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The warping high-order theory of plate deformation developed in reference [1] is
extended here to shells. A theory of shell deformation is derived which accounts for
the e!ects of transverse shear deformation and a non-linear distribution of the
in-surface displacements with respect to the thickness co-ordinate. This theory uses
the normal modes associated to the normal "bre (considered as a geometrical
beam) as basis functions. Using only the rigid body modes, we "nd the classical
theory and using the deformation normal modes, a high order theory is construc-
ted. This theory is compared to other theories and the exact solution through an
application to a particular problem of shells.

( 1999 Academic Press
1. INTRODUCTION

In Hassis [1] and in Lo et al. [2], it can be seen that sophisticated models,
compared to classical theories, "nd applications to problems where classical plate
theory is simply inadequate to describe the behaviour. Such examples concern
contact or laminated problems involving plates and shells, or high-frequency
analysis. The present work concerns the derivation and evaluation of a particular
&&warping'' theory of shell behaviour.

Before describing the present theory, it is necessary brie#y to review and com-
ment upon the &&recent'' developments in the generalization of classical shell theory.
The developments of Reissner [3, 4], generalizing the classical shell theory, incor-
porate the e!ect of shear deformation. The derivation given by Reissner resulting in
displacements of the form

U (M)"G
;

1
(x1, x2, x3)"u

1
(x1, x2)#x3b

1
(x1, x2) ,

;
2
(x1, x2, x3)"u

2
(x1, x2)#x3b

2
(x1, x2) ,

;
3
(x1, x2, x3)"u

3
(x1, x2) ,

(1)

where M is a point of the shell, (x1, x2) are the surface co-ordinates and x3 is the
normal co-ordinate to the surface. Relation (1) predicts a uniform shear stress
distribution through the thickness of the plate. It is then necessary to introduce
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a correction factor into the shear stress resultant; this is incorrect and in general
would violate the surface conditions.

The next higher order theory, for shells, involves displacement forms of type:
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;
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1
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1
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;
2
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3
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3
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3
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(2)

This theory includes the e!ect of transverse normal strain. Displacement assump-
tion of the form of equation (2) has been used by Naghdi [5] to derive a general
theory of shells and by Essenberg [6] to obtain the corresponding one-dimensional
plate theory. They used a shear correction factor which is not appropriate for use
with the displacement form of equation (2). This is because non-uniform shear
stress is implied by equation (2) along with consequent possible satisfaction of top
and bottom boundary conditions for shear traction; thus the rationale for a correc-
tion factor is obviated.

For plates, Nelson and Lorch [7], Reissner [8, 9] and Lo et al. [2] presented
a di!erent high order theory. Bhimaraddi [10] also used a high order theory for free
vibration analysis for circular cylindrical shells.

The warping model for plates is associated to the following displacement
"eld [1]:

;
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where M/
n
N and MU

k
N denote respectively the nth transverse and the kth longitudinal

modes (see Appendix A) inducing deformations of normal "bre which is considered
as a geometrical beam. The functions (=n

1
,=n

2
,=k

3
) represent the participation of

the deformation modes to warping of normal "bres. The functions /
n

and U
k
are

called warping co-ordinates.
This work is an extension of the warping theory for plate deformation presented

by Hassis [1] to the shell structures.

2. MOTIVATION

For plates, in the case of top and bottom boundary conditions of shear traction
and of some loads, or in higher dynamic analysis, classical theories, except the
higher theory of Lo [2] and Hassis [1], are unsatisfactory for predicting the
non-uniform shear and the normal stress, and displacement distribution. In refer-
ence [1], it has been seen that for plate bending problems where the loading



A WARPING MODEL FOR SHELLS 635
characteristics possess a high degree of asymmetry with respect to middle plane,
a higher theory (Lo or Hassis) is required.

Also, in the case of laminated plates and shells, a high order must be used
because of the likely strong non-linear thickness distribution of stress and displace-
ment.

