sensitive to the frequency
crossover or frequency avoidance phenomenon [6]. Consequently, the integrals
involved in equations (47) and (48) should be evaluated numerically in a consistent
way with the hybrid method.

In the hybrid method [5], the global eigenfunctions of the cable}damper
system are obtained by assembling the local eigenfunctions for each small cable
segment,
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If the ith node is equal to the nth node, the continuity conditions of displacement,
equations (52)}(54), remain the same but the equilibrium conditions of forces at the
nth node should be
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In the above equations, the non-linear dynamic tension h should be used:
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The subscript i indicates the ith segment except for the x-coordinate in which the
subscript i indicates the ith node. The superscripts ! and # mean x approaches
x
i
from the left and right sides of x

i
respectively, and y

i,x
is the derivative of y with

respect to x in the ith segment and is assumed a constant for each small segment.
The assumption that y

i,x
is constant in each element has been checked through the

numerical convergence study of the hybrid method.
In consideration of the connective conditions at each node and using local

eigenfunctions and integration-by-parts formula, the integrals in equations (47) and
(48) can be evaluated, and eventually these two equations become the ordinary
di!erential equations governing the in-plane and out-of-plane non-linear vibration
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of the cable}damper system:
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i
)/(j)

i,x
/(j)

i,x
#2k)

i
y
i,x

/(j)
i,x

/(j)
i,x
#(H#k)

i
y2
i,x

)u(j)
i,x

u(j)
i,x

] dx

!mX2
(j)

N
+
i/1
P

xi`1

xi

J1#y2
i,x

[/(j)
i,x

/(j)
i,x
#u(j)

i,x
u(j)

i,x
], (66)

k(j)
2
"

N
+
i/1
P

xi`1

xi

Ht(j)
i,x

t(j)
i,x

dx!mX*2
(j)

N
+
i/1
P

xi`1

xi

J1#y2
i,x

t(j)
i,x

t(j)
i,x

dx, (67)

a(j,k,k1)
1

"

N
+
i/1
P

xi`1

xi

[0)5kK
i
(/(k)

i,x
/(k1)
i,x

#u(k)
i,x

u(k1)
i,x

)(/(j)
i,x
#y

i,x
u(j)
i,x

)

#k)
i
(/(k)

i,x
#y

i,x
u(k)

i,x
)(/(j)

i,x
/(k1)

i,x
#u(j)

i,x
u(k1)

i,x
)] dx, (68)
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b(j,k,k1)
1

"

N
+
i/1

kK
iP

xi`1

xi

[(/(k)
i,x
#y

i,x
u(k)

i,x
)t(k1)

i,x
t(j)

i,x
] dx, (69)

a(j,k,k1)
2

"

N
+
i/1
P

xi`1

xi

0)5kK
i
t(k)

i,x
t(k1)

i,x
(/(j)

i,x
#y

i,x
u(j)

i,x
) dx, (70)

a(j,k,k1,k2)
3

"

N
+
i/1
P

xi`1

xi

0)5kK
i
(/(k)

i,x
/(k1)
i,x

#u(k)
i,x

u(k1)
i,x

)(/(j)
i,x

/(k2)
i,x

#u(j)
i,x

u(k2)
i,x

) dx, (71)

b(j,k,k1,k2)
3

"

N
+
i/1
P

xi`1

xi

0)5kK
i
t(k)

i,x
t(k1)

i,x
t(k2)

i,x
t(j)

i,x
dx, (72)

a(j,k,k1,k2,)
4

"

N
+
i/1
P

xi`1

xi

0)5kK
i
t(k)

i,x
t(k1)
i,x

(/(j)
i,x

/(k2)
i,x

#u(j)
i,x

u(k2)
i,x

) dx, (73)

b(j,k,k1,k2)
4

"

N
+
i/1
P

xi`1

xi

0)5kK
i
(/(k)

i,x
/(k1)
i,x

#u(k)
i,x

u(k1)
i,x

)t(k2)
i,x

t(j)
i,x

dx, (74)

Q(j)
1
"

