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The fundamental frequencies of "ber-reinforced laminated cylindrical shells with
a given material system are maximized with respect to "ber orientations by using
the golden section method. The signi"cant e!ects of shell thickness, shell length,
cutout and end condition on the maximum fundamental frequencies and the
associated optimal "ber orientations are demonstrated.
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1. INTRODUCTION

Due to light weight and high strength, the use of "ber-composite laminated
materials in aerospace and hydrospace applications have increased rapidly
in recent years. The cylindrical shell con"guration is widely used in aircraft
fuselages, launch-vehicle structures, spacecraft, satellites and pressure hulls of
submersibles, which are frequently subjected to dynamic loads in service.
Hence, a knowledge of dynamic characteristics of cylindrical shells constructed
of "ber-reinforced laminated materials, such as their fundamental frequencies, is
essential [1}4].

The fundamental frequencies of "ber-reinforced laminated cylindrical shells
depend highly on ply orientations, end conditions, and geometric variables such as
thickness, shell length and cutout [4}12]. Therefore, for composite laminated
cylindrical shells with a given material system, geometric shape, thickness and end
condition, the proper selection of appropriate lamination to maximize the
fundamental frequency of the shells becomes an interesting problem [13}15].
However, in spite of the high potential for improved dynamic performance by
use of composite optimization, there has not been much of an activity in this
area [16].

Research on the subject of structural optimization has been reported by many
investigators [17]. Among various optimization schemes, the golden section
method is a popular technique and is easily programmed for solution on the
computer [18, 19]. In this investigation, optimization of "ber-reinforced laminated
cylindrical shells to maximize their fundamental frequencies with respect to "ber
0022-460X/99/340723#18 $30.00/0 ( 1999 Academic Press
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orientations is performed by using the golden section method. The fundamental
frequencies of laminated cylindrical shells are calculated by using the ABAQUS
"nite element program [20]. In the paper, the constitutive equations for "ber-
composite lamina and golden section method are brie#y reviewed. Then the e!ects
of end condition, thickness, shell length, and cutout on the maximum fundamental
frequencies and the associated optimal "ber orientations of composite laminated
cylindrical shells is presented. Finally, important conclusions are drawn from the
study.

2. CONSTITUTIVE MATRIX FOR FIBER-COMPOSITE LAMINAE

In the "nite element analysis, the laminated cylindrical shells are modelled by
eight-node isoparametric shell elements with six degrees of freedom per node (three
displacements and three rotations). The doubly curved shell element has four edges
(three nodes per edge) and can be used to model fairly complicated curved surface
structures very accurately. The reduced integration rule together with hourglass
sti!ness control is employed to formulate the element sti!ness matrix [20]. During
the analysis, the constitutive matrices of composite materials at element integration
points must be calculated before the sti!ness matrices are assembled from element
level to global level. For "ber-composite laminated materials, each lamina can be
considered as an orthotropic layer in a plane stress condition (Figure 1). The
stress}strain relations for a lamina in the material co-ordinates (1,2,3) at an element
integration point can be written as
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are shear correction factors, which are calculated in ABAQUS
by assuming that the transverse shear energy through the thickness of laminate is
equal to that in unidirectional bending [20, 21]. The constitutive equations for the
lamina in the element co-ordinates (x, y, z) become
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Figure 1. Material, element and structure co-ordinates of "ber-composite laminated cylindrical
shell.
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h is measured counterclockwise about the z-axis from the element local x-axis to
the material 1-axis. The element co-ordinate system (x, y, z) is a curvilinear local
system (Figure 1) that is di!erent from the structural global co-ordinate (X,>,Z).
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While the element x-axis is parallel to the longitudinal direction of the cylindrical
shell, the element y- and z-axis are in the circumferential and the radial directions of
the cylindrical shell. Let Me
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are the distances from the mid-surface of the section to the top and
the bottom of the jth layer respectively. The [0] is a 3]2 matrix with all the
coe$cients equal to zero.