The warping theory for plates is here extended to shells. This theory is based on
the non-uniform distribution of in-plane displacement: it is called the &&warping''
phenomenon. In the present high order theory, non-uniformity of in-surface dis-
placement of shells is considered by a linear combination of normal modes of the
normal "bre to the mid-surface. When only the "rst six normal modes (rigid-body
modes) are considered, this theory corresponds to the Reissner}Mindlin lower
order theory. In the present work, the transverse normal deformation modes, of the
normal "bre, are considered.

3. DISPLACEMENT FIELD

Let /
n

be the nth transverse mode (see Appendix A) inducing deformations of
normal "bre which is considered as a geometrical beam. Each natural frequency
associated with transverse normal modes corresponds to two transverse normal
modes: one is in the &&"rst'' direction of the tangent plane and the other is in the
&&second'' direction of the tangent plane [11].

The shell is characterized by the surface and the normal "bre. The surface is
de"ned by the vectorial function 0m(x1, x2) . x1 and x2 are two parameters which
characterize the surface. x3 is the normal co-ordinate to the surface. The surface is
also characterized by the local natural base (a

1
, a

2
, n) de"ned by

a
1
"

L0m
Lx1

, a
2
"

L0m
Lx2

, n"
a
1
?a

2
Da

1
?a

2
D
.

The following local natural base (a1, a2, n) is also used:

aa"aabab , aa"aabab with aab"aa . ab ; aab"aa . ab.

aab is the covariant metric coe$cient; Greek indices run from 1 to 2 (the standard
summation convention for repeated indices will be used).

We propose here two displacement "elds which combine the warping theory and
the Kirchho+ ,eld or the warping theory and the Mindlin ,eld. The present theory is
appropriate to the following displacement forms

f For the Warping}Kirchho! theory,

U (M)"G
;j(x1, x2, x3)"uj!x3(u

3,j#Ccjuc)#Wn

j/n (x3)
;

3
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, (4a)
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f For the Warping}Mindlin theory,

U(M)"G
;j(x1, x2, x3)"uj#x3bj#Wn

j/n (x3)
;

3
(x1, x2, x3)"u

3
H
(aj, n)

, (4b)

where (uj , u3) are the displacements of the surface written in the local surface
co-ordinate, (;j , ;3

) are the displacements of a point of the shell written in the
local surface co-ordinate, Cab is the coe$cient of the curvature tensor, bj is the
rotation of the normal "bre.

The following notation will be used:
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This displacement "eld includes both in-surface and out-of-surface deformation
modes. The vector Wn represents the participation of the deformation modes to the
warping of normal "bre. The functions /

n
are called warping co-ordinates. Figure 1

shows the "rst two transverse modes (h is the thickness of the shell). The number of
modes used depends on the order of the theory required.
Figure 1. The two "rst transverse modes. ** Mode 1; - - - Mode 2.
4. DEFORMATION TENSOR}STRESS TENSOR}STRESS RESULTANT

4.1. DEFORMATION TENSOR

The un-deformed and deformed shell is characterized by as shown in Table 1.
Using the previous derivation, the deformation tensor associated to equation (4)

is written as
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1
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#Ab )
LU
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2ea3"Gn )
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#

LU
Lx3

(aa!x3Cjaaj)H (5a)



TABLE 1

Un-deformed shell Deformed shell

Surface: 0m(x1, x2); (a
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, n@)
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,a"

L;3
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; ;aMb is the

covariant derivate; Cjab are the coe$cients of Chirsto!el.
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Using the components of the displacement in the natural local base associated to
the surface, equation (5a) becomes

eab"
1
2 Gaa )
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Lxb

#ab )
LU
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!x3Cjaaj )
LU
Lxb

!x3Cjbaj )
LU
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"
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(5b)

2ea3"(;
3,a#;a,3)#;jCja!x3;j,3Cja .

In the small displacement theory, the deformation tensor will be the following:

f For the Warping}Kirchho! theory,

eab"cab(uu)!x3Kab (uu)#/
n
cab(W

n),

2ea3"/
n,3
=na#/

n
=njCja , (6a)
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f For the Warping}Mindlin theory,

eab"cab(uu)#x3cab(b)!x3oab(uu)#/
n
cab(W

n),
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with

cab(V)"
1
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1
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2
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c and K are, respectively, the membranous deformation tensor and the curvature
variation tensor. For thin shells, the components of tensor oab can be neglected; this
is from the Novozhilov}Donnell theory [12,13].

