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The warping high-order theory of plate deformation developed in reference [1] is
extended here to shells. A theory of shell deformation is derived which accounts for
the effects of transverse shear deformation and a non-linear distribution of the
in-surface displacements with respect to the thickness co-ordinate. This theory uses
the normal modes associated to the normal fibre (considered as a geometrical
beam) as basis functions. Using only the rigid body modes, we find the classical
theory and using the deformation normal modes, a high order theory is construc-
ted. This theory is compared to other theories and the exact solution through an
application to a particular problem of shells.
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1. INTRODUCTION

In Hassis [1] and in Lo et al. [2], it can be seen that sophisticated models,
compared to classical theories, find applications to problems where classical plate
theory is simply inadequate to describe the behaviour. Such examples concern
contact or laminated problems involving plates and shells, or high-frequency
analysis. The present work concerns the derivation and evaluation of a particular
“warping” theory of shell behaviour.

Before describing the present theory, it is necessary briefly to review and com-
ment upon the “recent” developments in the generalization of classical shell theory.
The developments of Reissner [3, 4], generalizing the classical shell theory, incor-
porate the effect of shear deformation. The derivation given by Reissner resulting in
displacements of the form

Ui(xh, x%, x%) = ug (xh, x?) + x° B (x*, x?),
U(M) = UZ(xl’ xZ, XS) = uZ(xla xl) + xsﬁZ(xl’ X2), (1)

U3(x1: x27 x3) = U3(Xl, XZ),

where M is a point of the shell, (x!, x?) are the surface co-ordinates and x> is the
normal co-ordinate to the surface. Relation (1) predicts a uniform shear stress
distribution through the thickness of the plate. It is then necessary to introduce
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a correction factor into the shear stress resultant; this is incorrect and in general
would violate the surface conditions.
The next higher order theory, for shells, involves displacement forms of type:

Ui(x?, x% x3) = uq(xh, x?) + x3 B (xh, x?),
UM) =< Us(x', x%, x%) = up(x', x?) 4+ x> B2 (x', x?), (2

Us(x', x%, x%) = us(x!, x?) + x*Ba(x', x?) + (x*)*(5(x1, x?).

This theory includes the effect of transverse normal strain. Displacement assump-
tion of the form of equation (2) has been used by Naghdi [5] to derive a general
theory of shells and by Essenberg [ 6] to obtain the corresponding one-dimensional
plate theory. They used a shear correction factor which is not appropriate for use
with the displacement form of equation (2). This is because non-uniform shear
stress is implied by equation (2) along with consequent possible satisfaction of top
and bottom boundary conditions for shear traction; thus the rationale for a correc-
tion factor is obviated.

For plates, Nelson and Lorch [7], Reissner [8,9] and Lo et al. [2] presented
a different high order theory. Bhimaraddi [10] also used a high order theory for free
vibration analysis for circular cylindrical shells.

The warping model for plates is associated to the following displacement
field [1]:

Ui(x!, x%, x%) = uy (x', x?) + x3 B (x", x2) + Y, Wi (x', x?) d,(x?),
U, (x', X%, x%) = up(x!, x?) + x3f2(x", x%) + Y, Wh(x', x*) du(x?)

Us(x', x2, x7%) = us(x', x?) + ), Wh(x1, x?) ®,(x>), (3)
k

where {¢,} and {®,} denote respectively the nth transverse and the kth longitudinal
modes (see Appendix A) inducing deformations of normal fibre which is considered
as a geometrical beam. The functions (W%, W%, W¥) represent the participation of
the deformation modes to warping of normal fibres. The functions ¢, and @, are
called warping co-ordinates.

This work is an extension of the warping theory for plate deformation presented
by Hassis [1] to the shell structures.

2. MOTIVATION

For plates, in the case of top and bottom boundary conditions of shear traction
and of some loads, or in higher dynamic analysis, classical theories, except the
higher theory of Lo [2] and Hassis [1], are unsatisfactory for predicting the
non-uniform shear and the normal stress, and displacement distribution. In refer-
ence [1], it has been seen that for plate bending problems where the loading
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characteristics possess a high degree of asymmetry with respect to middle plane,
a higher theory (Lo or Hassis) is required.

