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1. INTRODUCTION

Dowel and Tang present an investigation observing the high-frequency response of
a plate carrying a concentrated mass/spring system [1]. An understanding of
high-frequency dynamics in coupled structures can be expanded through this generic
problem. Following closely Kubota et al. [2], the authors perform an asymptotic
modal analysis (AMA) based upon the assumptions of small damping and a large
number of modes in the plate. The results for spatial average vibration in the plate
and for the vibration amplitude of the attached oscillator are expressed in closed
form. Such simple expressions are of great engineering interest as they allow quick
estimates of the severity of vibrations received by small objects mounted on plate-like
structures; e.g., delicate electric equipment mounted on a ships hull.

In reference [1], Dowel and Tang make two distressing statements upon which
the present author is impelled to comment.

Firstly, in the introduction it is said that AMA is an alternative to statistical
energy analysis (SEA) and that: &&One of the outstanding unresolved questions for
both AMA and SEA is how to treat e!ectively the dynamics of two or more
interconnected systems. The failure of SEA to provide consistently accurate results
and, heretofore, the absence of any extension of AMA to such systems has been
a major limitation for both methods.''Now, this statement is a challenge to anyone
involved with SEA as it implies that SEA cannot provide useful information. To
rebut this conclusion, a small SEA model of the structure investigated in reference
[1] is presented with the results compared to those from an exact calculation,
showing good agreement.

Secondly, on p. 848: &&Note equation (27a) is the same result obtained in reference
[2] for a rigidly connected mass''. Equation (27a) displays the ratio of mean square
(m.s.) vibrations of the mass to the spatial average m.s. vibrations of the plate. This
ratio must be a!ected by the presence of a spring between plate and mass, so some
of the results in reference [1] are consequently incorrect; this is demonstrated in
what follows.

2. GOVERNING EQUATIONS

The investigated structure consists of a rectangular, thin-walled, plate with
dimensions l

x
and l

y
, which is point excited at position (x

F
, y

F
) and upon which an
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Figure 1. Geometry of the plate structure with concentrated mass/spring system. From
reference [1].
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oscillator with mass M
o
and sti!ness K

o
is mounted at position (x

o
, y

o
), see Figure 1.

The governing equations of motion are derived in reference [1] but are repeated
here for completeness. First, the plate displacement= is expanded in terms of its
natural modes t

m
:

=(x, y,u)"+
m

a
m
(u)t

m
(x, y), (1)

where harmonic motion of the form eiut is assumed. Upon this basis, the coupled
equations of motion are given by
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where < is the oscillator mass displacement, f is the spring force, F is the r.m.s.
complex amplitude of the applied point force and where
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in which ¹
p

is the plate thickness, A
p

is the plate area, o is the density, f
m

is
the modal damping ratio and u

m
is the natural frequency associated with the mode

t
m
.
Note, the equations (1}3) are for harmonic motion equal to the corresponding

expressions in equations (1}9) in reference [1], with the exceptions that the spring
force, f, is explicitly expressed, the dynamic sti!ness Z

m
is de"ned for convenience

and a slight change in notation.
From equations (2), the spring force is given by

f"
!F+
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. (4)

Upon this basis, the spatial mean square average vibration velocity of the plate and
the oscillator velocity are given by

w2"+
m

K
m
Diua

m
D2"+

m

u2K
mK

Ft
mF

#ft
mo

Z
m

K
2
, (5a)

l2"Diu<D2"D f D2/u2M2
o
. (5b)

Equations (4) and (5) are used to assess the accuracy of the SEA and AMA
discussed below. Unless explicitly stated, the data used are those given in Table
1 being the same as those in Section 4.2 of reference [1].