3. GOLDEN SECTION METHOD

The golden section method is a popular technique to estimate the maximum,
minimum, or zero of a one-variable function [18, 19]. We begin by presenting the
method for determining the minimum of the unimodal function F, which is
a function of the independent variable X. It is assumed that the lower bound
X

L
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U
on X are known and that they bracket the minimum

(Figure 2). In addition, we assume that the function has been evaluated at both
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Figure 2. The golden section method.
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Let q be a number between 0 and 1. We can de"ne the interior point X
1

and X
2

to be
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Substituting Equations (9a) and (9b) into Equation (8), we obtain

q2!3q#1"0 . (10)

The above equation has two roots which are 0)38197 and 2)61803. We can ignore
the second root since it is greater than 1. Hence, q"0)38197. The ratio
(1!q)/q"1)61803 is the famous &&golden section'' number. A detailed &&#ow
diagram'' of the golden section algorithm can be obtained in reference [18], and is
not duplicated here. For a problem involving the estimation of the maximum of
a one-variable function F, we need only minimize the negative of the function, i.e.
minimize !F.

4. CONVERGENCE STUDY

Prior to the numerical analysis, a convergence study of the eight-node shell
element has been performed to analyze an isotropic square plate with four simply
supported edges. The thickness of the plate is 0)001 m and the length of one side
of the plate is 0)1 m. The material properties are: E"206 GPa, l"0)3, and
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o"20)29 kg/m3. The analytical solution for the fundamental frequency of the plate
is u"60188 s~1. In the numerical analysis, it is found that the use of 4]4 mesh (16
shell elements) to model the plate gives the same fundamental frequency as the
exact solution. On the basis of this result and previous experience on the analyses of
composite shells [15], it was decided to use at least 96 elements (32 rows in
circumferential direction and 3 rows in longitudinal direction) to model the
laminated cylindrical shells having ¸/r ratio equal to 1. For cylindrical shells with
large ¸/r ratios or with cutouts, more elements are employed to model the entire
structures.

5. NUMERICAL ANALYSIS

5.1. LAMINATED CYLINDRICAL SHELLS WITH VARIOUS LENGTHS AND END CONDITIONS

In this section composite laminated cylindrical shells with three types of end
conditions (Figure 3(a)) are considered, which are two ends "xed (denoted by FF),
one end simply supported and the other end "xed (denoted by SF), and the two
ends simply supported (denoted by SS). The radius of the shell, r, is equal to 10 cm
and the length of the shell, ¸, varies from 10 cm to 40 cm. The laminate layups of
the shells are [$h/90

2
/0]

ns
and the thickness of each ply is 0)125 mm. In order to

study the e!ects of shell thickness on the results of optimization, n"2 (20-ply thin
Figure 3. Laminated cylindrical shells.
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shell) and 10 (100-ply thick shell) are selected for analysis. The reason for using the
[$h/90

2
/0]

ns
layup is typically for the submersible structure applications. When

a cylindrical shell is subjected to hydrostatic compression, the stress in the hoop
direction is twice that in the longitudinal direction. The selected laminate layup
thus renders the stresses of the "bers in both directions at about the same level.
The "bers in the$h directions are primarily used to resist the shear stress. The
lamina consists of Graphite/Epoxy and material constitutive properties are
taken from Crawley [22], which are E

11
"128 GPa, E

22
"11 GPa, l

12
"0)25,

G
12

"G
13
"4)48 GPa, G

23
"1)53 GPa, o"1)5]103kg/m3. In the analysis, no

symmetry simpli"cations are made for those shells.
For free vibration "nite element analysis of composite cylindrical shells, we can

obtain the eigenvalue expression as [23]

([K]!u2[M])MDN"M0N. (11)

The [K] is a structural sti!ness matrix, [M] a structural mass matrix, u the
frequency (eigenvalue), and MDN an eigenvector containing the free vibration mode.
In ABAQUS, a subspace iteration procedure [20, 24] is used to solve the natural
frequency and the eigenvectors. The smallest natural frequency (fundamental
frequency) obtained is then the objective function for maximization.

Based on the golden section method, the optimization problem becomes:

Maximize: u(h) (12a)

Subjected to: 03)h)903. (12b)

Before the golden section method is carried out, the fundamental frequency u of the
laminated cylindrical shell is calculated by employing the ABAQUS "nite element
program for every 103 increment in the h angle to locate the maximum point
approximately. Then proper upper and lower bounds are selected and the golden
section method is performed. The optimization process is terminated when an
absolute tolerance (the di!erence of the two intermediate points between the upper
bound and the lower bound) *h)0)53 is reached.