4.2. STRESS TENSOR

The normal stress component and the shear stress components are the following:
f For the Warping}Kirchho! theory,
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f For the Warping}Mindlin theory,
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E
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n
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where E is Young's modulus and l is the Poisson ratio.
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4.3. STRESS RESULTANT

The stress resultants are de"ned by
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The stress resultants in terms of displacements are given by the following:

f For the Warping}Kirchho! theory,
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f For the Warping}Mindlin theory,

N"D
2
[(1!l)c (uu)#lTrMc(uu)N )1], (9b)

M"D
1
[(1!l) (c (b)!o (uu))#lTr(c(b)!o(uu)) ) 1], (10b)

P
n
"D

2
[(1!l)c (R

n
Wn)#lTr(c(R

n
Wn)) ) 1], (11b)

T"D
3
[b#$u

3
#C ) uu#WnH

n
], (12b)

L
n
"D

3
[R

n
C )Wn], (13b)

Q
n
"D

3
[H

n
(b#C ) uu#$u

3
)#WnN

n
], (14b)



640 H. HASSIS
where 1 is the unit tensor and (D
1
, D

2
, D

3
) are the sti!ness coe$cients de"ned by
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The constants used in equations (9)}(14) are de"ned by
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5. EQUILIBRIUM EQUATIONS

The principle of the virtual work is used to derive the governing equilibrium
equations (for more details see Appendices B and C):

f For the Warping}Kirchho! theory,
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f For the Warping}Mindlin theory,
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where o is the mass density, h is the thickness of the shell, n (uK u) is the projection on
surface of the surface's acceleration uK u , Fu is the in-surface force vector, mu is the
in-surface moment vector and Fn is the projection of the in-surface vector force on
the nth transverse normal mode.

For a shell loaded by a surface density force applied on Lux ]!h/2, h/2[(Lu is
the boundary of the surface u), boundary conditions are the following:

f For the Warping}Kirchho! theory:

Nablb#2MjbCajlb#Fa
S
"0,

(Mab
Mb)la!(Mablb)Ma#F3

S
"0, (19a)
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S
)
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s
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(div M) ) m!div(M ) m)#F3
S
"0, (20a)

(P)
n
) m#(F

s
)
n
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f For the Warping}Mindlin theory:
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S
"0, (19b)
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S
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n
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T ) m#F3
S
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(P)
n
) m#(F

s
)
n
"0,

where (Fu)
s
is the in-surface boundary force vector, (mu)s is the in-surface boundary

moment vector and (F
s
)
n
is the projection of the in-surface boundary force vector on

the nth transverse normal mode.

6. EVALUATION OF THE PRESENT THEORY

6.1. APPLICATION 1

Consider an in"nite cylindrical shell with internal radius R
1

and external radius
R

2
(see Figure 2). The cylindrical shell is submitted to internal shear forces F/R

1
and external shear forces F/R

2
(F is a linear density force).



Figure 2. Cylindrical shell.
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The elastic solution of the shear stress as a function of the radius r is

p
rz
"

F
r

. (21)

Note: p
rz

is zero for the Kirchho! theory.
Using the Reissner}Mindlin model, the shear stress is written as

p
rz
"!

F
2 A

1
R

1

#

1
R

2
B. (22)

By considering the present theory, the shear stress is written as follows:

p
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R
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!
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1
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b
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"!H

n
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1
!
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3
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1
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1

#

1
R

2
B .

Shear stress calculated according to the present theory (23) and the
Reissner}Mindlin theory (22) are compared, for two cases, with the elastic exact
solution (21) in Figure 3. For this application, modelling the non-linear distribution
of stress is necessary. As we can see, and using only two warping functions, close
agreement of the warping model results with the exact solutions is obtained.