In reference [1], the magnitude of the damping ratio is not speci"ed. However, in
the "rst paragraph on p. 847, it is said that the reduction of a double summation to
a single summation &&is based on the notion that the resonance peaks of the transfer
function are well separated in frequency for small damping''. The average
separation of resonance is measured by the modal overlap, M, given by

M"gun
p
, g"2f

m
, (6)

where g is the loss factor and n
p

is the modal density, i.e., the average number of
modes per unit angular frequency. For a thin-walled plate the modal density is
TABLE 1

Geometrical and material data

l
x

1)2 m E 72]109 N/m2
l
y

0)8 m o 2)7]103 kg/m3
¹

p
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g 1]10~3
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F
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given by [3]

n
p
"A

p
/3)6c
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¹

p
, c

L
"JE/o(1!l2), (7)

where E is Young's modulus and l is the Poisson ratio. Using the values given in
Table 1, the modal overlap is M+0)04 at 1 kHz. The value for the loss factor of
g"1]10~3 is below that most often found in engineering structures but is used to
ensure a fair comparison to the AMA.

3. STATISTICAL ENERGY ANALYSIS

3.1. BACKGROUND

Some 20 years ago, P. W. Smith wrote, &&Procedures known as &statistical energy
analysis' (SEA) [4}6] are used to estimate the steady-state dynamical response of
complex vibratory systems. They reduce the problem to a set of linear algebraic
equations relating energetic variables associated with subsystems of the complete
system'' [7]. He continued, &&Analysis has shown that the SEA are valid in
a statistical sense, as relations between average values over an appropriate
ensemble of conditions. Most frequently, the average is taken over a frequency
band, with the system parameters invariant. Other ensembles may lead to the same
result''. (This &&ergodic'' assumption is demonstrated for one-dimensional wave-
guide structures approximately a decade later [8,9].)

The starting point in SEA is to write a power balance equation for subsystem i in
the form

Pi
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P i, j
coup

(8)

where Pi
in

is the input power to the subsystem from external sources, Pi
dis

is the
power dissipated through damping and Pi, j

coup
is the net power transmitted from

subsystem i to a neighbouring subsystem j through mechanical coupling. In
equation (8), steady state vibration is considered and the powers are time averages.
For commonly used damping models the dissipated power is written in the form
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where g
i
is the damping loss factor (twice the damping ratio), M

i
is the modal

overlap and E
i
is the time-averaged energy stored in the subsystem. Equations (8)

and (9) follow from basic physical principles; however, in order to make progress it
is necessary to develop an expression of the coupling power, and the form adopted
represents the main SEA hypothesis. It is assumed a priori that
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where the non-dimensional number Ci,j is the vibration conductivity and gi,j
c

is the
coupling loss factor. Equation (10) states that the net energy #ow is proportional to
the di!erence in &energy per mode' in connected subsystems (in parallel with heat
#ow being proportional to the di!erence in temperature).

The conditions for the validity of the hypothesis (10), and hence SEA, are not
fully understood yet. However, much research and experience have given
guidelines. Some of these, being relevant for the present discussion, are:

(1) Each substructure must have resonances within the considered frequency
band since SEA describes resonant and free wave motion.

(2) The modal overlap factor, i.e., the ratio of resonance bandwidth to the
average frequency spacing of resonances, must not be too small. For
reverberant systems, coupling power is substantial only when modes in
connected systems have roughly the same frequency. The probability of
resonant interaction may be limited when the modal overlap is small and
hence there may be large deviations between the SEA expectation of coupling
power and the actual value for a particular structure.

(3) A structure suitable for SEA is irregular and randomly excited because &&the
essential condition is incoherence between di!erent components of response
* either the modal response or, in ray theoretical formulations, components
that have travelled di!erent paths to the same point'' [7].

(4) Coupling must not be too strong. It is believed that coupling is weak if the
modal behaviour of a substructure is not much altered when it is connected
to the rest of the structure [10].

3.2. TWO-ELEMENT SEA MODEL OF THE PLATE } OSCILLATOR SYSTEM

The "rst step in an SEA is to subdivide the structure into &elements'. For the
structure in Figure 1, the apparent elements are the plate and the oscillator. The
plate is an appropriate SEA element for frequency bands containing su$cient
numbers of resonances. Taking &su$cient' to be three in 1/3 octave bands, then
3"nDu+nu/4"N/4, where Du is the frequency bandwidth and N is the mode
count. Thus, the statistical approach is approximately valid above the 10th or, say,
15th resonance in the plate.