N
+
i/1

J1#y2
i,xP

xi`1

xi

( f
x
/(j)
i
#f

y
u(j)

i
) dx, (75)

Q(j)
2
"

N
+
i/1

J1#y2
i,xP

xi`1

xi

f
z
t(j)

i
dx (76)

in which

kK
i
"

EA
(1#y2

i,x
)3@2

. (77)

6. HARMONIC BALANCE METHOD

To "nd the solutions about the unknown time functions in equations (62) and
(63), the harmonic balance method is employed. Assume that the external harmonic
loads can be expressed as

Q(j)
1

(t)"A(j)
in

sin(ut), (78)

Q(j)
2

(t)"A(j)
out

sin(ut), (79)

and the time functions are of the form

q(j)
1
"R

j,0
#

4
+
n/1

(R(n)
j,1

cos nut#R(n)
j,2

sin nut) (80)

q(j)
2
"S

j,0
#

4
+ (S(n)

j,1
cos nut#S(n)

j,2
sin nut) (81)
n/1
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where R
j,0

, R(n)
j,1

, R(n)
j,2

, S
j,0

, S(n)
j,1

and S(n)
j,2

are complex constants to be determined
and satis"ed with R

2m,0
"RM

2m~1,0
, R(n)

2m,1
"RM (n)

2m~1,1
, R(n)

2m,2
"RM (n)

2m~1,2
, S

2m,0
"

SM
2m~1,0

, S(n)
2m,1

"SM (n)
2m~1,1

, S(n)
2m,2

"SM (n)
2m~1,2

(m"1, 2,2 ). The superscript ~
is the conjugate symbol of a complex function.

Substituting equations (78)}(81) into equations (62) and (63) and equating the
constants and the coe$cients of cos(nut)and sin(nut) yield

m(j)
1

g1jn
L
#k(j)

1
g2jn

L
#

=
+

k/1,2

=
+

k1/1,2

a(j,k,k1)
1

g3n
L,k,k1

#

=
+

k/1,2

=
+

k1/1,2

a(j,k,k1)
2

g4n
L,k,k1

#

=
+

k/1,2

=
+

k1/1,2

=
+

k2/1,2

a(j,k,k1,k2)
3

g5n
L,k,k1,k2

#

=
+

k/1,2

=
+

k1/1,2

=
+

k2/1,2

a(j,k,k1,k2)
4

g6n
L,k,k1,k2

"g7j
L
, (82)

m(j)
2

p1jn
L
#k(j)

2
p2jn

L
#

=
+

k/1,2

=
+

k1/1,2

b(j,k,k1)
1

p3n
L,k,k1

#

=
+

k/1,2

=
+

k1/1,2

=
+

k2/1,2

b(j,k,k1,k2)
3

p4n
L,k,k1,k2

#

=
+

k/1,2

=
+

k1/1,2

=
+

k2/1,2

b(j,k,k1,k2)
4

p5n
L,k,k1,k2

"p6j
L
, (83)

where j"1, 2,2 and ¸"0, 1, 2, corresponding to the equations about the
constant, cos(nut) and sin(nut), respectively. Thus, for the jth time functions,
equations (82) and (83) imply actually six complex equations or 12 real equations.
g1jn

L
, g2jn

L
, g3n

L,k,k1
, g4n

L,k,k1
, g5n

L,k,k1,k2
, g6n

L,k,k1,k2
, g7j

L
, p1jn

L
, p2jn

L
, p3n

L,k,k1
, p4n

L,k,k1,k2
,

p5n
L,k,k1,k2

and p6j
L

are functions of R
j,0

, R
j,1

, R
j,2

, S
j,0

, S
j,1

and S
j,2

listed in
Appendix A.

Equations (82) and (83) are non-linear algebraic equations and can be solved by
the Newton}Raphson method. Then, through equations (80) and (81) and (44)}(46)
the non-linear vibration response of the cable}damper system can be "nally
determined.