Figure 4 shows the optimal "ber angle h and the associated optimal fundamental
frequency u with respect to the ¸/r ratio for thin ([$h/90

2
/0]

2s
) laminated

cylindrical shells. From Figure 4(a) we can see that the optimal "ber angle h of the
cylindrical shells usually varies between 403 and 503. The only exception is that
when the ¸/r ratio is close to 2)5, the optimal "ber angle may approach 573. It seems
that the optimal solution may correspond to one mode with ¸/r below 2)5 and
a di!erent mode with ¸/r above 2)5. Generally, under the same ¸/r ratio, the shell
with two simply supported ends has the largest value for the optimal "ber angle. In
addition, the optimal "ber angle seems to be more sensitive to the end conditions
when ¸/r (2)5 and less sensitive to the end conditions when ¸/r '2)5. Figure 4(b)
shows that under the same ¸/r ratio, the optimal fundamental frequency is highest
for a shell with two "xed ends and lowest for a shell with two simply supported
ends. The optimal fundamental frequencies of these shells decrease with increasing
shell length. However, the optimal fundamental frequencies seem to be less sensitive
to the end conditions when the ¸/r ratio becomes large.



Figure 4. E!ects of end conditions and ¸/r ratio on optimal "ber angle and optimal fundamental
frequency of thin ([$h/90

2
/0]

2s
) laminated cylindrical shells (r"10 cm). (a) Optimal "ber angle

h versus ¸/r ratio; (b) Optimal fundamental frequency u versus ¸/r ratio.
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Figure 5 shows the optimal "ber angle h and the associated optimal fundamental
frequency u with respect to the ¸/r ratio for thick ([$h/90

2
/0]

10s
) laminated

cylindrical shells. From Figure 5(a) we can see that the optimal "ber angle h of the
cylindrical shells usually varies between 423 and 463. When ¸/r ratio is large (say
¸/r'2)5), the optimal "ber angles of these shells seem to approach constant values.
Again, under the same ¸/r ratio, the shell with two simply supported ends usually
has the largest value for the optimal "ber angle. Comparing Figure 5(a) with Figure
4(a), we can observe that the range of the optimal "ber angle for thick laminated
cylindrical shells is narrower than that for thin shells. Figure 5(b) shows the similar
trend as Figure 4(b). However, under the same ¸/r ratio, the fundamental frequency
of the thick shell is much higher than that of the thin shell.

Figure 6 shows the typical fundamental vibration modes for both thin and thick
([$h/90 /0] and [$h/90 /0] ) shells with two "xed ends and under the
2 2s 2 10s



Figure 5. E!ects of end conditions and ¸/r ratio on optimal "ber angle and optimal fundamental
frequency of thick ([$h/90

2
/0]

10s
) laminated cylindrical shells (r"10 cm). (a) Optimal "ber angle

h versus ¸/r ratio; (b) Optimal fundamental frequency u versus ¸/r ratio.
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optimal "ber orientation. We can "nd that when the shell length or the shell
thickness increases, the vibration modes of these cylindrical shells have fewer waves
in the circumferential direction. Similar results are also obtained for shells with
other end conditions [25].

5.2. LAMINATED CYLINDRICAL SHELLS WITH VARIOUS CENTRAL CIRCULAR
CUTOUTS AND END CONDITIONS

In this section, laminated cylindrical shells with r"10 cm and ¸"20 cm are
analyzed. These shells contain central circular cutouts with diameter d varying
between 0 cm and 12 cm (Figure 3(b)). As before, three types of end conditions and
two laminate layups, [$h/90

2
/0]

2s
and [$h/90

2
/0]

10s
, are selected for analysis.

