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Optimum design for dynamic stability of slender cantilevered columns subjected
to a follower force, due to a rocket thrust, is investigated. The aim is to determine
the tapering of the column which maximizes the critical value of the rocket thrust
(at which #utter is initiated) under the constraint of constant length and volume of
the column. The rocket thrust is assumed to be produced by a solid rocket motor
mounted at the tip end of the column. The rocket motor is simpli"ed as a massive
ball with the same material density as the column. Based on experimental evidence
[1,2] it is argued that a mathematical model without damping gives the practical
stability limit if internal and external damping is small and the rocket thrust acts
only in a short interval of time. Optimum columns are determined for various sizes
of the end-ball (rocket motor). For small sizes, the critical thrust can be signi"cantly
increased by optimization, about eight times. By practical (experimental realizable)
values of the mass ratio k"(mass of end-ball)/(mass of column) the critical thrust
can only be increased 1)3}1)4 times which is similar to the case of a pure
conservative (dead) end load. Also, it is found that the great sensitivity to small
changes in design parameters, which signi"cantly complicates optimization of the
pure Beck's column, is not present for practical values of k. It is argued then, that
the &pure' Beck's column should be considered as a theoretical limit case of
vanishing end-mass. ( 1999 Academic Press
1. INTRODUCTION

A classical &model problem' within the "eld of dynamic stability is Beck's
column*a cantilevered column subjected to a so-called &follower force' at the free
end [3, 4]. The line of action of this force always remains tangential to the deformed
beam axis at the free end. The load is thus non-conservative and the column is
subject to dynamic instability (#utter). It is important to obtain a full understanding
-Current address: Institue of Mechanical Engineering, Aalborg University, Pontoppidanstraede
01, DK-9220 Aalborg East, Denmark.

022-460X/99/360001#23 $30.00/0 ( 1999 Academic Press



2 M. A. LANGTHJEM AND Y. SUGIYAMA
of dynamic stability in order to prevent its occurrence in, for example, aircraft and
aerospace structures. Many theoretical studies have been carried out, especially on
the e!ect of damping, but only few have been followed up by experiments. One
reason may be that it is very di$cult to produce and control a pure follower force in
the laboratory. Consequently, studies on follower force systems have from time to
time been severely criticized as being out of touch with reality (e.g. reference [5], but
see also references [6, 7]). A #exible, cantilevered #uid-conveying tube, where the
#uid is discharged at the free end, is an example of another system subjected to
a follower force (due to the momentum #ux at the free end). This system, which can
easily be realized, is however also subjected to gyroscopic forces due to moving
mass of #owing #uid and to signi"cant #uid damping. In many practical problems,
especially in aerospace applications, the damping is very small. However, it is
known that the theoretical #utter limits are very di!erent in the cases of no
damping and small internal (material) damping [3, 4]. Beck's problem was realized
in almost pure form by Sugiyama et al. [1]. It was done by installing a small solid
rocket motor at the free end of a cantilevered column. This experimental study
veri"ed the #utter instability and clari"ed the e!ect of damping.

In [1] Sugiyama et al. compare the stability limits obtained (i) experimentally, (ii)
theoretically with inclusion of internal and external damping and (iii) theoretically
with neglect of both types of damping. The conclusion is that the stability curve
calculated with neglect of damping agrees well with the experiments, while the
curve calculated with inclusion of (internal and external) damping signi"cantly
underestimates the stability limit. This can be understood by considering the
behaviour of the leading eigenvalues (those having largest real parts) in an
Re(j)!Im(j) diagram. We will consider vibrations of the form

a (x) exp(jt), (1)

where a(x) is the amplitude and j"p#iu is a complex eigenvalue. As just
mentioned, the critical load for the damped model, p

damped
say, is signi"cantly lower

than the critical load for the undamped model, p
undamped

. [Roughly,
p
damped

+p
undamped

/2.] But in the load interval p
damped

(p(p
undamped

the &unstable
eigenvalue', which has a small positive value of p, is creeping along the Re(j)-axis if
both internal and external damping is very small. This is the case for a slender metal
rod (e.g., aluminium) vibrating in air. So, although the system mathematically (in
the sense of Lyapunov) of course is unstable, the growth-rate of the unstable
vibrations is so small that the system from an experimental point of view will
appear to be stable within the burning time of the rocket motor, which typically is
just 3}4 s.

