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A free vibration analysis of moderately thick rectangular plates with mixed
boundary conditions is presented on the basis of the first-order shear deformation
plate theory. The differential quadrature element method, a highly efficient and
accurate hybrid approach, has been employed. To establish the numerical model,
the complex plate domain is first decomposed into small simple continuous
sub-domains (elements) and the differential quadrature method is then applied to
each continuous sub-domain to solve the problems. Compatibility conditions are
developed for the conjunction nodes on the interface boundaries of elements in
order to connect the elements. Convergence and comparison studies are carried out
to establish the reliability of the solutions. The first eight frequency parameters are
predicted for various types of thick rectangular plates with mixed edge constraints.
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1. INTRODUCTION

Problems of rectangular plates with mixed edge constraints have been investigated
by many researchers adapting different solution techniques. Ota and Hamada [1]
predicted the fundamental frequencies of a simply supported rectangular plate
partially clamped on the edge using a distributed moment function along the mixed
edge. Keer and Stahl [2] studied the same problem by means of Fredholm integral
equations of a second kind, and demonstrated the dependence of the fundamental
frequencies on the clamped portion. Narita [3] employed a series-type solution
approach to solve the problem and obtained the frequency parameters for wide
ranges of mixed-edge rectangular plates. Other numerical methods such as the
finite element method [4], superposition method [5], spline finite strip method [6],
spline element method [7], and the Rayleigh—-Ritz method [8-10] have also been
used to study the free vibration of rectangular plates with discontinuous edge
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constraints. Laura and Gutierrez tried to predict the fundamental frequency of the
simply supported rectangular plates partially clamped along one and two edges by
using the global differential quadrature method [11]. However, all the research
work mentioned above is all confined to thin plates, solutions to thick rectangular
plates with discontinuous boundary constraints are scarce in the literature. Only
one paper was found to have treated the problem of free vibration of the Mindlin
plate with mixed boundary constraints [ 12], but only the fundamental frequencies
of the thin plates for two simple cases were calculated. The primary purpose of this
paper is to solve the free vibration problems of thick rectangular plates with mixed
boundary constraints. A hybrid approach namely the differential quadrature
element method, which combines the differential quadrature method with the
domain decomposition method, has been employed.

The differential quadrature (DQ) method originated with Bellman and his
associates [ 13] and was first applied to the structural analysis field by Bert and his
associates [ 14-16]. Since then, many studies researches have been done in both the
theoretical development and the engineering applications of the method. In all of
the applications, this method yielded good to excellent results for only a few
discrete points due to the use of the high-order global-based functions in the
computational domain. An excellent review paper contributed by Bert and Malik
[17] has summarized a detailed literature list on both aspects of the DQ method.
Nevertheless, further application of the method has been greatly restricted by its
drawback of not being able to be directly employed to solve the problem with
discontinuities. To overcome such a drawback, the DQ method has been combined
with the domain decomposition method first by Striz et al. [18-20] and then by
Wang and Gu [21, 22] to solve the static problems of truss and beams and the
static and free vibration problems of thin plates. This hybrid approach has been
further developed by Han and Liew to solve the one-dimensional bending problem
of the axisymmetric shear deformable circular plate [23], and by the present author
to solve two-dimensional bending and vibration problems of thick rectangular
plates and polar plates having discontinuities [ 24-28]. In this study, the differential
quadrature method is combined with the domain decomposition method to deal
with the free vibration problems of the moderately thick rectangular plates with
mixed boundary constraints.

2. MATHEMATICAL FORMULATIONS

Consider a moderately thick rectangular plate with side lengths a x b as shown in
Figure 1. The plate is divided into Ny elements based on the discontinuities in the
geometry, boundary constraints and materials used. Each element consists of an
isotropic material and has uniform thickness and continuous boundary constraints
on each edge.