The input power from the point force to the plate is given by [3, Section IV.4.c]

P
in
"DFD2>

c
, >

c
"

nn
p

2M
p

, (11)

where >
c
is the characteristic point mobility, i.e., the one applying for an in"nite

plate. Equation (11) is in reference [3] derived as a frequency average and upon the
assumption of a random force position. It can equally be derived from the expected
value of the input mobility of a plate with random frequencies and mode shapes
[11].

The oscillator is a proper SEA element only for the frequency band containing its
resonance. This is where the largest motion of the oscillator is expected so the SEA
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is of practical interest. For this frequency band, the modal density of the oscillator is
given by

n
o
"1/Du, (12)

where the frequency band Du must be wide enough to contain most of the energy of
the oscillator resonance, but it should not be much wider than this.

The oscillator is undamped, so there is no need to evaluate the conductivity.
Consequently, applying equation (8) for the plate and the oscillator results in
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where E
p

and E
o
are the total energies in the plate and oscillator, respectively.

For resonant motion the kinetic and strain energies are on average equal and
thus
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Consequently, the m.s. vibration velocities of the plate and the oscillator are given
by
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3.2.1. SEA coupling factor

The coupling loss factor is not needed for the considered structure, yet it is for more
general structures and also if the oscillator has internal damping. To "nd the
coupling loss factor, consider free motion of the oscillator connected to the plate.
The plate dimensions as well as the oscillator position are assumed to be random,
so the characteristic mobility applies for describing the expected plate displacement
that is induced by the spring force. The equations describing the oscillator motion
are
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c
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where =
a

is the plate displacement at the attachment point and the rest of the
notation is as in Section 2. The free motion of the oscillator is thus given by
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This is the equation of free motion for a damped oscillator, where in this case the
&damping' is caused by transfer of energy from the oscillator to the plate. Upon this
basis, for the frequency band containing the oscillator frequency, the coupling loss
factor is identi"ed

gop
coup

"u
o
M

o
>

c
"JK

o
M

o
>
c
. (19)

It is seen that the coupling loss factor is very large if the oscillator is heavy and
has a high resonance frequency while the plate is mobile. When the coupling loss
factor is a substantial fraction of unity, or larger, it can hardly be correct to consider
the oscillator as a separate energy containing entity. In such a situation, it seems
more appropriate to describe the structure in Figure 1 by only one SEA element.

3.3. ONE-ELEMENT SEA MODEL

The SEA model derived above provides estimates only of the oscillator vibration
for the frequency band containing its resonance. For other frequencies the
oscillator is not an SEA element and must be treated as a part of the plate element.
The same applies if the coupling loss factor (19) is not much smaller than unity.

The input power estimate (11) applies with the same degree of accuracy for the
one- and the two-element SEA models. Consequently, the spatial average m.s. plate
velocity is described by equation (15), since the oscillator has no damping.

To "nd the oscillator vibration as a function of the average plate vibration, SEA
inspired &&standard'' methods are used [3]. Thus, the plate displacement at the
oscillator attachment point is by superposition given by

=(x
o
, y

o
)"=

a1
#=

a2
, (20)

where =
a1

is the plate displacement when there is no oscillator and =
a2

is the
additional displacement induced by the oscillator spring force. The oscillator
position and the plate properties are assumed random, so the characteristic
mobility describes the relation between induced plate displacement and spring
force. Upon this basis, the oscillator motion is given by
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It is emphasized that the use of >
c

in place of the point mobility cannot be
motivated by frequency averaging the latter, since the equations are frequency
dependent. This use is instead, as is standard in SEA, motivated by taking an
ensemble average point of view. Thus, equation (22) is believed to apply for the
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average vibration of an ensemble of similar structures where both the plate's
resonance frequencies and the oscillator position are random.