This problem was foreseen and discussed already in 1965 by Hermann and Jong
[8], who proposed a relaxed stability criterion based on a measure of the rate of
amplitude-growth during one period of oscillation. Sugiyama et al. [1] suggested
a slightly di!erent stability criterion, namely: the system is considered stable if small
disturbances are ampli"ed less than n times during the burning time of the rocket
motor (which was 4 s in their experiments). From equation (1) it is seen that, if the
burning time is t

b
and the largest p-value is p

.!9
, the system is considered as being
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stable if

exp(p
.!9

t
b
)(n. (2)

The critical load, p
cr

say, is thus de"ned as the load at which

p
.!9

"

ln(n)
t
b

. (3)

To exemplify, for one of the experiments in reference [1], the &practical' stability
criterion gives, with n"10, a non-dimensional critical load p

cr
of magnitude 12)61.

This value is not very di!erent from the theoretical value 12)60 obtained by
neglecting damping, but certainly very di!erent from the theoretical value 5)65
obtained by including damping. [On the other hand, if the rocket burning time t

b
is

not such a short period of time, p
.!9

must necessarily be very small. As t
b
PR,

p
cr

smoothly approaches p
damped

.]
The undamped mathematical model then gives, to a very good approximation,

the &practical' stability limit if the damping is small and the follower force is applied
only in a short interval of time. This has been re-evaluated now in a number of
experiments [2]. It is worth remarking that this is also the conclusion of the 1990
review paper &&Destabilizing paradox in stability problems of non-conservative
systems'' by Seyranian [9] who writes, &&The destabilizing paradox due to
in"nitesimal damping is of a formal nature and it is the consequence of the use of
the stability criterion on an in"nite interval of time. When damping tends to zero,
then the formal limit of the critical value looses the physical meaning of boundary
of vibrational stability; the critical parameter of the system with zero damping is the
boundary of practical stability.''

It must be emphasized that the above discussion assumes that the disturbances
are so small that non-linear e!ects do not come into play and change the stability
limit predicted by a linear analysis. Considering the already mentioned cantilevered
#uid-conveying tube, experiments show that long, slender tubes remain stable to
large disturbances when the #ow-rate is just below the critical value. Relatively
short tubes, on the other hand, are only stable to a small disturbance (a &snap' by
a "nger). A larger disturbance (a strong push) may initiate limit-cycle motion [10].
[In the "rst case, the #utter boundary is characterized by a supercritical bifurcation;
in the latter case by a subcritical bifurcation.] Similar phenomena may be expected
for the present system.

Large space structures may be maneuvered in space by means of pusher-type
rocket motors (which are active in short intervals of time only). For such structures,
optimum design against dynamic instability is of major importance. Typically, the
optimization problem is formulated as (a) for a "xed critical load p

cr
, determine the

structure of least weight or, (b) for a given amount of material (weight), determine
the strongest structure, i.e., the structure with the largest critical load p

cr
. In the

development of e$cient and robust optimization methods for non-conservative
problems, Beck's problem has been used as a &model problem' for many years
[11}15]. The critical (#utter) load of Beck's column can be increased signi"cantly
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by optimization, 6}8 times larger than for a uniform column, both with and
without inclusion of damping [16]. For comparison, the critical (buckling) load for
a cantilevered column subjected to a conservative (dead) load can only be made
1)33 times larger by optimization [17].

Previous papers on the optimum design of Beck's column have focused on
the numerical optimization method and no attention has been paid to the physical
realization and experimental veri"cation of the results. The aim of the present
paper is to determine the optimum tapering of cantilevered columns subjected
to a tangential follower force, due to the thrust produced by an end-mounted
rocket motor. This is done with an experimental veri"cation of the optimum design
in mind which is particularly interesting since apparently, the optimally shaped
Beck's column is so very much more &e$cient' than the corresponding uniform
column. A column with circular cross-sections is considered in this paper such that
direct comparison with previous theoretical work, such as reference [15], is
possible.

Concerning the planned experimental veri"cation of the e!ect of optimization,
care will be taken to make sure that the vibrations occur in one plane only. This is
most easily obtained by using beams with rectangular cross-sections. Figure 1
shows the experimental setup with an optimally shaped aluminium beam. The
small solid-propellant rocket motors are specially manufactured by Daicel
Chemical Industries, Ltd. Great care must be taken to obtain a well-de"ned and
uniform thrust during the whole burning time. The motors are thus very costly and
so far, only a couple of test-runs have been made with optimally shaped columns.
The experiments will be described in a future paper.
Figure 1. A general view of the experimental setup of an optimally shaped aluminium column, with
rectangular cross-sections, subjected to a rocket thrust at the free end.
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The present paper is divided into six sections. Section 2 deals with the stability
analysis. For simplicity, the column is treated as a Bernoulli}Euler beam in this
paper. Ryu and Sugiyama [18] studied the in#uence of rotatory inertia and shear
deformation of the column for a similar model. They concluded that these
corrections to the simple beam model hardly a!ect the #utter load of slender
columns but the rotatory inertia and the "nite size of the rocket motor (end-ball)
cannot be neglected. In section 3, the in#uence of the size of the end-ball on the
stability limit and on the #utter oscillations of uniform columns is discussed.
Section 4 describes the optimization problem and the numerical method. The
numerical results are discussed in section 5. It is suggested that the case of no
end-mass (Beck's column) should be considered as the theoretical limit case since
the optimum design has vanishing tip cross-section area. This means that the
curvature of the column can become extremely large at the free end during the
#utter oscillations. Figure 6(a) shows that this is indeed the case. The critical load of
this column signi"cantly exceeds that of a uniform column with same length and
volume, almost eight times. By taking the, in praxis unavoidable, end-mass into
consideration, the optimization gain factor poptimal