2.1. EIGENVALUE EQUATION AND BOUNDARY CONSTRAINT CONDITIONS

For a given element [ of the plate, the eigenvalue equations for the free vibration
problems can be written based on the first order shear deformation theory as
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Figure 1. Configuration of a thick rectangular plate.
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where w, Y, and y, are the transverse deflection, the rotation of the normal
about the y-axis and the rotation of the normal about the x-axis respectively: h;,
E;, G, and v; are the thickness of the plate, Young’s modulus, shear modulus
and Poisson’s ratio, respectively; D, is the plate flexural rigidity; and x is the
shear correction factor. For free vibration analysis, x is taken to be
n?/12.  Letting w= W(x,y)el”, = P.(x,y)e”, ¢, =¥, (x,y)e* and
w=Q \/E/[paz(l —v?)] and substituting them into equations (1)-(3), one can
obtain the following equations:
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in which
F; = 6x(1 — v,)/ht. (7

The moments and shear forces are expressed as

M, =D, awx"'vz% ) (8a)
o0x oy
_ W | Oy
Aly——Dl<W ax + ay), (8b)
_ 1 - Vi 5Wx al/jy
M,, = 3 Dl<(3y+§ ) (8¢c)
ow ow
0. = kGl (a + ‘//x>> Q, =xGihy <8_y + ‘//y> (%a,b)
The boundary conditions for the edge x = 0 can be expressed as follows.
Clamped edge (C):
w=0, ¥y,=0, ¢,=0. (10)
Hard simply supported edge (S):
w=0, ¢¥,=0, M,=0. (11)
Soft simply supported edge (S'):
w=0, M,=0, M, =0. (12)
Free edge (F):
Qx=03 Mx=03 Mxy=0- (13)

2.2. RECTANGULAR FREE VIBRATION DQ PLATE ELEMENT

The Ith element is further divided into N,x N, grid points in the x and
y directions as shown in Figure 2. Using the DQ procedures [17], the discrete
governing equations for free vibration of the /th plate element can be expressed at
each discrete point of the inner mesh into

¥ 2 (1=v) & =0
Z Cii' (P + Z Cin (Vi)im — Fi(Py)i;
k=1 m=1

(1 + Vl) 3

+

N le _ N,
[ ey cg:mvy)km} LY P = — QP
k=1 m=1 k=

1

2

(14a)
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Figure 2. Arrangement of grid points for element I.
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where C% and C% (r=1,2,3,...,N; s=1,2,3, ... ,N,) are the weighting
coefficients for the nth-order partial derivatives of w, ¥, and y,, with respect to the
global co-ordinates x and y.

Equations (14a—c) can be further expressed in matrix form as

Ked® = /Bede, (15)
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where A = (phw?a*/D)"'? is defined as the frequency parameter: K¢, d° and B¢ are the
element weighting coefficient matrix, element displacement vector and the element
consistent mass matrix, respectively. Also

d° = [W1,1a lpxl,la lpyl,la Wi,2, l;bxl,Z: ¢y1,2> - s WN_ N,» wa),Ny,wny,N,,]Ta (16)

e e e e e e e e e T
B Z[bl.la 1,25 +++ > V1I,N)» 2,1)b2,27"'7b2.NVa"'9bNX,15"'7bNx,N}.:| ) (17)

where  b{ 1,bi 5, ....bT N, b5 1, b5 5, ... DS N, ... bR 1, DR, 2, ... bR v, are null
matrices with 3N x3 elements, and b%,,....b5 5 —1,....b% —12,..., and
b%,.-1,n,—1 are matrices with 3N x 3 elements, in which only the three elements at
the corresponding point in each matrix are not equal to zero; the other elements are
all zeros. Taking matrix b ,, for example, it can be expressed as

3,2:

[ j=1,2,3,...3N, j=3N,+1,3N,+2,3N,+3,...,6N, j=6N,+1,6N,+2.....3N |
r A Al r A hl r A Al
0,0,0,...,0,0,0 0,0,0,0, — 1/a?,0,...,0,0,0 0,0,0,...,0,0,0
0,0,0,...,0,0,0, 0,0,0,0,0, —1/a?,...,0,0,0, 0,0,0,...,0,0,0

2
0,0,0,...,0,0,0, 0,0,0, —————,0,0,...,0,0,0, 0,0,0,...,0,0,0
L k(1 —v)a -

(18)
The coefficients in K¢ are determined by equations (14a-c).