As noted above, the spatial average m.s. plate vibration amplitude is independent
of the presence of the oscillator, since it has no damping. Consequently, for random
oscillator position, the expected value of =

a1
is the spatial average r.m.s. plate

displacement. Upon this basis, from equation (22), the m.s. vibration velocity of the
oscillator is given by

l2"Diu<D2"
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)2#(uM

o
>
c
)2

, (23)

where w2 is given by equation (15).

4. ASYMPTOTIC MODAL ANALYSIS

The AMA is described in references [1,2]; here only some results are recapitu-
lated and discussed. From the AMA, the m.s. vibration velocity of the oscillator is
given by [1, equations (27c) and (28b)]

l2"
DFD2>

c
g
p
u

c
M

p

g(u
c
), (24)

g(u
c
)"

s2

1#s2

1
1#k

, (25)

s"
2o¹

p
j2
p

n2M
o

, k"
M

p
/M

o
(n2A

p
/2j2

p
)2#(M

p
/M

o
)2

,

where u
c
is the centre frequency in the frequency band for which the analysis is

provided. >
c

is the characteristic point mobility, de"ned in equation (11). The
spatial average m.s. vibration velocity is given by [1, text after equation (27c)]
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so that the factor g in equation (25) is the ratio of m.s. oscillator velocity to the
spatial average m.s. plate velocity. Equation (26) is equal to the corresponding SEA
equation (15).

Here, it is noted that asymptotically for high frequencies, since k is much smaller
than unity at high frequencies, g(u) turns to zero as 1/u2 (6 dB per octave). This is
surprising because the spring acts as a vibration isolator and thus, for an ideal
spring, at high frequencies we expect a decay of the ratio l2/w2 proportional to 1/u4
(12 dB per octave).

It is also noted that the oscillator frequency, u
o
, is not apparent in equations

(24)}(26) and that g(1 so that the oscillator velocity is for all frequencies, and for
all systems, smaller than the average plate velocity. This cannot be generally true.
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For instance, if the plate mobility is much smaller than the mobility of the
mass/spring system, the plate vibration is una!ected by the oscillator. In this case,
the plate is a velocity source at the end of the spring and therefore, large vibration
ampli"cation is expected at the oscillator, "xed base, resonance frequency.

5. NUMERICAL EXAMPLES

A point force of unit amplitude at all frequencies excites the structure in Figure
1 and the response is calculated by equations (5). The data used are, unless explicitly
stated, those found in Table 1. The calculations are made for the 1/3-octave bands
200 Hz to 5 kHz using 16,000 frequency points; allowing for aproximately 4)5
points within the resonance's 3 dB bandwidth. It is assumed both in AMA and in
SEA that results, on average, are independent of the boundary conditions and thus
for convenience the plate is simply supported, so the natural modes are sinusoidal
as in reference [1, (32)]. In the modal summations in equations (4) and (5), all modes
with resonance frequencies below 10 kHz are included (roughly 1500).

5.1. ORIGINAL SYSTEM

First, an oscillator frequency of f
o
"250 Hz is considered ( f

o
"u

o
/2n). Figure

2 shows in narrowband, the spatial average m.s. vibration velocities of the plate and
Figure 2. Vibration velocity; **, spatial average plate velocity level (5a); } } }, oscillator mass
velocity level (5b).



Figure 3. Vibration velocity; Spatial average plate velocity level,**, exact (5a) 1/3 octave band
averaged, }#}, AMA (26); oscillator mass velocity level, } } }, exact (5b) 1/3 octave band averaged,
}]}, AMA (24).
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oscillator mass calculated with equation (5). Figure 3 shows the same results
in 1/3-octave bands as well as the AMA results (24) and (26). Finally, Figure
4 shows in 1/3 octave bands, the ratio of the m.s. oscillator velocity to the
spatial average m.s. plate velocity calculated with the exact equations (5), AMA (25),
the two-element SEA model (16) and the one-element SEA model (23). For
reference, Figure 4 also shows two curves with 6 and 12 dB per octave decay
respectively.