Figure 7 shows the optimal "ber angle h and the associated optimal fundamental
frequency u with respect to the ratio d/r for thin ([$h/90 /0] ) laminated
2 2s



Figure 6. Fundamental vibration mode of [$h/90
2
/0]

ns
laminated cylindrical shells with two "xed

ends and under optimal "ber angles (r"10 cm).
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cylindrical shells. From Figure 7(a) we can see that the optimal "ber angle h of
the cylindrical shells decreases with the increase of the cutout size. In addition,
under the same d/r ratio, the shell with two simply supported ends has the
largest value for the optimal "ber angle. Figure 7(b) shows that under the same
d/r ratio, the optimal fundamental frequency is highest for a shell with two "xed
ends and lowest for a shell with two simply supported ends. When the d/r ratio
is greater than 0)8, the optimal fundamental frequencies of these shells decrease
with the increase of the cutout size. However, when the d/r ratio is less than 0)8,
the optimal fundamental frequency seems to be insensitive to the cutout size. This
phenomenon is quite di!erent from our intuition that introducing a large hole into
a shell should cause a reduction in the fundamental natural frequency of the shell.
However, previous research did show that introducing a hole into a composite
structure does not always reduce the fundamental natural frequency and, in some
instances, may increase its fundamental natural frequency [15, 26}28]. This is
because the fundamental natural frequency of a composite structure is in#uenced



Figure 7. E!ects of end conditions and d/r ratio on optimal "ber angle and optimal fundamental
frequency of thin ([$h/90

2
/0]

2s
) laminated cylindrical shells with central circular cutouts (r"10 cm,

¸"20 cm). (a) Optimal "ber angle h versus d/r ratio; (b) Optimal fundamental frequency u versus d/r
ratio.
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not only by a cutout, but also by material orthotropy, end condition, and structural
geometry.

Figure 8 shows the optimal "ber angle h and the associated optimal fundamental
frequency u with respect to the ratio d/r for thick ([$h/90

2
/0]

10s
) laminated

cylindrical shells. It can be seen from Figure 8(a) that the optimal "ber angle h of the
thick cylindrical shells varies between 423 and 473 and no longer decreases with
increase of the cutout size. Figure 8(b) indicates that the optimal fundamental
frequencies of the thick shells decrease with the increase of the cutout size
constantly. The reduction in optimal fundamental frequency is more prominent
when the cutout size becomes large.

Typical fundamental vibration modes for both thin and thick ([$h/90
2
/0]

2s
and

[$h/90
2
/0]

10s
) cylindrical shells with two "xed ends and under the optimal "ber



Figure 8. E!ects of end conditions and d/r ratio on optimal "ber angle and optimal fundamental
frequency of thick ([$h/90

2
/0]

10s
) laminated cylindrical shells with central circular cutouts (r

"10 cm, ¸"20 cm). (a) Optimal "ber angle h versus d/r ratio; (b) Optimal fundamental frequency
u versus d/r ratio.
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orientation are given in Figure 9. These modes show that when the cutout sizes are
small, the fundamental vibration modes are global (i.e., vibration of entire shell).
However, when the cutout sizes are large, the fundamental vibration modes are
local (i.e., vibration of shell area near hole). Similar results are also obtained for
laminated cylindrical shells with other end conditions [25].

5.3. LAMINATED CYLINDRICAL SHELLS CONTAINING CENTRAL CIRCULAR CUTOUTS

WITH VARIOUS LENGTHS AND END CONDITIONS

In this section, laminated cylindrical shells with r"10 cm are analyzed. The
length of the shell, ¸, varies between 20 cm and 40 cm. These shells contain central
circular cutouts with diameter d"8 cm (Figure 3(b)). As before, three types of end



Figure 9. Fundamental vibration mode of [$h/90
2
/0]

ns
laminated cylindrical shells with central

circular cutouts, with two "xed ends and under optimal "ber angles (r"10 cm, ¸"20 cm).
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conditions and two laminate layups, [$h/90
2
/0]

2s
and [$h/90

2
/0]

10s
, are

selected for analysis.
Figures 10 and 11 show the optimal "ber angle h and the associated optimal

fundamental frequency u with respect to the ¸/r ratio for thin and thick
([$h/90

2
/0]

2s
and [$h/90

2
/0]