2.3. COMPATIBILITY CONDITIONS

In order to obtain a complete solution for the entire plate, the element weighting
coefficient matrices, the element displacement vectors and the element consistent
mass matrices should be assembled into a global system equations for all the nodal
points of the plate labelled from 1 to N. Therefore, the compatibility conditions for
the conjunction nodes at the interface boundaries of adjacent elements need to be
established. This includes the compatibility conditions for both the displacements
and the force and moments.

Obviously, the displacement compatibility conditions are automatically satisfied
at all the interface conjunction nodes since the same global nodal number is used
for each conjunction node. Only the equilibrium conditions for the force and
moments are needed to form the compatibility conditions. According to the
locations of the conjunction nodes, the compatibility conditions for the free
vibration DQ plate elements are given below:

e For conjunction nodes at interface boundaries of two elements: As shown in Figure
3(a), the compatibility conditions for the conjunction nodes at the interface
boundaries of two elements [; and [,, which are connected in the x direction, can
be expressed according to the equilibrium conditions as

(QQ)N,«.]' - (Qi?)l,j =0, (Mgcl)Nx,j - (Mif)l,j =0, (Mgcly)N),j - (Miczy)l,j =0.
(19a—c)
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Figure 3. Locations of conjunction nodes on the interface boundaries of adjacent elements: (a) two
elements are connected in x direction: (b) two elements are connected in y direction; (c) four elements
are connected at node m.

Similarly, for the conjunction nodes at the interface boundaries of two
elements [; and [, connected in the y direction as shown in Figure 3(b), the
compatibility conditions are given by

(Q;l)i,N}. —(0%)i1 =0, (M;I)i,Ny — (M%), =0, (M.gcly)i,N,. — (M%);,1 =0.

(20a—c)

o For conjunction nodes at which four elements meet: If four adjacent elements
l,1,,13 and I, are connected at a node m as shown in Figure 3(c), the
compatibility conditions for the common node m are

or

(QQ)NX,N}. +( ?)Nx,l - (Qi?)l,N,. —(Q%);1 =0,
(MQ)NX,Ny + M%)y, 1 — (Mif)l,N,, — (M%), =0,
(Micly)Nx,N,, + (M%), 1 — (M.{?y)l,Ny —(M%)1,1=0
(O3, N, — (O%)v.1 + (Q;)I,N,. — (0311 =0,
(M;‘)NX,N,, — (My)n.1 + (Mly“)1,N,, — (M#)11 =0,

(Mgcly)Nx,N,. — (Miczy)N), 1+ (Migy)LNy — (Mg?y)1,1 =0

(21la—c)

(22a-c¢)

The final global matrix forms of equation system for free vibration of the entire

plate become

Kd = /Bb,

(23)

where K, d and B are the overall weighting coefficient matrix, global displacement
vector, and overall mass matrix of the plate.
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Solving the final algebraic eigenvalue equation system by the ordinary
eigenvalue equation system solver, the solutions to the entire plate can be obtained.

3. NUMERICAL RESULTS AND DISCUSSIONS

Using the method described above, the vibration frequencies of rectangular
plates with any arbitrary combination of mixed boundary constraints can be
determined easily. In the present study, however, we only focus on six cases

as shown in Figure 4(a—f). The grid points employed in computation are designed
by

=%11 —cos[(i — D/(Ny — DT}, i=1,23,....N., (24)

Xi

——{1—COS[(]—17I/ D1, j=1,23,...,N, (25)