cr
/puniform

cr
is signi"cantly reduced

and the curvature at the free end of the column becomes much more reasonable, see
Figure 6. By a mass ratio (mass of end-ball)/(mass of column) which resembles
those realized by Sugiyama et al. [1, 2], the gain factor is only about 1)3, similar to
what can be obtained in the case of a purely conservative load. By continued
increase of the mass ratio the gain factor is not reduced but remains almost
constant. The main conclusions are summarized in section 6.

2. STABILITY ANALYSIS

2.1. DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS

The system under investigation is sketched in Figure 2(a) and its mathematical
idealization in Figure 2(b). The mathematical model consists of a cantilevered
column, of length ¸, with a ball at the free end. It will be assumed that the column
has circular cross-setions with radius r"r(x). The material density is denoted by o.
The ball represents a solid rocket motor which, by its thrust, provides the follower
force p. If the radius of the ball is denoted by a and its density also is o (as the
column), it has the mass

M"4
3

n a3o (4)

and rotatory inertia

J"2
5

M a2" 8
15

n a5o (5)

about an axis through its centre. Rotatory inertia and shear e!ects of the column
are ignored in the present study. Damping is ignored in accordance with the
discussion in section 1. Small-amplitude vibrations around the trivial equilibrium



Figure 2. (a) Cantilevered column subjected to a follower force, realized by the thrust of an
end-mounted rocket motor; (b) Mathematical model. Sketch of the idealized system.
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con"guration are then governed by the linear di!erential equation

L2

Lx2 GEI (x)
L2y
Lx2H#p

L2y
Lx2

#m(x)
L2y
Lt2

"0, (6)

where x is the length parameter, t is the time, y is the lateral displacement, E is the
modulus of elasticity, I(x) is the area moment of inertia, m (x)"onr(x)2 is the mass
distribution and p is the follower load. The boundary conditions are [1]

y"0 and
Ly
Lx

"0 at x"0,

EI
L2y
Lx2

#M
L2

Lt2 Ay#a
Ly
LxB a#J

L3y
LxLt2

"0 and

L
Lx GEI

L2y
Lx2H!M

L2

Lt2 Ay#a
Ly
LxB"0 at x"¸. (7)



CANTILEVERED COLUMN WITH AN END-MASS OF FINITE SIZE 7
The time-dependence is assumed to be of the form

y (x, t)"yN (x) exp(j3 t), j3 "p8 #iu8 . (8)

In order to obtain a dimensionless formulation, the following dimensionless
parameters are de"ned:

xN "
x
¸

, yN "
y
¸

, f"
r
0
¸

, i"
a
r
0

, j"j3
t
tN
"p#iu,

tN"
t
¸2S

EI
0

m
0

, pN "
p¸2

EI
0

, mN (xN )"
m(x)
m

0

, sN (xN )"
I(x)
I
0

. (9)

Quantities with index &&0'' refer to a speci"ed uniform column. By using that
sN (xN )"(mN (xN ))2 by the circular beam cross-sections, the dimensionless boundary
value problem is

F[y]"Mm2y@@N@@#py@@#j2my"0,

y"0 and y@"0 at x"0,

m2y@@#4
3

j2f2i4(y#7
5

fiy @ )"0 and

Mm2y@@N@!4
3

j2fi3(y#fiy@)"0 at x"1. (10)

The overbars have been dropped for the sake of simple notation and in the
following, all variables will be referred to in their dimensionless form. It is noted
that the dimensionless mass ratio

k"
mass of rocket motor

mass of column
"

M
m

0
¸

and the dimensionless end-ball (rocket motor) rotatory inertia

t"
rotatory inertia of the rocket motor about its centroid

3](rotatory inertia of the column about its end)
"

J
m

0
¸3

de"ned in [1], are given by

k"4
3

fi3, t"2
5

f2i2k" 8
15

f3i5 (11)

in terms of the variables f and i.
Contrary to a damped column, the equilibrium con"guration y(x),0 is only

marginally stable by su$ciently small load values as the real parts of all eigenvalues
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are equal to zero. Flutter is initiated when two eigenvalues and their corresponding
eigenvectors coalesce, since one of the eigenvalues gets a positive real part beyond
this point. Divergence cannot occur in the present system [3].