As in Figure 3, the AMA prediction (26) [and equally the SEA prediction (15)] of
the plate vibration is very good at high frequencies, while at lower frequencies it is
only quite good, possibly because of &&statistical'' #uctuations depending on the
exact resonance frequencies and positions for the applied force and the oscillator.
The AMA prediction of the oscillator response exhibits the same, presumably
stochastic, variation at lower frequencies. However, at higher frequencies, the AMA
largely overpredicts the oscillator vibration. Figure 4 con"rms this and shows that,
for high frequencies, the AMA predicts a 6 dB per octave decrease of the ratio l2/w2
instead of a 12 dB decrease, which applies for the true motion.

The two-element SEA model overpredicts the oscillator response by roughly
10 dB. This error is not surprising, as the coupling loss factor is large, gop

coup
"1)3.



Figure 4. 1/3 octave band averaged ratio of oscillator velocity to spatial average plate velocity,
original structure;**, exact (5); } } }, AMA (25); 22, one-element SEA (23); *, two-element SEA
(16); }#}, 6 dB/octave decay; }]}, 12 dB/octave decay.
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However, the one-element SEA model gives good results, deviating in all frequency
bands by less than 2.5 dB from the exact result.

5.2. WEAKLY COUPLED OSCILLATOR

Two structures with weaker plate}oscillator coupling are investigated. Thus, the
mass is varied, the oscillator frequency is f

o
"1 kHz and the plate is a 6 mm thick

steel plate, E"210]109 N/m2, o"7800 kg/m3*all other data are given in Table
1. The ratio of m.s. oscillator velocity to spatial average m.s. plate velocity is
calculated as in the previous section. Figure 5 shows the results for the original
mass, M

o
"110 g. In this case, gop

coup
"0)2, so coupling is not quite weak. Yet, the

two-element SEA model is only 3 dB in error compared to the exact result and
similarly the one-element SEA model is within $3)5 dB in all frequency bands.

Figure 6 shows the results for a lighter mass, M
o
"11 g, in which case

gop
coup

"0)02. For this structure, both SEA models are only 0)5 dB in error for the
band containing the oscillator frequency. The one-element model is, also for this
structure, within $3)5 dB in all frequency bands.



Figure 5. 1/3 octave band averaged ratio of oscillator velocity to spatial average plate velocity,
6 mm steel plate, M

o
"110 g. Legends as in Figure 4.
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It is noted that for weak coupling, the AMA result (25) is not correct but correct
for low frequencies when the mass is almost rigidly connected to the plate.

5.3. ENSEMBLE AVERAGE

To investigate whether the deviations found are due to systematic errors or
stochastic #uctuations because of the precise data, ensemble average response is
calculated. The ensembles of similar structures are de"ned by the data used in
Sections 5.1 and 5.2. However, the plate dimensions, l

x
and l

y
, are normal

distributed having standard deviations that are 1% of the mean values. Moreover,
the force and oscillator positions are assumed uniformly probable over the plate,
except that points that are separated by less than 0)12 m are rejected. (0)12 m is
slightly less than half a wavelength at the oscillator frequency for both the
aluminium and steel plate.) To decrease the computation time, in these calculations,
the dissipation loss factor is g"0)01. Thus, only 1200 frequency points are needed
to have 3)5 points within resonance's 3 dB bandwidth. The ensemble averages are
calculated by Monte Carlo integration, using 30,000 observations for each of the
three cases considered.

Figure 7 shows the ensemble averaged ratio of oscillator velocity to spatial
average plate velocity calculated with equation (5) as well as the AMA result (25)



Figure 6. 1/3 octave band averaged ratio of oscillator velocity to spatial average plate velocity,
6 mm steel plate, M

o
"11 g. Legends as in Figure 4.
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and the one-element SEA result (23). It is seen that the SEA result is in excellent
agreement with the ensemble average.