The Poisson’s ratio is taken to be v = 0-3. The eigenvalues are expressed in terms of
the frequency parameter as 2 = wa*./ph/D
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Figure 4. Configurations of rectangular plates with mixed boundary constraints analyzed by
present numerical method: (a) a simply supported rectangular plate partially clamped along one edge,
(b) a simply supported rectangular plate partially clamped along two opposite edges; (c) a simply
supported rectangular plate partially clamped along four edges symmetrically from the corners;
(d) a square plate with central portions of edges clampped and the portions around four corners
simply supported; (e) a simply supported rectangular plate with central portions of two opposite edges
free; (f) a rectangular plate having simply supported, free and clamped constraint conditions at the
same edges.
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Convergence studies are carried for the example problems (cases a—f) to establish
the grid points required in each element for obtaining the accurate solutions.
The convergence patterns of the frequency parameters with the number of grid
points in each element are presented in Table 1 for cases a—d and in Table 2 for
cases e-f.

It can be observed from Tables 1 and 2 that the convergence rate varies for
different plate configurations. Generally, the convergence rate of the plate which
includes more singular points on boundaries is lower than that of a plate having
a lesser number of singular points on the boundaries. And the convergence of
frequency parameters for plates having partially free boundary conditions on the
mixed boundaries (cases ¢ and f) is slower than that for plates without free
boundary conditions on the periphery boundaries. However, for all the cases
considered in this paper, a convergence to at least three significant figures can be
achieved when 13 x 13 grid points are used in each element. Therefore, 13 x 13 grid
points in each element will be used to generate all the results in the following studies
to ensure the high accuracy of the numerical solutions.

To examine the validity of the numerical method employed, the computed
frequency parameters have been compared with the existing solutions available in the
open literature. In Table 3, a comparison of the present solutions with those from
various sources for cases a-d is presented. Since no solutions have been found for
thick plates of cases a—d in the open publications, only the results for the thin plates
(h/a = 0-01) are compared here with the existing thin plate theory solutions. It is
evident from Table 3 that the present solutions for the thin plates (h/a = 0-01) agree
very well with the analytical solutions established by Ota and Hamada [1], Keer and
Stahl [2], Narita [3] and Gorman [5], and the Rayleigh—Ritz solutions given by
Liew et al. [9]. However, the results obtained by the finite element method [4], spline
finite strip method [6] and the spline element method [7] seem to be slightly higher
than those given by the present method and the analytical method. Even so, they are
well within the range of the acceptable accuracy for engineering applications.

Based on the convergence and comparison studies, the present numerical
solution approach has been employed to determine the vibration frequencies of the
thick rectangular plates having various mixed boundary constraints. The frequency
parameters corresponding to the first eight modes of free vibration for cases a—f
have been computed and presented in Tables 4-9 for rectangular plates of various
relative thickness ratios (h/a) and mixed edge constraint ratio (c/a). Some of the
results, where possible, are compared with the existing solutions in the literature.
For all the cases considered, the dependence of the frequency parameters on both
relative thickness ratio and the mixed edge constraint ratio is observed.

In Tables 4 and 5, it is observed that as the partially clamped ratio, c/a,
approaches the value 1-0, the frequency parameters approach the values of a square
plate with one or two edges fully clamped and the other edges simply supported for
all the relative thickness varying from h/a = 0-01 to 0-2. Also, it is observed that
regardless of the relative thickness, the frequency parameters vary only slightly
when the partial clamped ratio is within c/a = 0-:0-0-2 or c¢/a = 0-8-1-0. The
significant variations occur, however, in the mid-range of ¢/a. This phenomenon
has been discussed earlier by other researchers for thin plate problems [5, 9]. The
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TABLE 3

Comparison studies for frequency parameters J. = wa* ./ ph/D of a sqaure plate with
various mixed boundary constraints (h/a = 0-01, c¢/a = 0-5)