Also, in the case of laminated plates and shells, a high order must be used
because of the likely strong non-linear thickness distribution of stress and displace-
ment.

The warping theory for plates is here extended to shells. This theory is based on
the non-uniform distribution of in-plane displacement: it is called the “warping”
phenomenon. In the present high order theory, non-uniformity of in-surface dis-
placement of shells is considered by a linear combination of normal modes of the
normal fibre to the mid-surface. When only the first six normal modes (rigid-body
modes) are considered, this theory corresponds to the Reissner—Mindlin lower
order theory. In the present work, the transverse normal deformation modes, of the
normal fibre, are considered.

3. DISPLACEMENT FIELD

Let ¢, be the nth transverse mode (see Appendix A) inducing deformations of
normal fibre which is considered as a geometrical beam. Each natural frequency
associated with transverse normal modes corresponds to two transverse normal
modes: one is in the “first” direction of the tangent plane and the other is in the
“second” direction of the tangent plane [11].

The shell is characterized by the surface and the normal fibre. The surface is
defined by the vectorial function Om(x!, x?). x' and x* are two parameters which
characterize the surface. x* is the normal co-ordinate to the surface. The surface is
also characterized by the local natural base (a,, a,, n) defined by

d0m 00m _a;Aa,

Ay = A, = —— n= .
5x1 ’ 6x2 ’ |31 /\azl

The following local natural base (a', a n) is also used:
a* = a"a;, a,=a,a" with a3 =a,.a;; a* = a*.a’.

a,p 1s the covariant metric coefficient; Greek indices run from 1 to 2 (the standard
summation convention for repeated indices will be used).

We propose here two displacement fields which combine the warping theory and
the Kirchhoff field or the warping theory and the Mindlin field. The present theory is
appropriate to the following displacement forms

e For the Warping—Kirchhoff theory,

_ Ul(xla xza x3) =Uu; — x3(u3,/l + Cﬁuy) + Wl/ll(l)n(x3)
U(M) - {Ug,(xl, x2, x3) = u, (@, n), (43)
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e For the Warping—Mindlin theory,
U 1 2 3 — 3 Wll , 3
U(M): ll(xlaxz’x3) ul+x ﬁl_l_ (I)(x ) , (4b)
U3(X » X7, X )=M3 (a*,n)
where (u;, u3) are the displacements of the surface written in the local surface
co-ordinate, (U,, Us) are the displacements of a point of the shell written in the
local surface co-ordinate, C,; is the coefficient of the curvature tensor, f3; is the
rotation of the normal fibre.
The following notation will be used:

Uy Wi B
u
Zerld)n = '{(bn, U, =|Uz |, TC(llw) = < 1>5 Wh=|W3|, B = ﬂl .
n us
Uus 0 0

This displacement field includes both in-surface and out-of-surface deformation
modes. The vector W” represents the participation of the deformation modes to the
warping of normal fibre. The functions ¢, are called warping co-ordinates. Figure 1
shows the first two transverse modes (h is the thickness of the shell). The number of
modes used depends on the order of the theory required.

>h

Figure 1. The two first transverse modes. —— Mode 1; --- Mode 2.

4. DEFORMATION TENSOR-STRESS TENSOR-STRESS RESULTANT

4.1. DEFORMATION TENSOR

The un-deformed and deformed shell is characterized by as shown in Table 1.
Using the previous derivation, the deformation tensor associated to equation (4)

1S written as
1 ouU ouU
=—<A, — +A;—
bap 2{ * oxP A 6x“}’

26,3 = n'a—U + 6_U3 (a, — x3Cla)) (5a)
ox*  0x
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TABLE 1
Un-deformed shell Deformed shell
Surface: Om(x?, x?); (a, a,, n) Surface: Om’ = Om + u,; (a}, a5, n')
Shell: 0OM = Om + x°n Shell: OM’ = Om + x°n + U
Natural base: (A,, n) Natural base: (A, A%)
0M on o0Mr’ ouU
A =— " = 3 — _ 3C/l A = — v
AP W X oxt BT X et “oxt «t 0x”
o0Mr’ oU
Ay =—7 = —
3 ox3 " ox3
. . Aa,B 0 . . A;ﬂ ;3
Coeflicient of metric tensor: 0 1 Coeflicient of metric tensor: | 1
3a
ouU oU
w=A A, —+A;.—
= w + A 6xﬂ+ B ox
ouU ouU
'y = — A, +—
= S ()
ou . au, 1 U3 _
Note: — =[U,,,— U>C,Ja* + [U, + U,CiIm; U, ,, = —> — U, I';; and U3, = ——; U, is the
ou* ’ ou* ! ’ ou*

covariant derivate; I';, are the coefficients of Chirstoffel.