The approach suggested here for a non-linear vibration analysis of the
cable}damper system has been examined by checking the orthogonality properties
of the complex modes of vibration of the cable}damper systems obtained by the
hybrid method and by comparing the various coe$cients in equations (64)}(76)
with Irvine's theory [15] for the case of a linear system without oil damper.
A convergence study on the required number of segments was also carried out to
ensure that the constant assumption of y

i,x
in each element is valid and the complex

eigenfunctions in the subsequent non-linear vibration study have a high accuracy.
The results were found to be satisfactory and the details can be found in Yu's PhD
thesis [16]. Further veri"cation of the suggested approach is presented in Part II of
this paper.
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7. CONCLUSIONS

A formulation for determining the non-linear vibration response of a non-
classically damped cable}damper system has been presented in this paper. The
second order partial non-linear di!erential equations of motion of the system were
"rst reduced to "rst-order non-linear partial di!erential equations. The ortho-
gonality properties between the complex modes of vibration of the linear
cable}damper system were then derived. Based on the derived orthogonality
properties and the complex modes of vibration achieved by the hybrid method, the
generalized modal superposition method was then applied to the "rst order
non-linear partial di!erential equations to obtain the "rst order non-linear ordi-
nary di!erential equations with respect to time functions only. The harmonic
balance method was "nally applied to convert the non-linear ordinary di!erential
equations to non-linear algebraic equations, from which the real solutions for the
time functions and non-linear cable dynamic responses were found. The formula-
tion will be veri"ed in Part II of this paper through a comparison with experimental
results.
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APPENDIX A: PARAMETERS IN EQUATIONS (82) and (83)

The following are the parameters in equations (82) and (83) when n equal to 1.
(1) ¸"0:

g1j1
0
"0,

g2j1
0
"R

j,0
,

g31
0,k,k1

"R
k,0

R
k1,0

#

R(1)
k,1

R(1)
k1,1

#R(1)
k,2

R(1)
k1,2

2
,

g41
0,k,k1

"S
k,0

S
k1,0

#

S(1)
k,1

S(1)
k1,1

#S(1)
k,2

S(1)
k1,2

2
,

g51
0,k,k1,k2

"R
k,0

R
k1,0

R
k2,0

#

R(1)
k1,1

R(1)
k2,1

#R(1)
k1,2

R(1)
k2,2

2
R

k,0

#

R(1)
k,1

R(1)
k2,1

#R(1)
k,2

R(1)
k2,2

2
R

k1,0
#

R(1)
k,1

R(1)
k1,1

#R(1)
k,2

R(1)
k1,2

2
R

k2,0
,

g61
0,k,k1,k2

"S
k,0

S
k1,0

R
k2,0

#

S(1)
k1,1

R(1)
k2,1

#S(1)
k1,2

R(1)
k2,2

2
S
k,0

#

S(1)
k,1

R(1)
k2,1

#S(1)
k,2

R(1)
k2,2

2
S
k1,0

#

S(1)
k,1

S(1)
k1,1

#S(1)
k,2

S(1)
k1,2

2
R

k2,0
,

g7j
0
"0,

p1j1
0
"0,

p2j1
0
"S

j,0
,

p31
0,k,k1

"R
k,0

S
k1,0

#

R(1)
k,1

S(1)
k1,1

#R(1)
k,2

S(1)
k1,2

2
,
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p41
0,k,k1,k2

"S
k,0

S
k1,0

S
k2,0

#

S(1)
k1,1

S(1)
k2,1

#S(1)
k1,2

S(1)
k2,2

2
S
k,0

#

S(1)
k,1

S(1)
k2,1

#S(1)
k,2

S(1)
k2,2

2
S
k1,0

#

S(1)
k,1

S(1)
k1,1

#S(1)
k,2

S(1)
k1,2

2
S
k2,0

,

p51
0,k,k1,k2

"R
k,0

R
k1,0

S
k2,0

#

R(1)
k1,1

S(1)
k2,1

#R(1)
k1,2

S(1)
k2,2

2
R

k,0

#

R(1)
k,1

S(1)
k2,1

#R(1)
k,2

S(1)
k2,2

2
R

k1,0
#

R(1)
k,1

R(1)
k1,1

#R(1)
k,2

R(1)
k1,2

2
S
k2,0

,

p61
0
"0.

