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The phenomenon of contact between a rotor and its stator, known as rub, has
long been recognized as a serious cause of failure in rotating machinery. The
analysis of rub is particularly complex, due to non-linear and often chaotic
behaviour. Numerical simulation is the preferred method of analysis and, due to
improvements in digital computing in recent years, it has become possible to
analyze ever-more complex numerical models. To this end, the analysis of
rotor/stator contact has seen a corresponding increase in the amount of research
invested in it. One aspect of the dynamics involved with the occurrence of rub that
has not been investigated until now, is that of the e!ects of torsion. In the literature,
steady state analysis is limited to lateral movement: this paper includes torsional
e!ects in a rotor/stator contact model and highlights the importance of its
inclusion by way of a numerical example having realistic physical parameters.
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1. INTRODUCTION

Unwanted contact between the rotating and stationary parts of a rotating machine,
more commonly referred to as rub, is a serious problem that has been regularly
identi"ed as a primary mode of failure in rotating machinery. Rub may typically be
caused by mass imbalance, turbine or compressor blade failure, defective bearings
and/or seals, or by rotor misalignment, either thermal or mechanical. It is therefore
surprising that the quantity of research undertaken concerning this not-uncommon
rotor-dynamic problem is indeed small, in comparison with some of the better-
understood faults encountered in this area, such as mass unbalance or cracked
shafts. On closer inspection, however, one "nds that the reason for this discrepancy
is likely to be the intrinsically complicated nature of the problem. Several di!erent
physical events may occur during a period of contact between rotor and stator:
initial impacting stage, frictional behaviour between the two contacting parts and
an increase in the sti!ness of the rotating system whilst contact is maintained, to
name just three. The behaviour of the system during this period is highly non-linear
and may be chaotic.

During the last two decades, the majority of research undertaken in this area has
been centred on the development and re"nement of mathematical models, to allow
022-460X/99/340767#12 $30.00/0 ( 1999 Academic Press



768 S. EDWARDS E¹ A¸.
the rubbing phenomenon to be more accurately understood. For a detailed
overview of the rubbing process and associated literature, the reader is referred to
the very thorough review given by Muszynska [1]. Thermal e!ects, friction, impact,
coupling, sti!ening, analysis and vibrational response are included; the paper
represents the "rst comprehensive review of the subject. Choy and Padovan [2]
developed a general analytical rub model using the following assumptions: (i)
simple Je!cott rotor model, (ii) linear sti!ness and damping characteristics, (iii)
rigid casing supported by springs acting in the radial direction, (iv) mass inertia of
the casing small enough to be neglected, (v) simple Coulomb friction and (vi) onset
of rub caused by imbalance. Using the above assumptions, the rubbing period was
categorized into four distinct processes: (a) non-contact stage, (b) rub initiation, (c)
rub interaction and (d) separation.

The subject of sub-harmonic vibrational response was addressed by Ehrich [3].
Pseudo-critical responses at whole number multiples of the natural frequencies of
a system are caused by non-linearities, typically due to asymmetry of radial sti!ness
in a rotor positioned eccentrically within its bearings. For instance, if a non-linear
system has a natural frequency, u, then pseudo-critical responses will be seen at
forcing frequencies of 2u, 3u, 4u, etc. A simpli"ed, yet su$ciently descriptive,
mathematical model was developed to verify predictions made about the behaviour
of a real-life aircraft engine. Non-linear e!ects were introduced as a ratio of spring
sti!nesses, within and beyond the total clearance, where equal sti!nesses
constituted a linear system. A series of numerical simulations were performed, in
order to examine the behaviour of the system under varying conditions of operating
speed, damping and sti!ness ratio. The simulated results agreed well with the
conclusions made about the engine data. The same analytical model was also
utilized by Ehrich [4] to study more closely the e!ects of chaos and subcritical
superharmonic response in a system with rotor to stator contact. Again, real-engine
data were supplied, against which the numerical results correlated with high
accuracy. It was concluded that subcritical superharmonic response is the exact
opposite of the previously discussed supercritical subharmonic response.

Goldman and Muszynska [5] reported that the study of system non-linearities,
which cause chaotic motion to occur, is heavily dependent on the type of model
used to simulate the impact stage of motion. Three general models were reported as
having been used in the past for the analysis of rotor/stator impact: (i) a classical
restitution coe$cient-based approach; (ii) non-elastic impact with a zero restitution
coe$cient, where the impact is followed by a sliding stage; (iii) a discontinuous
piecewise approach, with extra sti!ness and damping terms included during the
contact stage. In their paper, the impact stage was modelled according to the third
method, under the assumption that contact occurred at the rotor modal mass
location. Numerical simulations showed that the system exhibited orderly
harmonic and subharmonic responses, as well as chaotic motion. Goldman and
Muszynska [6] then used this model to investigate further, the e!ects of order and
chaos in a system with contacting components. Results were supplied from a small
experimental rig, able to simulate the presence of a loose bearing pedestal, as well as
from an equivalent mathematical model. The two sets of results displayed
characteristics of both orderly periodic and fully chaotic responses. For further



INFLUENCE OF TORISON ROTOR/STATOR CONTACT 769
information, the reader is also referred to the papers of Choy et al. [7, 8] and Chu
and Zhang [9, 10].