Using the components of the displacement in the natural local base associated to
the surface, equation (5a) becomes

304 304
bap =51 37 —x"Cha; w5 —x Cﬁal-axa

1f U U U oU
* oxP b ox oxP

_1 (Usip + Uiy — 2U3C,p)
2| = x*(U,L, sz + Ujsip C} —2U, Cicw) ’ (5b)
26,5 = (Us,, + U, 3) + U,CL — XU, 5CL.

In the small displacement theory, the deformation tensor will be the following:

e For the Warping-Kirchhoff theory,

Eup = yrxﬂ(uw) - X3erﬁ(uw) + (bnYaB(wn)a

26,3 = G sW" + ¢, WLCE,
Ea3 ¢,3 <l5 p) (6a)
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e For the Warping—Mindlin theory,

Eup = Vaﬁ(uw) + x3yaﬁ(ﬁ) - x3paﬂ(uw) + (bn’YaB(W“)a

26,5 = (B + u,Ch + u3 ) + (¢n s Wi + 0 W4HCY),

(6b)
with
1 3
yaﬂ(V) = E (Vﬁlzx + Valﬂ) — V Caﬁa
K,4(V) :1 [Vl + Vi + [ViCiip + [ViCil s
ap 2 + VlLaCﬁ + V,uﬁCQ — 2V3C£C)~ﬁ ?

1
Pup(V) = E(Vuacﬁ + Vuﬂco/}) — VSCQCM:-

y and K are, respectively, the membranous deformation tensor and the curvature
variation tensor. For thin shells, the components of tensor p,; can be neglected; this
is from the Novozhilov-Donnell theory [12,13].

4.2. STRESS TENSOR

The normal stress component and the shear stress components are the following:
e For the Warping—Kirchhoff theory,

_ E |:(1 - V)Vali(uw) + d)nwn) + vIr {’Vozli(uw + ¢nwn)}:|

Tab =132 — (1 = v)x*Kp(u,) — vIr{x*K,;(u,)}

E ,
3 = A1 . n WZ + anC;;
043 2(1+v)[d)’3 . W5Cy] (7a)
e For the Warping—Mindlin theory,
Gon = E (1 - V) [yaﬂ(uw) + X3B - ¢an) - x3paﬁ(um)]
T =V T (g, + X2B + 0, W) — x3p,p(0,)) |
E
043 = [(ﬁa + u/lci' + u3,a) + (d)n,SW; + (.an}Ca}z')]a (7b)
2(1 +v)

where E is Young’s modulus and v is the Poisson ratio.
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4.3. STRESS RESULTANT

The stress resultants are defined by
Nll N12 M11 M12 Pil Pr112
[N] = |:N21 N22:|a [M] = |:M21 M22:|: [Pn] = |:P31 P32:|3

(TY. o (L), 4 _(On
T‘(TZ)’ L"‘(L,%)’ Q"‘(gs) ®

with
Nll N12 N22 i 1
Mll M12 M22 — J‘ x3 [0_1 1012022]dX3;
Pt Pz P2 | | g,
] 1
LIL? | = J ¢, |[0'30?3]dx;.
0.0 | b

The stress resultants in terms of displacements are given by the following:

e For the Warping—Kirchhoff theory,

N =D,[(I —v)v(u,) + vTr{v(u,)} 1], (a)
M = —D,[(1 = v)(K(u,)) + vTr{K(u,)} - 1], (