2.2. THE ADJOINT SYSTEM

In connection with the optimization, consideration of the adjoint system to
equation (10) is necessary. It is determined by solving the equation

P
1

0

lF[y] dx!P
1

0

yF*[l] dx"0 (12)

which gives

F*[l]"Mm2l@@N@@#pl@@#j2mv"0,

l"0 and l@"0 at x"0,

m2l@@#pl#4
3

j2f2i4(l#7
5

fil@)"0 and

Mm2l@@N@#pl@!4
3

j2mi3(l#fil@)"0 at x"1. (13)

This boundary value problem describes small oscillations of a column being
compressed by a force with a "xed line of action coinciding with the axis x and also
having the "nite size end-mass. The system is shown in Figure 3. The case where the
end-mass is a point-mass is treated in Bolotin's book [3]. The force can be realized
by an air-jet impinging on a rigid, &massless' (in reality, very sti! and light-weighted)
end-plate [19, 20].
Figure 3. Sketch of the adjoint system.
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2.3. DISCRETIZATION

When the column is uniform, eigensolutions (j, y) can be obtained &exactly',
without discretization [1]. This is not possible for a column with non-linear
tapering. In the following the "nite element method is applied [21]. Within each
element, the de#ection function y (x) is represented by polynomials. The discretized
version of equation (10) takes the form

Fd"[j2M (m, f, i)#S(m)!p(Q
C
!Q

N
)]d"0. (14)

The vector m"Mm
1
, m

2
,2, m

Ne`1
N represents the design variables which are the

speci"c masses m(x) at the N
e
#1 nodal points. Thus, m

1
"m(0) and

m
Ne`1

"m(1). The mass distribution is assumed to vary linearly within each
element. The mass matrix is represented by M, S is the sti!ness matrix, Q

C
is the

conservative load matrix and Q
N

is the non-conservative load matrix. Finally, d is
the nodal displacement vector. The matrices M, S and Q

C
are symmetric and

positive de"nite, while Q
N

is non-symmetric. The discretized version of the adjoint
system (13) is

FTb"0. (15)

The #utter condition is [22]

bTMd"0. (16)

The numerical results to follow were obtained with the column divided into 20
elements of the same length. The matrix system (14) is thus of size 40]40. The
eigenvalues j (identical for (15) and (16)) were determined by using the
QR-algorithm [23]. The critical load p

cr
was determined by using a bisection

method. Equation (16) was used to check the accuracy.

3. FLUTTER OSCILLATIONS OF THE UNIFORM COLUMN

3.1. THE FLUTTER LIMIT

The in#uence of the size of the end-ball on the stability limit of a uniform column
will brie#y be considered "rst. Figure 4(a) shows the stability map, depicting o

cr
as

function of n"a/r
0

for various values of the columns slenderness ratio f"r
0
/¸.

Figure 4(b) illustrates the depenence of the #utter frequency on the ratios f and i. It
will be seen that increasing i results in decreasing #utter frequency and it decreases
most rapidly when f is large.

3.2. THE FLUTTER VIBRATIONS

Figure 5 illustrates how the size of the end-ball a!ects the #utter oscillations of
the column. Here, and in all the following numerical examples, only the slenderness



Figure 4. (a) Stability limits as functions of the radius ratio i"a/r
0

for various values of the
slenderness ratio f"r

0
/¸; (b) The corresponding #utter frequencies. f=="0)001, K=="0)05,

]=="0)01, L=="0)05
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Figure 5. Flutter oscillations for various values of the radius ratio i (slenderness ratio f"0)01).
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ratio f"r
0
/¸"0)01 will be considered. It will be seen that the nodal point moves

towards the free end by increasing i and by a certain i-value, it disappears. For
a uniform column, #utter is always initiated by coincidence of the "rst and the
second eigenvalue branch, so it means that the nodal point of the second eigenmode
disappears by a certain i-value. What qualitatively di!erentiates the second
eigenmode from the "rst then, is that the bending moment for the second
eigenmode vanishes at an inner point, 0(x(1.

4. OPTIMIZATION

4.1. PROBLEM FORMULATION

Let p
1
, p

2
,2, p

Ne
be the loads at which pairs of eigensolutions coincide and let

p
cr

be the smallest of these values. For the uniform column, it is assumed that
p
1
(p

2
(2(p

Ne
. The optimization problem is to determine the design vector

m which

Maximize p
cr

(17)

subject to

(i) p
cr
)Mp

1
, p

2
,2, p

Ne
N,
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(ii) u
n`1

!u
n
(G

0
c
`

for n"1, 3, 5,2
for n"2, 4, 6,2

for all p(p
cr
,

(iii) m
6 j
)m

j
)mN

j
, j"1, 2,2, N

e
#1,

(iv) Volume"constant.