10s
) laminated cylindrical shells with central

circular cutouts. For thin shells, it seems that when ¸/r ratio is small (say ¸/r(3),
the optimal "ber angles increase with increase of shell length. When ¸/r ratio is
large (say ¸/r'3), the optimal "ber angles decrease with increase of shell length
(Figure 10(a)). For thick shells, when ¸/r ratio is large (say ¸/r'2)5), the optimal
"ber angles seem to approach constant values (Figure 11(a)). Comparing Figure
10(a) and 11(a) with Figures 4(a) and 5(a), we can see that the cutouts have
signi"cant e!ects on the optimal "ber angles of laminated cylindrical shells when
the ¸/r ratio is small (say ¸/r(3). This e!ect is more signi"cant for thin shells than
that for thick shells. From Figures 10(b) and 11(b) we can see that for both thin and
thick shells containing central circular cutouts, their optimal fundamental



Figure 10. E!ects of end conditions and ¸/r ratio on optimal "ber angle and optimal fundamental
frequency of thin ([$h/90

2
/0]

2s
) laminated cylindrical shells with a central circular cutout (r

"10 cm, d"8 cm). (a) Optimal "ber angle h versus ¸/r ratio; (b) Optimal fundamental frequency
u versus ¸/r ratio.
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frequencies decrease with the increase of ¸/r ratio. Again, the optimal fundamental
frequencies seem to be less sensitive to the end conditions when the ¸/r ratio
becomes large.

Typical fundamental vibration modes for both thin and thick ([$h/90
2
/0]

2s
and

[$h/90
2
/0]

10s
) cylindrical shells containing central circular cutouts with two "xed

ends and under optimal "ber orientations are given in Figure 12. Comparing "gure
12 with Figure 6, we can observe that when the ¸/r ratios are small, the cutouts
cause the fundamental vibration modes of shells to have signi"cant distortion
around the hole area. This distortion is more prominent for a thick shell than for
a thin shell. When the ¸/r ratios are large, the fundamental vibration modes of
shells seem to be insensitive to the presence of cutouts. In addition, for thick shells
with large ¸/r ratios, the introduction of cutouts may cause the fundamental



Figure 11. E!ects of end conditions and ¸/r ratio on optimal "ber angle and optimal fundamental
frequency of thick ([$h/90

2
/0]

10s
) laminated cylindrical shells with a central circular cutout (r

"10 cm, d"8 cm). (a) Optimal "ber angle h versus ¸/r ratio; (b) Optimal fundamental frequency
u versus ¸/r ratio.
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vibration modes to have more waves in the circumferential direction. Similar
results are also obtained for laminated cylindrical shells with other end conditions
[25].

6. CONCLUSIONS

Generally, thickness, end condition, shell length and central circular cutout have
signi"cant e!ects on the optimal "ber angles and optimal fundamental frequencies
of [$h/90

2
/0]

ns
(n"2 and 10) laminated cylindrical shells. To be more speci"c,

the following conclusions may be drawn:

1. Whether laminated cylindrical shells contain cutouts or not, the range of the
optimal "ber angle for thick shells is narrower than that for thin shells.



Figure 12. Fundamental vibration mode of [$h/90
2
/0]

ns
laminated cylindrical shells with central

circular cutouts, with two "xed ends and under optimal "ber angles (r"10 cm, d"8 cm).
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2. The optimal fundamental frequencies of laminated cylindrical shells decrease
with increase of the shell length. Under the same geometry, the optimal
fundamental frequency is highest for a shell with two "xed ends and is lowest
for a shell with two simply supported ends. However, the optimal fundamental
frequencies seem to be less sensitive to the end conditions when the ¸/r ratio
becomes large.

3. The optimal fundamental frequencies of thick laminated cylindrical shells
decrease with the increase of the cutout size. The optimal fundamental
frequencies of thin laminated cylindrical shells may not decrease with increase
of the cutout size.

4. When the shell length or the shell thickness increases, the vibration
modes of the cylindrical shells have fewer waves in the circumferential
direction.

5. When the cutout sizes are small, the fundamental vibration modes of shells are
global. However, when the cutout sizes are large, the fundamental vibration
modes of shells are local to the hole.

6. When the ¸/r ratios are small, the cutouts cause the fundamental vibration
modes of shells to have signi"cant distortion around the hole area. This
distortion is more prominent for a thick shell than for a thin shell. When the
¸/r ratios are large, the fundamental vibration modes of shells seem to be
insensitive to the presence of cutouts.
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