P, = Dy [(1 —v)y(Z,W") + vTr(y(2,W")- 1], (11a)
T =D;W"O,, (12a)
L, = D;[2,C-W"], (13a)
Q. = D;[E,W"], (14a)

e For the Warping—Mindlin theory,

N =D,[(1 —v)y(u,) + vTriy(u,)} 1], (9b)
M =D, [1 —v)(v(p) — p(u,)) + vIr(v(B) — p(u,) 1],  (10b)
P, = D,[(1 —v)v(Z,W") + vTr(y(2,W")- 1], (11b)
T = D;[B + Vuz + C-u,, + W'0,], (12b)
L, = Ds;[2,C-W"], (13b)
Q, = D;[0,(B + C-u, + Vus) + W'5,], (14b)
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where 1 is the unit tensor and (D, D,, D3) are the stiffness coefficients defined by

Eh? Eh Eh

! T (=Y T 2(1+)

12(1 —v?) (15)

The constants used in equations (9)-(14) are defined by

S| o=

@n=ljz(¢n),3dx3, z,,=ﬂ2(¢n)2dx3, 5, = J (B (Ba)adx’. (16)

h h h
2 2

=

5. EQUILIBRIUM EQUATIONS

The principle of the virtual work is used to derive the governing equilibrium
equations (for more details see Appendices B and C):

e For the Warping—Kirchhoff theory,
N — 2M1BCs — M*C5, 4 + F* = phit*,
N“I’Caﬂ + (Mf_ﬁﬂ)la — MaBCQCgﬁ + F3 + mia = phug,, (173.)
(Pi)1p — Q% — C3Li + Fii = phZ, (W),
or
divN — 2CdivM — VC:M + F,, = ph (i),
N:C + div(divM) — (C-M):C + F3 + divm,, = phiis, (18a)
divP, — Q, —C-L, + F, = phx,W",
e For the Warping—Mindlin theory,
Ny — (M*C3) 5 — C5T + F* = phii®,
ph3 .
Mac[} S o __ 7 pa
Ip +mt ==
N“ﬂCaﬁ—i- Tia—MapC;}Clﬂ—FF‘% :phl‘ig,, (17b)
(P2),; — Q% — CiL}: + F2 = ph X, (W?)"

or
divN — div(C-M) —C-T + F,, = ph=(i,),
. ph3 .
M-T =—
div + m,, 7 B
N:C + div(T) — (C-M):C + F3 = phii®, (18b)

divP, — Q, — C-L, + F, = ph X,W",
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where p is the mass density, / is the thickness of the shell, z(ii,,) is the projection on
surface of the surface’s acceleration i, F,, is the in-surface force vector, m,, is the
in-surface moment vector and F" is the projection of the in-surface vector force on
the nth transverse normal mode.

For a shell loaded by a surface density force applied on dw x T —h/2, h/2[(0w is
the boundary of the surface w), boundary conditions are the following:

e For the Warping—Kirchhoff theory:

N*Pyy + 2M*Covy + F§ =0,
(M%p)v, — (M*Pvg) 1, + F§ =0, (19a)
Pilvg + (F§), =0,
or
N-v+2C-M-v+(F,), =0,
(divM)-v — div(M-v) + F2 =0, (20a)
(P),v + (Fy), =0,

e For the Warping—Mindlin theory:

NPy, + M*y,C + F§ =0,

My, + mg = 0, (19b)
T*,+ F3=0,

PiPvg 4 (F§), = 0,

N-v+C-M-v+(F,),=0,
M:-v + (m,), =0, (20b)
T-v+ F3=0,
(P}, v + (Fy), =0,
where (F ), is the in-surface boundary force vector, (m,,), is the in-surface boundary

moment vector and (Fy), is the projection of the in-surface boundary force vector on
the nth transverse normal mode.

6. EVALUATION OF THE PRESENT THEORY

6.1. APPLICATION I

Consider an infinite cylindrical shell with internal radius R, and external radius
R, (see Figure 2). The cylindrical shell is submitted to internal shear forces F/R;
and external shear forces F/R, (F is a linear density force).
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Figure 2. Cylindrical shell.
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The elastic solution of the shear stress as a function of the radius r is

F
e . 21
Opz =~ (21)
Note: g,, is zero for the Kirchhoff theory.
Using the Reissner—Mindlin model, the shear stress is written as
F/1 1
= ——(—+—) 22
Oy > <R1 + R2> (22)
By considering the present theory, the shear stress is written as follows:
D3 a(bn n
O-rz:7|:ﬁ1 +$W1:|: (23)
with
F —h/2 h/2 hi1l 1
wio F L [hh2) ) g k(1 1
D;(E, — ©5) R, R, 2\R; R,

 Fh(1 1
ﬂl——@nwl—z—D?’<R—1+R—2>.