Here, u
n
"u

n
(p) denotes the load-frequency curves which are the imaginary parts

of the eigenvalue brances j
n
(p). For p"0, u

1
(u

2
(2(u

Ne
. The constraints

(17-ii) make sure that the &nature' of these curves remains unchanged; u
1

and u
2

coincide at the load p
1
, u

3
and u

4
at the load p

2
, and so on. Coincidence between,

for example, u
2
and u

3
is thus prevented. These curves are kept apart by a speci"ed

distance c
`

. This is done in order to increase the &robustness' of the optimal
columns. The optimal #utter load p

cr
may be made slightly larger by setting c

`
"0,

but a small change in the design variables may then cause a big drop in p
cr
, as

discussed in reference [13].

4.2. SOLUTION METHOD

The non-linear optimization problem (17) is linearized and solved iteratively by
using sequential linear optimization (linear programming). After k iterations the
design is speci"ed by the vector mk. The (k#1)th optimal redesign problem (for
determining the design vector mk`1"mk#Dm) can be written as

Maximize p
cr

subject to (18)

(i) p
cr
)pk`1

l
+pk

l
#

Ne`1
+
j/1

Lpk
l

Lm
j

Dm
j
, l"1, 2,2, N

e
,

(ii) uk`1
n`1

!uk`1
n

+uk
n`1

!uk
n
#

Ne`1
+
j/1

L (uk
n`1

!uk
n
)

Lm
j

Dm
j
)G

0
c
`

for
for

n"1, 3, 5,2,
n"2, 4, 6,2.

for p"p*
1
, p*

2
,2, p

cr
,

(iii) m
6 j
)mk

j
#Dm

j
)mN

j
, j"1, 2,2, N

e
#1,

(iv) lT*m"0.

Here, l is a vector of the elements which are linear combinations of the element
lengths l

e
,

l"1
2

Ml
1
, l

1
#l

2
, l

2
#l

3
,2, l

Ne~1
#l

Ne
, l

Ne
N. (19)
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The discrete load values p*
1
, p*

2
,2, are in the range between 0 and p

cr
. The

derivatives of p
cr

and u with respect to the design parameters m
j
,

j"1, 2,2, N
e
#1, are given by [13, 24]

Lp
cr

Lm
j

"

bT[LF/Lm
j
]d

b(Q
C
!Q

N
)d

,
Lu
Lm

j

"

bT[LF/Lm
j
]d

2ubTMd
. (20)

The eigenvectors d and b can be obtained from (14) and (15). The sizes of the
design changes are governed by the limits Dm.*/

j
, Dm.!9

j
, j"1, 2,2, N

e
#1, such

that

0*Dm.*/
j

)Dm
j
)Dm.!9

j
*0. (21)

Linearized system (18) can be converted into a pure linear programming problem
by de"ning the positive variables

Dm`
j
"Dm

j
!Dm.*/

j
*0. (22)

In terms of these variables, the design change limits are given by

Dm`
j
)Dm.!9

j
!Dm.*/

j
. (23)

The sequence of linear programming problems (18) are solved (for k"1, 2,2)
by using the Simplex method [23]. In the numerical results to follow, the eigenvalue
margin c

`
in (18-ii) was set to c

`
"15. The number of load values p*

j
at which these

constraints were evaluated was 40. The sequence of iterations was terminated when
the increase in the critical load between two successive iterations became less than
10~4. Uniform columns were taken as initial designs.

5. NUMERICAL RESULTS

Figure 6 shows the optimal columns for various values of the radius ratio i in the
range from i"0 to i"100. The functions $Im (x) are shown in an appropriate
scaling, approximated by the nodal values $Im

j
connected with straight lines.

The #utter oscillations are shown as well. The considered range of i gives a rather
full picture of how the size of an end-mounted rocket motor a!ects the optimum
design of the column, as the dimensionless mass ratio k and the dimensionless
end-mass (rocket motor) rotatory inertia t, given in (11), vary from k"0, t"0, to
k'104, t'5]103. The results are summarized in Table 1. Table 2 gives the
design parameters m

j
for the optimal columns shown in Figure 6.

