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1. INTRODUCTION

The "rst author has investigated the eigevalue determination problem of systems
obtained by adding spring}mass (damper) secondary systems to laterally vibrating
beams and as presented the results in a series of papers. The combined system
considered in reference [1] has a spring}mass system attached at its free end which
carried tip mass, the other end being "xed. Reference [2] is a more generalized
version of reference [1] because there, more than one secondary system is
considered. In latter work [3] the case of adding viscous dampers to the secondary
systems is investigated. Motivated by the fact that the problem of longitudinally
vibrating rods with secondary systems attached has not been invesigated in the
literature, the study in reference [4] was considered with the derivation of the
eigenfrequencies of a "xed-free longitudinally vibrating elastic rod carrying a tip
mass (primary system) to which a spring}mass (secondary system) is attached
in-span, and their sensitivity. The present note is in some sense an extention of
reference [4] because it is aimed here to derive the characteristic equation for the
case in which the attached secondary system is viscously damped. First the &&exact''
characteristic equation is derived via a boundary value problem formulation. Then,
for comparison purposes, a second formulation of the characteristic equation is
given for the approximate determination of the characteristic values of the
mechanical system.

2. EXACT CHARACTERISTICS EQUATION

The system to be dealt with in the present study is shown in Figure 1. It is
a longitudinally vibrating "xed-free elastic rod of axial rigidity EA and mass per
unit length m carrying a tip mass M to which a secondary, viscously damped
spring}mass system is attached in-span. The main subject of the present study is to
derive the exact characteristic equation of the combined system described above in
order to determine their eigencharacteristics, i.e., eigenvalues.
0022-460X/99/330573#08 $30.00/0 ( 1999 Academic Press



Figure 1. Longitudinally vibrating "xed-free rod with a tip mass and viscously damped
spring}mass attached in-span.
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The partial di!erential equation of free longitudinal vibrations of a uniform rod
is the well-known equation

EAuA (x, t)"muK (x, t), (1)

where u (x, t) represents the axial displacement of the rod at point x and time t. The
primes and overdots denote partial derivatives with respect to x and t, respectively.
The regions to the left and right of the attachment point of the secondary system to
the rod are denoted hereafter as u

1
(x, t) and u

2
(x, t) where both are subject to

di!erential equation (1). The corresponding boundary and matching conditions are
as follows:
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Here, zN
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(t) means the axial displacements of the mass m
e
.

One assumes the solutions to be of the form
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where j denotes the unknown characteristic value of the combined system which is
a complex number in general. In the expressions above, both u

j
(x, t) and ;

j
(x)

represent complex-valued functions. The essential point here is to imagine the
actual longitudinal displacement u

j
(x, t) as the real parts of some complex-valued

functions for which the same notation is used for the sake of briefness.
By putting expressions (3) into partial di!erential equation (1), the following

ordinary di!erential equations for functions ;
j
(x) are obtained:
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where

b2"
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is introduced.
The general solutions of di!erential equations (4) are
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where C
1
!C

4
represent four integration constants yet to be determined. Substitu-

tion of the expressions in equation (6) into the boundary and matching conditions
(2) yields a set of "ve equations for the determination of these constants and ZM

1
.

A non-trivial solution of this set is possible only if the determinant of the coe$-
cients vanishes. This determinant can be brought, after lengthy operations, into the
form
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Equation (7) is the characteristic equation of the mechanical system in Figure 1.
The solution of this equation with respect to b1 yields via

j"Gu
0
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the &&exact'' values of the unknown complex eigenvalues j of the mechanical system.
For comparison of the numerical results, in the following, a second formulation

of the characteristic equation of the same system will be given for the approximate
determination of the characteristic values. Thus, on the other hand, trial values for
the numerical solution of the exact equation can be determined in a very sensitive
manner. The formulation is based on the discretization of the rod by its "rst
n eigenfunctions, according to the assumed modes method.