Shear stress calculated according to the present theory (23) and the
Reissner—-Mindlin theory (22) are compared, for two cases, with the elastic exact
solution (21) in Figure 3. For this application, modelling the non-linear distribution
of stress is necessary. As we can see, and using only two warping functions, close
agreement of the warping model results with the exact solutions is obtained.
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Figure 3. Shear stress distribution for a cylindrical shell (a) (R; =0-5m; R, = 1:5m; h = 1 m); (b)
(Ri=4m; R, =5m; h=1m). —-—- Present theory; —— exact solution; --- Mindlin solution;

Kirchhoff: ¢,, = 0.

6.2. APPLICATION 2

Consider a cylindrical shell (with a radius R, a height H and a thickness h)
submitted to a linear density of forces applied on the sides defined by x! = —H/2
and x' = H/2.

The two cases of in-surface loads are defined by (see also Figure 4);

Case 1:

H
f,=qd(x*)a; onx'= -
f,= —qdé(x*)a; onx!'= g,
Case 2:
f, = gé(x3 — h/4)a, onx'= —,
f, = gé(ﬁ + h/4)a; onx!'= —

f, = —%5(xg — h/4)a, onx!=

oz iz ez ez

f,— —%5@& + h/4)a; onx' =

a, is the first tangent vector of the surface (associated to the parameter x'), J is the
Dirac’s function and ¢ is a constant.
6.2.1. Theory of Reissner—Mindlin

The Reissner-Mindlin solution is

Niy=—q, Ni2=0, Ny, = —VR2N11, Uy = —D—X .
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h
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Case 2

Figure 4. Cylindrical shell submitted to two cases of in-surface loads.

6.2.2. Theory of Lo
The displacement field is

0 (a', a%, n).
The stress resultants are defined by

N = D,[(1 = v)y(u,) + vTr{y(uy)} - 17 + D1 [(1 —v)y(W) + vTr{p(W); - 1],
P! = D[(1 —v)y(uy) + vTIr(y(uy) - 17 4+ D4[(1 — v)p(W) + vTr(3(W))- 1],
Q! =2D,W,
where

(251 . W1

Y =lhatazy " 0@l a?)

(D4, D,, D3) are defined by equation (15) and D, is defined by

Eh®

be=g0=
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Lo’s displacement is given by

Ay (Fs —}—(Dl/Dz)q)sinh(}lel)_ q 1

J1(F} + (Dy/D5)q) sinh(4;x")
q D_x , W=
2D, cosh </115> 2

H
2Dy cosh(il 5)

u =

with
2D,

G = 5 =D

hZ
In the case 1, F! = 0 and in the case 2, F! = g

The stress resultants are

N11:—Di, Ni, =0, N22:VR2N11,

2

(Fi + (Dy/D3)q)cosh(1x") Dy

H D,
cosh (/11 3> 2

6.2.3. Warping theory

Ph: q, P%2=0; P%2=VR2Pi1-

The displacement field is

0 (al, a%, n).

For the warping theory, the displacement solution is

inh("x! _ D; 3,
= — L o SOMEY) g, with (172 = 222",

X>.D,2% cosh (i" 3> 2

[89]

2, and E, are defined by equation (16).
The stress resultants in terms of displacement are

N =D,[(1 —v)v(u,) + vTr{y(u,)}-1],

P,= D2 [(1 — v)y(W") +vTr(y(W")- 1],
Q, = D35, W".
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04 |

02 P

x/h
<

-04 ; S~

-1-02 -1-01 -1:00 =099 -0-98 -097
(a) U\D,/q

©/h
o
o (3]
T
\
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A
/ ‘

—04 |
|
-1-02 -1.01 -1-00 -0-99 -0-98 -0-97 -096
(b) U\D,/q
Figure 5. Evolution of the in-surface displacement as a function of the normal co-ordinate. (a)
Case 1, .-.—.- Reissner-Mindlin; —— Warping: case 1; —-- Lo: case 1; (b) case 2, -----
Reissner-Mindlin; —— Warping: case 2; ——— Lo: case 2.