Figure 6(a) shows the optimal Beck's column which is the &limit case' of vanishing
end-mass (i"0). A very large increase of the #utter load p

cr
is possible; about eight

times. It should be noted that this design was obtained by solving the dual problem
of equation (18), namely: minimize the volume of the column under the constraint
of a constant #utter load. The obtained minimum-volume design was then scaled
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up to unit volume [16]. This method seems to avoid some local optima where the
algorithm based on equation (18) tends to stop. An increase in p

cr
of about "ve time

seems to be the &record' when a formulation similar to equation (18) is used, see
reference [25]. The &inversion' of the problem is however not legitimate when the
end-ball is present. Figure 7(a) shows the load-frequency curves for the optimal
Beck's column. Flutter is initiated by simultaneous coincidence of the frequency
couples (u

1
, u

2
) and (u

11
, u

12
). The couple (u

3
, u

4
) coincide at an only slightly

larger load value. The #utter vibrations thus occur under more interacting
frequencies. This is analogous to the multiple-modal buckling of the optimally
designed clamped}clamped column [26].
Figure 6. Optimal columns and their #utter modes for various values of i (f"0)01).



Figure 6. (Continued).
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Figure 6(b) shows the optimal design with a relatively small end-ball (i"1). The
critical load p

cr
is increased about 4)5 times. The eigenvalue branch distance

c
`
"15 turned out to be too big in this case as the fourth and the "fth branch (u

4
and u

5
) tended to coincide and consequently &locked' the optimization by p

cr
+60.

Consequently, c
`

was decreased to 5. The load}frequency curves are shown in
Figure 7(b). Due to the relatively small value of c

`
, the seventh and the eighth

branch (u
7

and u
8
) coincide at the critical load, simultaneously with coincidence

between the "rst and the second one. The third and the fourth branch coincide at
a just slightly higher load.

Figure 6(c) shows the optimal design for i"2. Here the critical load is increased
about three times. This column has also two pairs of coinciding eigenvalue
branches at the #utter load, as shown in Figure 7(c). It should be noted that the
critical load probably may be raised slightly more by decreasing the parameter
c
`

(c
`
"15 is used) but as no &troublesome' eigenvalue branch interactions occur,

no major changes are expected.
For i*4, a &joint' develops as one design variable reaches the lower limit

m
j
"10~8, see Figure 6(d}j). An optimum is reached by just one pair of coinciding
6



Figure 6. (Continued).
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eigenvalue branches and the lower limit m
6 j

is reached at the nodal point where
the (single) bending moment function changes sign. It should be stressed that it is
not a link; the mass and sti!ness are not zero, but small. The "rst eigenfrequency
of the columns is thus not zero. Figure 7(d) shows the load}frequency curves
for i"5. These curves are qualitatively similar for i"4 and for i'5. As
an optimum is reached by just one pair of coinciding eigenvalue branches, the
gradient expression

g
j
"

Lp
cr

Lm
j

1
l
j~1

#l
j

"same positive constant, (l
0
"l

Ne`1
"0) (24)

for all node numbers j"1, 2,2, N
e
#1, except for the node(s) where m

j
"m

6 j
.

Here the gradient expression has a lower value. This implies that p
cr

has reached an,



TABLE 2
Mass parameters m

j
for the optimal columns obtained for f"0)01 with 20 "nite

elements and m
6 j
"10~8

e i"0 i"1 i"2 i"4 i"5 i"20 i"40 i"60 i"80 i"100

1 2)1433 1)7913 1)5639 1)2712 1)2838 1)2075 1)2852 1)3144 1)3344 1)3874
2 1)2100 1)6310 1)3356 1)1684 1)1783 1)1448 1)2284 1)2640 1)2886 1)3458
3 0)2773 1)0203 0)7575 0)9859 1)0707 1)0505 1)1528 1)1961 1)2259 1)2881
4 0)9237 0)1212 0)02084 0)8922 0)8195 0)9523 1)0484 1)1057 1)1451 1)2122
5 1)5550 0)9002 0)9296 0)3429 0)8769 0)7278 0)9404 0)9992 1)0363 1)1186
6 1)6307 1)1999 1)1945 10~8 10~8 0)7674 0)7166 0)8415 0)9250 1)0041
7 1)7135 1)4167 1)3695 0)9066 0)3607 10~8 0)7333 0)7102 0)7035 0)8454
8 1)8252 1)6986 1)4562 0)8226 0)8372 0)3627 10~8 0)3304 0)7061 0)7025
9 1)9432 1)5989 1)4950 1)0683 0)9485 0)7403 0)3428 10~8 10~8 0)3341