In the present study, attention is paid to the e!ects of torsion on the steady state
response of a system experiencing rotor-to-stator contact, which, to the authors'
knowledge, has not been studied in any previously reported work. It is considered
that, to better understand the dynamical behaviour of such a system, not only
lateral but also rotational motion must be taken into account. Under certain
conditions to be determined, it is anticipated that the motion of an impacting mass
acting against friction will be strongly in#uenced by the torsional properties of the
system carrying that mass. This paper illustrates important di!erences in
vibrational response between the models included in the above references, which
include only lateral motion, and the below-described system, incorporating both
lateral and torsional movement.

2. CONTACTING SYSTEM MATHEMATICAL MODEL

The analytical model utilized in this work is a development of the model given by
Ehrich [3, 4]. This was considered a suitable starting point, since results obtained
from simulations using this model were provided, which showed good correlation
with previously reported experimental work by Bentley [11], and Muszynska [12],
and with two di!erent sets of real data collected from operational aircraft engines.
The three-degrees-of-freedom Je!cott rotor model, shown in Figure 1, was used for
the present work.

The rotor is housed within the clearance of the stator: the rubbing phenomena of
interest arise when contact occurs between these two sections, due typically to an
initial unbalance excitation of the rotor. The stator local sti!ness is taken as much
higher than that of the rotor, and the degree of non-linearity in the system due to
the e!ect of this piecewise spring is measured by the ratio of these sti!nesses, as
shown in Figure 2.
Figure 1. Je!cott rotor model used for numerical simulations.



Figure 2. Contacting nonlinear rotor/stator system.
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The equations of motion for the system, including lateral and torsional degrees of
freedom, are as follows (all symbols de"ned in the Appendix):
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The degree of system non-linearity is determined by the ratio of local sti!nesses of
the rotor and stator, respectively, i.e.
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where equal sti!nesses (b"1) below and above the clearance represent a fully
linear system. Both #exural and torsional structural damping were included in
damping ratio form: the higher value of stator sti!ness, K
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, was used to calculate

the damping ratio for lateral motion:
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At rest, the position of the rotor was taken as being displaced vertically by
a value exactly equal to the clearance between rotor and stator in their
axisymmetric positions. Then, for rotor displacement beyond the clearance, the
higher stator sti!ness, K

2
, was used for contact in the vertical direction and the

lower rotor sti!ness, K
1
, used in the horizontal direction. This condition causes the

non-linear phenomena of interest to occur in the vertical direction. To investigate
these phenomena, the system was analyzed numerically at pre-selected ratios of
running speed to vertical natural frequency, where the natural frequency of the
rotor/stator system with contact is
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where, for example, s can be set to 1)00 for running speed at the "rst critical, or any
multiples thereof.

Thermal e!ects have not been included in the analysis, for the sake of simplicity.
Whilst the authors recognize the importance of heat production and heat transfer
in rotor/stator contact, its inclusion at this stage would not bene"t this particular
study, since it is concerned solely with dynamic behaviour.

3. NUMERICAL SIMULATIONS

To judge the e!ect of including torsion in the mathematical model of the system,
two sets of numerical simulations of an identical physical model were performed
and the corresponding steady state responses obtained. Firstly, the response was
calculated for lateral displacements only, by solving equations (1) and (2). A second



TABLE 1

Numerical model physical parameters

Physical parameter Value Units

E Young's modulus of elasticity 210)0 GN/m2
G Shear modulus of elasticity 79)6 GN/m2
¸ Shaft length 0)800 m
R

0
Clearance within stator 0)001 m

d Shaft diameter 0)040 m
a Disk radius 0)150 m
h Disk thickness 0)030 m
m.e Unbalance magnitude 25)0e-6 kg m
a Unbalance phase angle 0)0 degrees
b Non-linearity measure (sti!ness ratio) 0)040 *

d Initial vertical displacement 0)001 m
o Material density 7800)0 kg/m3
k Coe$cient of friction 0)50 *

m
t

Torsional damping ratio 0)01 *

m
l

Lateral damping ratio 0)01 *
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set of results was then acquired, again by solving equations (1) and (2), and also
including the torsional behaviour de"ned by equation (3). Realistic physical
parameters, listed in Table 1, were selected for the model, to highlight the relevance
of the study to real-life applications.