The warping stress resultants are

Ny = —i; Ni, =0, N22:VR2N11,
D,
. cosh(A"x') . .
1h=——F"~ (F), Pi.=0, P53, = vR*Pi;.

o H
cosh <A 3>

Case 1: (F") = —q¢,(0),

Case 2: (F") = —g[@ <§> + ¢n< —Zﬂ.

The evolution of the first in-surface displacement as a function of the normal
co-ordinate is given in Figure 5.

Lo’s theory does not have enough functions to distinguish the two cases of loads.
For the warping theory, mode 1 is used for case 1 and the two first modes are used
for case 2. The development of Lo’s solution on the function (x*)? constrains the
middle of the fibre not to move; there is no physical reason to have that kind of
deformation.
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7. DISCUSSION-CONCLUSION

e For the cylindrical shell problems presented here, the classical Reissner—-Mindlin
solution cannot reproduce the non-uniformity of the exact solution which
deviates from the solution. The present theory can reproduce the non-uniform
shear and displacement distribution.

e Due to the high order of the terms included in this theory, it is, however,
inconvenient to solve classical problems. The examples of infinite plates and
circular plates presented in Hassis 1998 and other examples presented here would
be helpful for providing guidelines by which one can ascertain when it is
necessary to use a high order theory and when a lower order theory will suffice.

 This high order theory can be extended to laminated plates and shells. It is known
that distribution of in-plane displacements across the thickness may be strongly
non-linear [ 14].

e After the application of the warping theory for plates [1, 2] and this work for
shells, it can be stated that for problems which involve rapidly fluctuating loads
with the characteristic length of the order of the thickness, or high frequencies
analysis of plates and shells, a high order theory is required to give meaningful
results. For the other problems, a low simple theory is sufficient.
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APPENDIX A
The transverse normal modes for a free-free beam are

0 X3 o, X3 . [ox? ) o3 x>
¢, = cos< I ) + cosh( I >— R,{sm( 7 > + smh< h >}

The coefficients o, and R, take the following values:

R; =0-9825; R, = 1-0008;

R; = 1-:0000; R, = 1-0000.
o, = 4730;

%, = 7853 o5 = 10996; o, = 14-137.

For a free-free beam, the longitudinal modes are written as follows:

x3 1
D, = cos(kn(w + §>>

APPENDIX B

For the Warping-Kirchhoff model, the exterior virtual work is (for a unit density
forces f, and the surface density forces f,):
W, = J f [fouf — fx* Wd o+ Coud) + f2u Wy + fFud]dx® do

2

+ J J [fous — i3, + Chul) + f2p,Wo + fJuX]dx*dr
aw h
- J [Fou¥ — m*(u¥,, + Ciu¥) + F2WY + F*u¥]do

+J~
w

[Fauf — m2(uf,, + Ciu¥) + (F)'Wy + Fu¥]dr
= Four 4+ m? uf — m*Clu* + F*W" + F3u*]do
7 3

+ J [Fauf + m?uf — miChru¥ + (F)"WY + Flu¥]dr,
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where

—h
2

F“=J frdx3, m Jz x3 frdx’, F,f:j2 G f2dX3,

J fdx?, ?=r X3 fidx?, (F;’)”=J Pnfidx.

For the Warping- K1rchhoff model, the inertial virtual work is (the second order
terms are neglected):

W; = ‘J f Cpliur + iut + G2WI W) dx? doo
= — J ph(ii*u} + iu¥) + PhZa (W W do.
For the Warping—Kirchhoft model, the interior virtual work is

Wi= _J J P [apuE) — PKop(u) + §urap(W] dx doo
_j J o [Pus Wi + $,CiWE]dx* do

using the stress resultant defined by equation (8), the interior virtual work becomes:

Wi == J‘ [Naﬁyw(uzk)) - MaﬁKaﬂ(“Z;) + Pﬁﬂydﬁ(wn*)] dow

- J [0:Wy + LiCiWY 1do

using relation (6) and after integration by parts, it becomes

W, = JNMu;‘:da)—J N“ﬂu;kv,;dl“—i-J

w

N*C,pu¥dw + J Hputdo

w

—J Mﬁ’}vaug‘df—f (M“ﬁvﬂ)mufdf—f
ow Jw

w

M Clutdo + J M™Clvgu dI
0w
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— J (M* C}),uf do + j