10 1)4019 1)4287 1)4627 1)1658 1)1103 0)8796 0)7154 0)7295 0)3464 10~8
11 0)8703 1)3186 1)3403 1)2604 1)2054 1)0321 0)8462 0)7000 0)6948 0)7256
12 0)9744 1)0998 1)1761 1)3168 1)2774 1)1343 0)9963 0)9214 0)8328 0)6889
13 1)0878 1)0762 1)0480 1)3490 1)3192 1)2143 1)0991 1)0268 0)9818 0)9086
14 0)8864 0)7979 0)9202 1)3541 1)3355 1)2684 1)1829 1)1295 1)0876 1)0122
15 0)6862 0)8698 0)8405 1)3332 1)3256 1)3018 1)2428 1)2041 1)1738 1)1144
16 0)6122 0)8395 0)8174 1)2833 1)2889 1)3144 1)2855 1)2603 1)2409 1)1886
17 0)5349 0)4921 0)8559 1)2022 1)2229 1)3072 1)3092 1)3008 1)2877 1)2462
18 0)3914 0)6100 0)8298 1)0848 1)1246 1)2791 1)3149 1)3217 1)3202 1)2866
19 0)2608 0)5607 0)7632 0)9234 0)9869 1)2304 1)3054 1)3301 1)3365 1)3094
20 0)1404 0)3587 0)5528 0)7087 0)8014 1)1540 1)2734 1)3179 1)3375 1)3187
21 10~8 0)1310 0)1052 0)3917 0)5398 1)0684 1)2465 1)2980 1)3236 1)3121

TABLE 1
Summary of results obtained for f"0)01

i"a/r
0

k"M/m
0
¸ v"J/(m

0
¸3) puni

cr
for the popt

cr
for the

Gain
factor

"4fi3/3 "8f3i5/15 uniform column optimal column popt
cr

/puni
cr

0 0 0 20)05 159)35 7)95
1 0)013333 5)3333]10~7 19)51 87)38 4)48
2 0)10667 1)7067]10~5 17)08 55)15 3)23
4 0)85333 5)4613]10~4 14)81 20)64 1)39
5 1)6667 1)6667]10~3 14)84 19)83 1)34

20 106)67 1)7067 12)01 15)80 1)32
40 853)33 54)613 9)84 13)39 1)36
60 2880)0 414)72 9)11 12)50 1)37
80 6826)7 1747)6 8)84 12)14 1)37

100 13333)0 5333)3 8)75 11)95 1)37
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at least, local optimum. This is proved in the Appendix 1. Figure 8 shows the
gradient function (24) for i"5, for both the uniform and the optimal column. In
terms of the gradient function, the occurrence of a &joint' is explained by the fact
that the critical load increases more by adding material at any other location than



Figure 7. Load}frequency curves for some of the optimal columns. (a) i"0; (b) i"1; (c) i"2;
(d) i"5.
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at the joint. In fact, since Lp
cr
/Lm

6
(0 the gradient function shows that the critical

load decreases by adding material at the joint, even if the volume is increased.
The &jointed' optimal columns shown in Figure 6 may not be very useful in

practical applications and should be considered as the limited solutions of the
optimal design problem. More practical columns are obtained by increasing the
minimum allowable cross-section area. Figure 9(a) shows the optimum design for
i"5, obtained with the lower limit m

6 j
"0)25 for all design variables. This means

that the minimum allowable diameter d
.*/

"I (0)25)d
0
"0)5d

0
, that is, half of the

diameter of the uniform start-design column. The critical load is p
cr
"19)38, as

opposed to p
cr
"19)83 for m

6 j
"10~8. Practical columns can thus be obtained with

just a minor drop of the gain factor popt
cr

/puni
cr

. In Figure 9(b) the lower limit m
j
"0)5,

giving d
.*/

"0)707d
0
. The critical load is p

cr
"18)85.

To see how the optimum design is a!ected by the number of design variables, the
case i"5 was recalculated using 40 "nite elements and 41 design variables.
Figure 10 shows the result. The critical load is 20)38, which is 2)8% larger than the
load obtained with 20 elements and 21 design variables. The joint is located at the
same position, x"0)25.

The optimum solutions change very little by increasing i from the value i"4. It
appears that the #utter frequency in any case is so low that the elastic restoring
forces by far dominates over the inertia forces of the column and are in dynamic
balance with the inertia forces of the end-ball. [It is noted that the #utter
frequencies change very little by optimization. The frequencies for the uniform



Figure 8. The gradient expression (27) evaluated for the uniform and the optimal columns by i"5.
f== Optimal, L== Uniform

Figure 9. Optimal columns for i"5 with increased constraints on the minimum thickness.
(a) m

6 j
"0)25: p

cr
"19)38; (b) m

6 j
"0)50: p

cr
"18)85.
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columns are shown in Figure 4(b).] The gain factor popt
cr

/puni
cr

is only 1)3}1)4 which is
similar to what can be obtained by a pure conservative loading [17]. The gain
factor does not change much by continued increase in i. It is noted that the neglect
of shear deformation may be questionable for, say, i'4. The purpose of,



Figure 10. The optimal column for i"5 using 40 "nite elements and 41 design variables. The
#utter load is p

cr
"20)38.