3. AN APPROXIMATE CHARACTERISTIC EQUATION

It was shown in reference [4] that the kinetic and potential energies of the system
in Figure 1 can be formulated as
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Here, g
i
(t) (i"1,2 , n) are the generalized co-ordinates. zN

0
(t), zN
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(t) and zN
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(t)

denote the axial displacements of the attachment point of the secondary system to
the rod, the secondary mass m

e
and the tip mass M, respectively. Finally, u

i
is the

ith eigenfrequency of the bare "xed-free elastic rod.
The Rayleigh's dissipation function is
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The formulation of the approximate characteristic eqauation uses the approach
of Dowell [5] which was also used in reference [4]. It is essentially based on the
assumed modes method in conjunction with Lagrange multipliers method. The
result is a determinantial equation for the characteristic equation of the system.
Hence, the eigenvalues of the system are determined by solving this equation
numerically.

For a system with n degrees of freedom where l redundant co-ordinates are used,
Lagrange's equations in connection with Lagrange multipliers are as follows [6]:
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with the kinetic potential ¸"¹!< and l constraint equations
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Here, q
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and j
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denote the kth generalized co-ordinate of the system and lth
Lagrangian multiplier. In the present case, there are two constraint equations
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The evaluation of Lagrange's equations (12) by considering equations (10), (11),
(13) and (14) results in the following set of n#3 equations:
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The substitution of the exponential solutions
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into equations (14) and (16) yields a set of (n#5) equations for the amplitudes of the
exponential functions. It can be shown that these equations result in a set of two
homogeneous equations for j2

1
and j2

2
. A non-trivial solution of this set is possible

only if the determinant of the coe$cients vanishes. This in turn leads to the
following characteristic equation of the system in Figure 1:
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and those de"ned in equation (8), the characteristic equation above can be rewritten
in terms of non-dimensional quantities as
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This equation is to be solved with respect of j*. It is reasonable to expect that the
dimensionless characteristics values j* obtained from equation (20) converge to
those of the exact characteristic equation (7) if n goes to in"nity. It is to be noted
that according to equation (9), j*"$b1 .

4. NUMERICAL RESULTS

This section is devoted to the numerical evaluation of the expressions established
in the preceding sections. For the numerical applications, the following non-
dimensional values are chosen for the physical data of the mechanical system in
Figure 1: am

%
"ak

%
"1, D

e
"0)025. The number of the modes n in expansion (10) is

chosen is 100. The "rst "ve pairs of dimensionless eigenvalues j* of the system
(arranged with respect to the magnitude of the imaginary parts) are given in Table
1 as a function of g, i.e. the location of the attachment point of the secondary
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system to the rod, where b
M
"0)5 is chosen. The complex numbers in the "rst rows

are j*-values obtained from the numerical solution of the &&exact'' characteristic
equation (7). The numbers in the second rows are values obtained from the
approximate equation (20) considering equations (9) and (19). The numerical
solutions of Equations (7) and (20) are carried out by MATHEMATICA. The
agreement of &&exact'' and approximate characteristic values is very good.

As another numerical application, in Table 2, the dimensionless characteristic
values j* are given as a function of b

M
, i.e., dimensionless tip mass ratio, where

g"0)4 is chosen. The comparison of the complex numbers from both rows
indicates clearly that the agreement is again very good. During the numerical
computations, it is observed that only in the case of the (#) sign of t, as given by
equation (8), physically meaningful characteristic values are obtained.

5. CONCLUSIONS

The present study deals with the determination of the characteristic values of
a "xed-free, longitudinally vibrating elastic rod carrying a tip mass to which
a viscously damped spring}mass system is attached in-span. The &&exact'' character-
istic equation is established via a boundary value problem formulation. Moreover,
for comparison purposes, using the normal mode method, an approximate but
quite accurate characteristic equation is established. Both characteristic equations
are then numerically solved for various combinations of physical parameters. The
results are collected in two tables.
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