Mode sequence number

Case Sources 1 2 3 4 5 6

a Present 22442 4984 5548  82:13 9947 106-53
Ota and Hamada [1] 22:4 — — — — —
Keer and Stah [2] 22-49 — — — — —
Narita [3] 22:63 5004 5595 8234 9971
Gorman [5] 2248 — — — — —
Fan and Cheung [6] 22773 5015 5623 8298 9974 —
Mizusawa and Leonard [7] 22-71 50-10  56:13 8237 9973 —
Liew et al. [9] 22:51 4995 5572 8229 9969 1071
Laura and Gutierrez [11] 21-99 — — — — —

b Present 2559 5204 5975 8795 10434 11171
Ota and Hamada [1] 255 — — — — —
Fan and Cheung [6] 26:37 5223 6178 — — —
Liew et al. [9] 2571 5211 6009 8813 1106 1123
Laura and Gutierrez [11] 2541 — — — — —
Striz et al. [20] 2602 5213 6080 8813 100-6 —

c Present 2531 5746 5746  96:67 100-88 112-88
Narita [3] 26:18 5870 5870 9858 1020 —
Liew et al. [9] 2540 5763 5763 9705 101-1 1133

d Present 3566 7199  72:04 10228 12530 131-01
Ota and Hamada [1] 355 — — — — —
Liew et al. [9] 3560 7171 7171 101-8 1248 1314

frequency parameters decrease as the relative thickness increases, especially
pronounced for the higher modes.

The numerical results shown in Tables 6 and 7 are the frequency parameters
for square plates with partial portions simply supported and other portions
clamped along four edges (cases ¢ and d). In Table 6, it is evident that the frequency
parameters for case ¢ increase gradually as the clamping ratio c/a increases
from c¢/a = 0-0 to 1:0. However, it is evident from Table 7 that there are abrupt
changes in the frequency parameters at the onset of the partially clamped
conditions [¢/a = 0-8-1-0 as shown in Figure 4(d)]. When the ratio ¢/a approaches
the value 0-0, the frequency parameters approach those of a fully clamped plate in
a more gradual manner. This indicated that the effects of the presence of the
partially clamped constraint conditions at the middle portions of the plate edges on
the frequency parameters are more significant than those at the four corners.

Tables 8 and 9 show the frequency parameters for the last two cases (cases e and
f) in which the partial portions of plate edges are free. It is concluded from the
results in both tables that all the first eight frequency parameters decrease as the
lengths of the free edge portions increase. This indicates that the presence of the free
boundary conditions reduces the flexural stiffness of the plate.
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TABLE 7

Frequency parameters ). = wa*./ph/D for a square plate with central portions of
edges clamped and the portions around four corners simply supported (case d)

Mode sequence number

Wa cla 1 2 3 4 5 6 7 8

0-01 00 359375 732324 73-2324 107-8890 131-1188 131-7522 164:2996 164-2996
02 359414 732321 73-2323 107-8574 131-1247 1317170 164-1918 164-1929
04 358996 730169 73-:0375 1069872 130-7174 131-1311 162-:0256 162-4860
0-6 355013 714384 719516 102-8593 126-0229 131-0986 153-3462 157-8889
0-8 327372 643999 649865 90-5992 111-4985 125-5724 138-7304 146-5304
1-0 197319 493027 49-3027 78:8410 98:5150 98-:5150 127-9993 127-9993
0-1 0-0 324894 619371 619371 867780 102-2068 103-1853 123-5955 123-5955
02 324752 618734 61-8852 86-5593 102-2056 102:9603 123-1601 123-2376
0-4 32:3632 614967 61-5624 85-4789 101-8436 102-2495 121-3052 121-8769
0-6 31-8048 59-8738 60-5993 825614 98-7472 1022254 116-828 120-0274
0-8 30-3556 56:3506 59-4845 79-5927 94-2211 101-9477 112-9509 119-6739
1-0 19:0584 454478 454478 697167 84:9264 849264 106:5154 106-:5154
02 00 264534 46:1349 46:1349 619297 70-5488 71-5214 83-:6969 83-6969
02 264282 460828 46:0877 61-:8111 70-5494 71-4174 83-5593 8§3:5705
04 262504 457579 457782 61138  70-5434 70-8201 82-8252 82:9082
0-6 257163 44-8150 451897 59-8430 69-6038 70-5839 81-4740 82-2933
0-8 24:6335 430716 446425 587117 68:0744 70-5226 80-3515 82:2045
1-0 174291 38-:0732 380732 550024 649512 649512 784340 78-4340