20 M. A. LANGTHJEM AND Y. SUGIYAMA
nevertheless, to consider larger values of i is to get an overview of how the size of
the end-ball a!ects the optimum design of the simplest beam model. This model
gives the "rst order approximation to the solution of the problem. Further studies
could take rotatory inertia and shear deformation of the column into consideration.
In particular, this may eliminate the formation of a joint. Due to the low #utter
frequencies, the rotatory inertia of the columns is not expected to be signi"cant.

6. CONCLUSIONS

The strongest columns with respect to dynamic instability (#utter), caused by the
thrust of an end-mounted rocket motor, have been calculated for various motor
sizes. The motor was simpli"ed as a massive ball with same material density as the
column. The main conclusions are as follows.

(1) For small ball-sizes, the critical thrust can be increased signi"cantly. Dynamic
instability occurs by two or three interacting frequencies. By increasing the
ball-size, the gain of optimization is signi"cantly reduced.

(2) By the mass-ratios which can be realized experimentally, k"(mass of rocket
motor)/(mass of column)'1, the critical thrust can only be increased by
a factor 1)3}1)4. This is similar to what can be obtained in the case of a pure
conservative end-loading. Dynamic instability occurs by a single #utter
frequency. It has been shown that the optimal columns then satisfy a simple
optimality criteria.

(3) The great sensitivity to small changes in design parameters and the
optimization method dependency of Beck's problem are not present for
&practical' values of the mass-ratio k.
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APPENDIX 1: OPTIMALITY BY A SINGLE FLUTTER LOAD (WITH ONE
UNIQUE FLUTTER FREQUENCY)

Finite element number e has length l
e
, volume <

e
, and left- and right-side

cross-section areas m
e
/o and m

e`1
/o respectively. The total column-volume < is

given by

<"
Ne
+
e/1

<
e
"

1
2o

Ne
+
e/1

l
e
[m

e
#m

e`1
]"

1
2o

Ne`1
+
e/1

m
e
[l

e~1
#l

e
],

with l
0
"l

Ne`1
"0. (A1)

Assume that the design parameters m
c1

, m
c2

,2, m
cN

have reached their lower limits
m
N i
. The increment in the critical load due to variations in the design parameters is

given by

dp
cr
"

Ne`1
+
e/1

Lp
cr

Lm
e

dm
e
"2o

Ne`1
+
e/1

Lp
cr

Lm
e

1
l
e~1

#l
e

1
2o

dm
e
[l

e~1
#l

e
] (A2)

hgggigggj

dV

For load maximization by constant volume, d<"0. From (A2) it will be seen that if

Lp
cr

Lm
e

)
1

l
e~1

#l
e
K e/1,2,2,Ne`1
eEc1,c2,2,cN

"same positive constant &k
1
''

Lp
cr

Lm
e

)
1

l
e~1

#l
e
K
e/c1,c2,2,cN

(A3)

with l
0
"l

Ne`1
"0, then dm

c1
, dm

c2
,2, dm

cN
"0 and accordingly, dp

cr
"0. Thus, a local

optimum has been reached.

APPENDIX 2: NOMENCLATURE

a radius of the end-ball
b left eigenvector
c
`

a speci"ed distance between pairs of eigenvalue curves, see equation (17)
d right eigenvector
F di!erential operator de"ned by equation (10)
F* di!erential operator de"ned by equation (13)
F system matrix de"ned by equation (14)
J rotatory inertia of the end-ball about an axis through its centre
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l
e

length of the eth "nite element
¸ total length of the column
l vector of element lengths de"ned by equation (19)
m, m(x) mass distribution function
m

i
design variables; the mass distribution function evaluated at the nodal points

mN
i
, m

6 i
upper and lower bounds on the design parameters

m design vector with elements m
iM mass of the end-ball

M mass matrix
N

e
the number of "nite elements used

p load parameter
p
cr

critical load (#utter load)
Q

C
load matrix, corresponding to the conservative part of the loading

Q
N

load matrix, corresponding to the non-conservative (circulatory) part of the
loading

r, r(x) radius of the column
s, s(x) sti!ness distribution function
S sti!ness matrix
t time
l eigenfunction describing the lateral de#ection of the adjoint system
x distance along the column, measured from the clamped end
y eigenfunction describing the lateral de#ection of the physical system
f dimensionless slenderness parameter de"ned by equation (9)
i dimensionless radius-ratio parameter de"ned by equation (9)
j complex eigenvalue
k dimensionless mass of the end-ball
o material density of both the column and the end-ball
p Re(j); stability parameter
t dimensionless rotatory inertia of the end-ball
u, u

i
Im(j); vibration frequency

Subscripts
' di!erentiation with respect to the length parameter x
opt refers to an optimal column
uni refers to a uniform column
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