(2) ¸"1:

g1j1
1
"uR(1)

j,2
,

g2j1
1
"R(1)

j,1
,

g31
1,k,k1

"R(1)
k,1

R
k1,0

#R
k,0

R(1)
k1,1

,

g41
1,k,k1

"S(1)
k,1

S
k1,0

#S
k,0

S(1)
k1,1

,

g51
1,k,k1,k2

"R
k,0

R
k1,0

R(1)
k2,1

#R
k,0

R(1)
k1,1

R
k2,0

#R(1)
k,1

R
k1,0

R
k2,0

#

3R(1)
k,1

R(1)
k1,1

R(1)
k2,1

4

#

R(1)
k,1

R(1)
k1,2

R(1)
k2,2

#R(1)
k,2

R(1)
k1,1

R(1)
k2,2

#R(1)
k,2

R(1)
k1,2

R(1)
k2,1

4
,

g61
1,k,k1,k2

"S
k,0

S
k1,0

R(1)
k2,1

#S
k,0

S(1)
k1,1

R
k2,0

#S(1)
k,1

S
k1,0

R
k2,0

#

3S(1)
k,1

S(1)
k1,1

R(1)
k2,1

4

#

S(1)
k,1

S(1)
k1,2

R(1)
k2,2

#S(1)
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S(1)
k1,1

R(1)
k2,2

#S(1)
k,2

S(1)
k1,2

R(1)
k2,1

4
,

g7j
1
"0,

p1j1
1
"uS(1)

j,2
,

p2j1
1
"S(1)

j,1
,

p31
1,k,k1

"R(1)
k,1

S
k1,0

#R
k,0

S(1)
k1,1

,

p41
1,k,k1,k2

"S
k,0

S
k1,0

S(1)
k2,1

#S
k,0

S(1)
k1,1

S
k2,0

#S(1)
k,1

S
k1,0

S
k2,0

#

3S(1)
k,1

S(1)
k1,1

S(1)
k2,1

4

#

S(1)
k,1
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S(1)
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S(1)
k1,1
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k2,2

#S(1)
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S(1)
k1,2

S(1)
k2,1

4
,
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p51
1,k,k1,k2

"R
k,0

R
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S(1)
k2,1

#R
k,0

R(1)
k1,1

S
k2,0

#R(1)
k,1

R
k1,0

S
k2,0

#

3R(1)
k,1

R(1)
k1,1

S(1)
k2,1

4

#

R(1)
k,1

R(1)
k1,2

S(1)
k2,2

#R(1)
k,2

R(1)
k1,1

S(1)
k2,2

#R(1)
k,2

R(1)
k1,2

S(1)
k2,1

4
,

p6j
1
"0.

(3) ¸"2:

g1j1
2
"!uR(1)

j,1
,

g2j1
2
"R(1)

j,2
,

g31
2,k,k1

"R
k,0

R(1)
k1,2

#R
k1,0

R(1)
k,2

,

g41
2,k,k1

"S
k.0

S(1)
k1,2

#S
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S(1)
k,2

,

g51
2,k,k1,k2

"R
k,0

R
k1,0

R(1)
k2,2

#R
k,0

R(1)
k1,2

R
k2,0

#R(1)
k,2

R
k1,0

R
k2.0

#

3R(1)
k,2

R(1)
k1,2

R(1)
k2,2

4

#

R(1)
k,1

R(1)
k1,1

R(1)
k2,2

#R(1)
k,1

R(1)
k1,2

R(1)
k2,1

#R(1)
k,2

R(1)
k1,1

R(1)
k2,1

4
,

g61
2,k,k1,k2

"S
k,0

S
k1,0

R(1)
k2,2

#S
k,0

S(1)
k1,2

R
k2,0

#S(1)
k,2

S
k1,0

R
k2,0
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k,2

S(1)
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4

#
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S(1)
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#S(1)
k,2
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,

g7j
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,
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,

p2j1
2
"S(1)

j,2
,

p31
2,k,k1

"R(1)
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