Figure 3. Shear stress distribution for a cylindrical shell (a) (R
1
"0)5 m; R

2
"1)5 m; h"1 m); (b)

(R
1
"4 m; R

2
"5 m; h"1 m). } } } Present theory; ** exact solution; - - - Mindlin solution;

Kirchho!: p
rz
"0.
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6.2. APPLICATION 2

Consider a cylindrical shell (with a radius R, a height H and a thickness h)
submitted to a linear density of forces applied on the sides de"ned by x1"!H/2
and x1"H/2.

The two cases of in-surface loads are de"ned by (see also Figure 4);
Case 1:

f
s
"qd(x3)a

1
on x1"!

H
2

,

f
s
"!qd(x3)a

1
on x1"

H
2

,

Case 2:

f
s
"

q
2

d(x3!h/4)a
1

on x1"!

H
2

,

f
s
"

q
2

d(x3#h/4)a
1

on x1"!

H
2

,

f
s
"!

q
2
d (x3

3
!h/4)a

1
on x1"

H
2

,

f
s
"!

q
2
d (x3#h/4)a

1
on x1"

H
2

.

a
1

is the "rst tangent vector of the surface (associated to the parameter x1), d is the
Dirac's function and q is a constant.

6.2.1. ¹heory of Reissner}Mindlin

The Reissner}Mindlin solution is

N
11
"!q, N

12
"0, N

22
"!lR2N

11
, u

1
"!

q
D

2

x1.



Figure 4. Cylindrical shell submitted to two cases of in-surface loads.
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6.2.2. ¹heory of ¸o

The displacement "eld is

U"G
u
1
(x1)#=

1
(x1)(x3)2

0

0 (a1, a2, n).

The stress resultants are de"ned by

N"D
2
[(1!l)c(uu)#lTrMc(uu)N ) 1]#D

1
[(1!l)c (W)#lTrMc (W)N )1],

P1"D
1
[(1!l)c(uu)#lTr(c (uu)) ) 1]#D

4
[(1!l)c (W)#lTr(c (W)) ) 1],

Q1"2D
1
W,

where

uu"K
u
1

0(a1,a2)
; W"K

=
1

0(a1, a2)
.

(D
1
, D

2
, D

3
) are de"ned by equation (15) and D

4
is de"ned by

D
4
"

Eh5

80(1!l2) .
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Lo's displacement is given by

u
1
"!

j
1
(F1

s
#(D

1
/D

2
)q) sinh(j

1
x1)

2D
2
coshAj1

H
2 B

!

q
D

2

x1 , =
1
"

j
1
(F1

s
#(D

1
/D

2
)q) sinh(j

1
x1)

2D
1
coshAj1

H
2B

with

(j
1
)2"

2D
1

D
4
!(D

1
)2/D

2

.

In the case 1, F1
s
"0 and in the case 2, F1

s
"

h2

8
q.

The stress resultants are

N
11
"!

q
D

2

, N
12
"0, N

22
"lR2N

11
,

P1
11
"

(F1
s
#(D

1
/D

2
)q) cosh(j

1
x1)

coshAj1
H
2 B

!

D
1

D
2

q, P1
12
"0, P1

22
"lR2P1

11
.

6.2.3. =arping theory

The displacement "eld is

U"K
u
1
(x1)#+

n

=n
1
(x1)/

n
(x3)

0

0 (a1, a2, n).

For the warping theory, the displacement solution is
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The stress resultants in terms of displacement are
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Figure 5. Evolution of the in-surface displacement as a function of the normal co-ordinate. (a)
Case 1, . -. } . - Reissner}Mindlin; ** Warping: case 1; } } } Lo: case 1; (b) case 2, ) - ) - )
Reissner}Mindlin;** Warping: case 2; } } } Lo: case 2.
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The warping stress resultants are
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Case 1: (Fn
s
)"!q/

n
(0),

Case 2: (Fn
s
)"!

q
2 C/nA

h
4B#/

nA!
h
4BD.

The evolution of the "rst in-surface displacement as a function of the normal
co-ordinate is given in Figure 5.