Figure 8 shows the overestimation of the results form the one-element SEA
model (23) compared to the ensemble averages found from the exact equations (5).
The SEA predicts the ensemble average response accurately for all frequency bands
except for the one containing the oscillator frequency. For this band, the SEA
underpredicts ensemble average oscillator response by 2)5 dB for the original
structure and slightly more than 1 dB for the other two cases considered.
Numerical experiments reveal that this error is decreased if the minimum
separation between applied force and oscillator is increased and damping is
decreased. This suggests an explanation for the error. The direct "eld from the force
excitation gives a coherent excitation of the oscillator that can not be modelled with
SEA.

6. CONCLUSIONS

The vibration response of a point excited, simply supported, thin-walled
rectangular plate carrying a concentrated mass/spring system is calculated with
three methods. Firstly, the exact solution based on modal summation, previously



Figure 7. Ratio of oscillator velocity to spatial average plate velocity, 6 mm steel plate, M
o
"110 g;

**, exact (5) ensemble averaged; } } }, AMA (25); 22, one-element SEA (23).
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derived in reference [1]. Secondly, the asymptotic modal analysis (AMA) derived in
reference [1]. Thirdly, two statistical energy analysis (SEA) models that are derived
in the present work.

The "rst SEA model considers the mass/spring system as one SEA element and
the plate as another. This model is valid only for the frequency band containing the
oscillator frequency. Moreover, it is valid only if the plate and oscillator are weakly
coupled, i.e., if in the frequency band considered, the plate mobility is low compared
to the mass mobility. The second SEA model considers the entire structure as one
SEA element. Using this model, the oscillator response is found as a function of the
plate response using SEA inspired standard methods [3].

The exact solution is used as a reference to assess the accuracy of the two
approximate methods. Three di!erent structures are considered; the 2 mm
aluminium plate structure investigated in Section 4.2 of reference [1] and two
structures with a less mobile, 6 mm, steel plate where the mass either has its original
weight of 110 g or is reduced to 11 g.

The AMA is found to be largely in error for frequencies well above the oscillator
frequency. For the less mobile steel plate, the AMA is also largely in error at the
oscillator frequency. In contrast to this, the two-element SEA model is in error for
the aluminium plate structure for which the coupling loss factor has the large value
of gop

coup
"1)3. However, for the two steel}plate structures, the coupling loss factors



Figure 8. Error in one-element SEA model prediction (23) compared to ensemble averaged exact
result (5), &**', original structure; &} } }', 6 mm steel plate, M

o
"110 g; &22', 6 mm steel plate,

M
o
"11 g.
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have the values of gop
coup

"0)2 and gop
coup

"0)02, respectively, and the errors in the
two-element SEA predictions are less than 3 dB. The one-element SEA model
predicts the vibrations in all three structures, for all frequency bands, with an error
that is less than 3.5 dB.

Ensemble averaged vibration response in the three structures is calculated. The
ensembles are de"ned by that, the plate lengths are normal distributed with
a standard deviation that is 1% of the nominal lengths. The one-element SEA
model predicts the ensemble average response in all three structures with an error
that is less than 6)5 dB in narrow bands and 2)5 dB in third-octave bands.
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The authors appreciate the opportunity to comment on the interesting work
described in the letter by Dr. Finnveden [1].

First of all, we would like to note the areas of agreement between the results of
Dr. Finnveden and ours [2, 3]. Both, the analysis of Dr. Finnveden and ours
deduce the same formula and hence the same results for the spatially average
mean-square response of the plate per se and "nd that it does not depend on the
characteristics of the spring/mass attachment no matter what the mass or sti!ness
of the attachment. This is a remarkable result which has also been con"rmed by
experiment for the special case of a very sti! spring in reference [3].

The principal, indeed the only, disagreement between the results of Dr.
Finnveden and our own is regarding the response of the spring/mass attachment
itself. This issue is a subtle one for both AMA and SEA, for it is clear that the basic
premise of many oscillatory modes in the frequency interval of interest (say 1/3
octave) cannot be satis"ed by the single-degree-of-freedom spring/mass oscillator
per se. The plate itself, of course, can and usually does have several modes in the
frequency interval of interest.

It is for this reason, perhaps, that our two approaches diverge. Dr. Finnveden in
fact derives two distinct SEA models to describe the spring/mass response. In the
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