0w

M“/’C;}Vauj‘df—f M*C}Cpu% dow

w

+ f P, W do — J PHW vy dll — f 0w dow — J LiCW™ dw
also

W, = J [N%p — MYC5 — (M7 C3) 1 j]uf do

m

+ | IN*Cys + MEy — (M*CC g0 u% do + J [Pty — O — LyCEIWY do

Jo (0]

.
+ | [ =N+ 2M*C4v;Juz dr

Jiw

»

— | My, + (M*yp) , Juidl — J PiPyWidr.

o

Jow

The application of the virtual work leads to the equations 17a (or 18a) and 19a
(or 20a).

APPENDIX C

For the Warping-Kirchhoff model, the exterior virtual work is (for the densities
f, and f)):

o=

W, =J f [fouF + f23 B + f2p.We + fluf]dx® do

+ J J Lfuf + £ BF + fEoaWy + fouk]dx>dr
= J [Fuf + m*BF + FAWY + F3u¥]dw

+ J [Fiu¥ + miB% + (F)"W5 + Fu¥]drI.
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For the Warping—Mindlin model, the inertial virtual work is

W= — f Cpl 4 X+ W) + x3BE + Wi dx doo

JoJ -4

fo 3

h3 . N .
phifuf + ii*u3) + P BB + phEL(W'Wa do.

Jo

For the Warping—Mindlin model, the interior virtual work is

Wi J f L) + P (B) — X305 (03) + b1 (W] dx® doo

- f f o [(BE + ufCl+ uky) + (Pus Wy + WY f1]1dx* do

using the stress resultant defined by equation (8), the interior virtual work
becomes

W= — f [N () + M*Py,p(B*) — M p,p(uf) + PiPyy(W™)]do

- J [T*(B% + uiCh + u% ) + QWY + LW Cildo,

using relation (6) and after integration by parts, it becomes

I/Vl:Jv T_Bufda)—J\ N“ﬁu;kvﬁdf+f N“ﬂCaﬁu’;da)—l—j Miaﬁﬂfdw
) [} [

—J M“ﬂﬂ;"vﬁdf+j
ow

w

PHWE dw — J

o

PHAWTyydll — f (M*C}) qu¥ do

w

+ J (M Chutv, dF—J

dw

(M“ﬂCfgC,m)u’; dw— J‘

w

T*B¥dw— J T*Ciu¥dw

w

+ J T uido — j T*vu%dll — J QW™ dw — J L:CIW dow
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W; = J [Ny — (M*C3).p — T*C3]uf dw + J (M — T B do

i

Jow

w

[N*Cop + Ttx — (M CLCip) 105 dew + f [Py — On — LiCE1Wy do

«

[ =Ny, + M*CSv,Judlr

Toyutdl — f Pywrdr.

0w

My, B Al — J

w

The application of the virtual work leads to the equations (17b) or (18b) and (19b)

or (20b).

EI3Fr~=H

=<5
g

H‘,go'UZ

APPENDIX D: NOMENCLATURE

local natural base

covariant metric coefficients

coefficients of the curvature tensor

stiffness coefficients (equation (15))

Young’s modulus

the in-surface forces vector

projection of the in-surface vector forces on the nth transverse normal
mode

the in-surface boundary forces

projection of the in-surface boundary forces on the nth mode
thickness of the shell

curvature variation tensor

first warping-shear resultant

a point of the surface

the in-surface moments vector

the in-surface boundary moments

a point of the shell

flexural moment tensor

normal resultant tensor

warping resultant tensor

second warping-shear resultant

radius of the cylindrical surface

shear stress resultant

displacement of the surface written in the local surface co-ordinate
the surface’s acceleration

covariant derivate

displacement of a point of the shell written in the surface co-ordinate

%) participation of the deformation modes to warping

surface co-ordinates
normal co-ordinate
rotation of the normal fibre
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membranous deformation tensor
Dirac’s function

boundary of the surface w

strain tensor

warping coefficients

the Poisson’s ratio

projection on surface of the surface’s acceleration i,
mass density

stress tensor

coefficients of Christoffel

the nth transverse mode
warping co-ordinates

the kth longitudinal mode
surface of the shell

the unit tensor
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