Lo's theory does not have enough functions to distinguish the two cases of loads.
For the warping theory, mode 1 is used for case 1 and the two "rst modes are used
for case 2. The development of Lo's solution on the function (x3)2 constrains the
middle of the "bre not to move; there is no physical reason to have that kind of
deformation.
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7. DISCUSSION}CONCLUSION

f For the cylindrical shell problems presented here, the classical Reissner}Mindlin
solution cannot reproduce the non-uniformity of the exact solution which
deviates from the solution. The present theory can reproduce the non-uniform
shear and displacement distribution.

f Due to the high order of the terms included in this theory, it is, however,
inconvenient to solve classical problems. The examples of in"nite plates and
circular plates presented in Hassis 1998 and other examples presented here would
be helpful for providing guidelines by which one can ascertain when it is
necessary to use a high order theory and when a lower order theory will su$ce.

f This high order theory can be extended to laminated plates and shells. It is known
that distribution of in-plane displacements across the thickness may be strongly
non-linear [14].

f After the application of the warping theory for plates [1, 2] and this work for
shells, it can be stated that for problems which involve rapidly #uctuating loads
with the characteristic length of the order of the thickness, or high frequencies
analysis of plates and shells, a high order theory is required to give meaningful
results. For the other problems, a low simple theory is su$cient.
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APPENDIX A

The transverse normal modes for a free-free beam are
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a
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h B#sinhA
a
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h BD.

The coe$cients a
n
and R

n
take the following values:
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For a free-free beam, the longitudinal modes are written as follows:
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APPENDIX B

For the Warping}Kirchho!model, the exterior virtual work is (for a unit density
forces f

v
and the surface density forces f

s
):
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where
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For the Warping}Kirchho! model, the inertial virtual work is (the second order
terms are neglected):
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For the Warping}Kirchho! model, the interior virtual work is
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using the stress resultant de"ned by equation (8), the interior virtual work becomes:
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The application of the virtual work leads to the equations 17a (or 18a) and 19a
(or 20a).

APPENDIX C

For the Warping}Kirchho! model, the exterior virtual work is (for the densities
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):
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For the Warping}Mindlin model, the inertial virtual work is
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For the Warping}Mindlin model, the interior virtual work is
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The application of the virtual work leads to the equations (17b) or (18b) and (19b)
or (20b).

APPENDIX D: NOMENCLATURE

(a
1
, a

2
, a

3
) local natural base

aab covariant metric coe$cients
Cab coe$cients of the curvature tensor
(D

1
, D

2
, D

3
) sti!ness coe$cients (equation (15))

E Young's modulus
Fu the in-surface forces vector
Fn projection of the in-surface vector forces on the nth transverse normal

mode
(Fu)s the in-surface boundary forces
(F

s
)n projection of the in-surface boundary forces on the nth mode

h thickness of the shell
K curvature variation tensor
L
n

"rst warping-shear resultant
m a point of the surface
mu the in-surface moments vector
(mu)s the in-surface boundary moments
M a point of the shell
M #exural moment tensor
N normal resultant tensor
P warping resultant tensor
Q

n
second warping-shear resultant

r radius of the cylindrical surface
T shear stress resultant
(uj , u3) displacement of the surface written in the local surface co-ordinate
uK u the surface's acceleration
;aMb covariant derivate
(;j ,;3

) displacement of a point of the shell written in the surface co-ordinate
(=n

1
,=n

2
,=k

3
) participation of the deformation modes to warping

(x1, x2) surface co-ordinates
x3 normal co-ordinate
bj rotation of the normal "bre
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c membranous deformation tensor
d Dirac's function
du boundary of the surface u
e strain tensor
H

n
, R

n
, N

n
warping coe$cients

l the Poisson's ratio
n(uK u) projection on surface of the surface's acceleration uK uo mass density
p stress tensor
Cjab coe$cients of Christo!el
M/

n
N the nth transverse mode

(/
n
, U

k
) warping co-ordinates

MU
k
N the kth longitudinal mode

u surface of the shell
1 the unit tensor
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