TABLE &

Frequency parameters /. = wa® \/ ph/D for a simply supported square plate partially
free along central portion of two opposite edges (case e)

Mode sequence number

hla  c/a 1 2 3 4 5 6 7 8

0-01 02 197032 49-0887 49-2266 78-:6660 97-3726 98-5017 127-0872 1277119
04 193223 462526 49-1094 781793 82:2857 98-4244 109-3464 126:1870
0-6 179489 374079 484752 57-5104 749452 84-5854 98-0630 114-0658
0-8 153086 274287 445607 462229 650414 781043 90-3212 96-2321
0-1 02 189688 447273 452506 69-2345 81-7609 84-8962 104:5299 105-8487
0-4 183806 40-1943 449621 63-7399 680927 83-:0393 84-7051 102-7395
0-6 167269 310930 44:0991 46:5858 63-7171 704994 84-1098 89-1438
0-8 13:9729 229320 383113 41-6353 54-1729 67-5186 723184 82:0657
02 02 172669 369662 378752 54-5730 609513 649314 7577469 77-8970
0-4 16-:5009 31-8639 37-5109 46-:1791 53-2956 59-8742 647677 747803
06 147502 244214 359174 365996 49-1241 54-3304 641567 64-2071
0-8 122333 185469 31-1711 344099 41-8988 52-9609 53-9970 624719
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TABLE 9

Frequency parameters /. = wa*/ph/D for a square plate having simply supported,
free and clamped constraint conditions at the same edges (case f, ¢,/b = 0-5)

Mode sequence number

hja ¢, /a 1 2 3 4 5 6 7 8

0-01 02 285202 531143 689142 86-4119 111-2899 122-0728 133-7538 148-1331
0-4 267086 49:5960 653659 84-7196 90-8904 116:0664 120-7714 134-5360
0-6 241897 39-6816 60-8285 61-1666 81-9392 88:3379 117-2949 121-9796
0-8 20-8682 289284 472733 57-0899 70-2250 809607 96-:3591 110-9087
0-1 02 257218 472261 582256 74-5374 88-:6812 97-0398 108-7663 114-9896
0-4 240569 427166 550997 663203 73-8776 856998 96:1425 107-2972
0-6 215997 32:8643 481098 52-2427 68-3299 72:5401 92-7412 93-8581
0-8 18:6420 24-5777 39-8452 49-0395 58:0647 689074 754648 89-9096
02 02 217196 383171 440336 572673 63-:0577 689444 77-4884 80-6879
0-4 202634 332580 42-1687 46:9952 559363 610501 68-5758 76-5097
0-6 180982 255000 36-:5300 40-6084 51-2475 551585 653044 67-5281
0-8 157477 199065 31-9287 382642 439951 53:3836 553314 65:4473

The variation trends of the frequency parameters with the relative thickness ratio
h/a shown in Tables 6-9 are all very similar to those for cases a and b observed in
Tables 4 and 5, i.e. the frequency parameters decrease as the relative thickness ratio
increases.

4. CONCLUSION

This paper considers the free vibration of moderately thick rectangular plates
with mixed boundary constraints. A new numerical method, the differential
quadrature element method, was used to perform the analysis. By using this
method, the discontinuities of the boundary constraints are isolated by
decomposing the whole solution domain into several continuous sub-domains and
the accurate solutions are obtained. The convergence and comparison studies were
carried out to establish the reliability and accuracy of the numerical results. Several
example rectangular plates with various mixed constraint conditions have been
analyzed and the numerical results for the first eight frequency parameters were
presented consequently. The effects of the ratio of mixed constraints portion on
plate boundaries and those of the plate relative thickness on the frequency
parameters of plates have been discussed. Since the solutions for the frequencies of
thick plates with various mixed boundary constraints are scarcely reported in the
literature, the present solutions should be valuable to engineers and designers for
their reference.
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