Runge}Kutta integration was applied to obtain the numerical solutions of
equations (1)}(3) over the running speed range of 4}410 Hz, in 1 Hz increments
(0)04)s)4)00), with 500 rotations at each step. A systematic study was carried
out beforehand in order to verify that this number of rotations was su$cient
to eliminate transient e!ects. More than double the number of rotations "nally
used were examined and this con"rmed that, for the 1% lateral and torsional
damping cases, 500 rotations were indeed su$cient to allow any transients to die
away. In addition, only the data for the last 125 rotations was stored for post-
processing.

To illustrate further the e!ect of torsion on rotor/stator contact, simulated
results were obtained for varying torsional sti!ness, whilst "xing the frequency ratio
at a value of s"2)5. Relative Torsional Sti!ness (R¹S) was varied over the range
0)01)R¹S)5)00 where R¹S"1 corresponds to the torsional sti!ness of the
model having the parameters listed in Table 1. This range was deemed to include
those values of torsional sti!ness that would be obtained by varying the individual
parameters of the rotor/stator system, such as the physical dimensions or material
properties. Since the objective of this paper was to identify that there exists
a di!erence between the responses returned by mathematical models considering
only lateral motion, and those considering lateral and torsional motion together,
a full parametric study was beyond the scope of the present work. The torsional
sti!ness was varied, however, in order to obtain an insight into the behaviour of the
system, were these individual parameters to be altered.
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4. RESULTS AND DISCUSSION

Bifurcation diagrams are a very e!ective means by which results obtained from
systems exhibiting non-linear or chaotic behaviour may be presented, see reference
[13]. These diagrams are constructed by plotting the response, y

t
, at whole number

multiples of the periodic time of the system in question, against the desired variable,
where t"m¹ (m"0, 1, 2, 3,2). In this way, periodic behaviour results in the
repeated plotting of a single point (or points) over time, for each speed increment.
Any non-periodic behaviour will result in multiple response values being plotted
for the speed increment considered. Bifurcation plots are used to display non-linear
and chaotic e!ects in systems encountered in many "elds, such as population
growth, plant-herbivore evolution and mechanical systems, to name just three.

Two bifurcation diagrams are presented in Figure 3, showing the calculated
vertical displacement at each speed increment over the complete frequency range
considered, for the two models without and with the inclusion of torsion
respectively. In addition, orbit plots obtained at the four speeds s"1)4, 2)5, 2)85
and 3)85, are included for the two di!erent solutions, to emphasize the di!erences
between the two models.

At "rst glance, the two bifurcation plots appear to be alike; the results for the two
di!erent cases are comparable in terms of both their general shapes and their
response magnitudes. Resonances occur at the natural frequency and whole
number multiples thereof, which one would expect for a non-linear system of this
kind. On closer examination, however, di!erences between the two sets of results
become apparent. Firstly, in the range 0(s(1, the response shown in plot(b)
seems more stable than that shown in plot(a), where there is a wider scattering of
points. Also, around the value s"1)00, the peak displayed in plot(b) is much more
clearly de"ned than that in plot(a). Indeed, at s"1)00, there are at least 10 di!erent
recorded response values for plot(a), compared to 1 value for plot(b). In the range
1(s(2, the response for the model without torsion once again seems less stable
than its equivalent for the model with torsion. Moreover, three minor peaks at
approximately s"1)4, 1)6 and 1)7 are evident in the torsional case, whereas there
seems to be an almost random scattering of points in the purely lateral case. At
s"2)5, a spike can be seen in the lateral model response, which is not present in the
torsional case. For both models, there is a cluster of points around s"2)6, which is
likely to be a chaotic, transitional stage between the second and third pseudo-
critical resonances. These above-described disparities are liable to be due to energy
interaction between angular and lateral motion, which is obviously not present if
only lateral motion is considered. Torsional damping also has a part to play in the
calculated system response and, although both the lateral and torsional damping
ratios were "xed at 1%, this is a conceivable reason for the more settled behaviour
of the model including torsion.

The trajectory plots included in Figure 3 serves to stress the importance of the
study. For the two orbits displayed at s"1)4 (a frequency ratio coinciding with one
of the smaller peaks of the torsional model), it can be seen that the two models
exhibit wildly di!erent results. The almost circular, periodic orbit shown in plot(a),
which would not be unusual for a rotor operating near its "rst critical speed in



Figure 3. Bifurcation plots with varying frequency ratio; (a) without torsion; (b) with torsion.
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Figure 4. Bifurcation plot with varying torsional sti!ness.

INFLUENCE OF TORISON ROTOR/STATOR CONTACT 775
a linear system, is matched in plot(b) by a trajectory which, whilst periodic in nature
(the pattern is repeated over many rotations), is non-linear and far from circular,
although almost symmetric around the vertical axis. At s"2)5, the speed
corresponding to the spike in Figure 3(a), the corresponding orbit for plot(a)
appears to be chaotic in nature, particularly considering the highly periodic pattern
of the next orbit shown for s"2)85. The orbit given in plot(b) for s"2)5, in
contrast, follows a well-de"ned, but comparatively augmented, path. This again is
most likely due to the energy interchange between lateral and torsional motion.

The trajectories in both cases, for s"2)85, are very similar. The basic form of the
two plots is the same, only the trajectory in the torsional case once more follows
a wider path. Like behaviour is again displayed for the trajectory plots taken at
s"3)85. In plot(a), however, the path taken is periodic and exact: the same plot
would be produced for just one period of rotation as for the 125 rotations used in
these results. The general shape of this orbit is reproduced in plot(b). In this case, the
orbit, whilst periodic, is much more spread out than for the case without torsion.

Figure 4 shows the bifurcation response obtained with varying the torsional
sti!ness and a "xed frequency ratio of s"2)5, where unity relative torsional
sti!ness corresponds to the initial model parameters used in the previous
simulations. Firstly, it is important to note that the responses for the very low
(R¹S(0)3) and very high (R¹S'3)0) torsional sti!ness are what would be
expected from such a variation in torsional sti!ness. For the low torsional sti!ness,
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the response is widely scattered over a wide range of displacement values. The rotor
is extremely #exible in torsion and such a rotor would seldom, if at all, occur in
practice. For high torsional sti!ness, the response tends to display a typical
subharmonic response for a rotor running at over two times the "rst critical speed,
i.e. two constant values of displacement are obtained for each periodic time
increment. This same response is also obtained, as one would expect, at very high
torsional sti!ness, for example R¹S"20)0. In the range 0)3(R¹S(3)0, some
interesting phenomena are seen to occur. This range corresponds to those values
that might be obtained by varying the individual parameters of the rotor/stator
system, such as shaft or disk diameters, or material density. Clusters of points
centred around the higher sti!ness displacement values of about 0)16e-5, and
0)36e-5, appear in pairs and are spaced along the x-axis. Also, for values of R¹S of
approximately 0)66, 0)94 and 1)19, there are four main clusters visible. Investigation
into the underlying cause(s) of these clusters and the reason(s) why, at certain
sti!ness values, there are four clusters instead of two, is beyond the scope of the
current work. The aim of this research is to highlight the fact that the introduction
of torsion into the mathematical model of a system experiencing rotor/stator
contact does indeed have a considerable e!ect on the system behaviour. The
di!erences in system response shown in Figure 4 serve to highlight this fact in
a concise manner.

It is important to recognize from the results described above that certain para-
meters do exist where there will be very little di!erence between the responses
exhibited by the two di!erent models considered. However, taking into account all
of the di!erences in the trajectory plots for the two cases and the bifurcation
diagrams with respect to frequency ratio and relative torsional sti!ness, it is clear
that signi"cant dissimilarity does exist between the responses obtained for the two
models.

5. CONCLUSIONS

The e!ect of including torsion in the numerical analysis of a contacting
rotor/stator system has been investigated. Two sets of data were obtained for the
same physical model, with and without the inclusion of torsion. System response
with respect to torsional sti!ness has also been examined. The results presented
show that, for a realistic physical system, periodic non-linear and also chaotic
motion can occur. It may be concluded that torsion has a substantial e!ect on
system response and should not be neglected in models used for the analysis of rub
phenomena in rotating machinery.
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NOMENCLATURE

M rotor mass
C rotor damping
K

1
rotor sti!ness

K
2

combined rotor and stator sti!ness
J polar moment of inertia
G shear modulus of elasticity
E Young's modulus of elasticity
F force acting on rotor
R

0
clearance within stator

¸ shaft length
¹ periodic time
x horizontal displacement
y vertical displacement
r radial displacement
m unbalance mass
e unbalance eccentricity
d shaft diameter
a disk radius
h disk thickness
s speed/frequency ratio
t instantaneous time
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Greek
o material density
/ rotational angle
a unbalance phase angle
X shaft running speed
d initial vertical displacement of rotor
f damping ratio
b non-linearity measure (sti!ness ratio)
k coe$cient of friction

Subscripts

l lateral motion
t angular (torsional) motion
x horizontal direction
y vertical direction
r radial direction
d referring to disk
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