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Vibroacoustic analysis of a "nite isotropic thin cylindrical shell with an internal
#oor partition is presented in the present paper. A general formulation is developed
based on a variational approach in which the structural coupling between
sub-structures is simulated using the arti"cial spring technique, while the acoustic
"eld is computed by an integro-modal approach. For validation purposes,
numerical results are compared with experimental data. Numerical analysis is
performed to show the structural and acoustical e!ects of the #oor on the internal
pressure "eld. Further analysis is made to identify contributions of individual
structural modes to sound radiation. The present paper illustrates how the two
previously established methods (arti"cial spring technique and the integro-modal
approach) can be combined into a vibroacoustic model in the prediction of the
structural acoustic response of complex shaped cavities surrounded by structural
boundaries. ( 1999 Academic Press
1. INTRODUCTION

Structures based on cylindrical shell con"gurations have been extensively
investigated in the literature. The study of the acoustic radiation of such structures
is of considerable importance in many engineering applications, especially in the
"eld of aerospace and ship engineering, where externally excited vibrating walls
induce a signi"cant internal sound "eld. A typical example is noise control inside
airplane cabins. Due to the complexity of an airplane structure, simpli"ed models
are usually used to extract the overall tendency in terms of noise radiation to guide
possible control actions.

One of the basic models is a cylindrical shell of either in"nite or "nite length
[1}3]. More sophisticated models including di!erent real-life components were
also developed over the past few decades. Development of models considering the
e!ects of rings [4], sti!eners [5], double walls [6] and bulkheads [7] have been an
active research topic. A more realistic model requires us to take into consideration
the #oor. Compared to the cylindrical shells, the addition of the #oor introduces
more complex mechanical coupling. On top of this, the acoustic space inside the
cabin no longer has a simple regular cylindrical shape. Due to both structural and
0022-460X/99/360101#23 $30.00/0 ( 1999 Academic Press
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acoustic modi"cations, most methods based on modal decompositions can no
longer be used. More powerful and e$cient simulation models must therefore be
developed.

An analytical development by Pope et al. [8, 9] has been used for shells with
sti!eners, including #oor and sidewall treatment. The model exploited the
shell-#oor con"guration of Peterson and Boyd [10] with an extension which
includes a smeared model for the sti!eners of Mikulas and McElman [11]. The
acoustic modal characteristics of the irregular shaped cavity were calculated using
the "nite di!erence method. The model of Pope et al. [9] is regarded as a fairly
complete model which incorporates a realistic con"guration with a reasonable
prediction accuracy of the noise levels in several tests. However, it is a complex and
global model which is di$cult to use to identify the e!ects of each individual
component. Taking into account these complexities, Fuller [12] suggested
a simpli"ed model to study the structural in#uence of the #oor on the sound
transmission inside an in"nite thin cylindrical shell coupled to a cylindrical shaped
cavity. The #oor was modelled by a series of periodic forces evaluated by a zero
radial shell displacement condition. In doing this, the interaction between the #oor
and the enclosed acoustic space was neglected. Using this simpli"ed model, it was
noted that, in the plane of the excitation source, the structural e!ect of the #oor is
more signi"cant at high frequencies.

Among works based on numerical methods, a recent study of Langley [13] used
a hybrid approach combining the dynamic sti!ness method for the structure and
the boundary element method for the cavity. The author was interested in the
problem of airborne noise transmission into an aircraft fuselage. Comparisons with
experimental measurements, were limited to a purely cylindrical con"guration.
A structure-borne noise transmission prediction of a scale model fuselage was
presented by Unruh and Dobosz [14] using the "nite element method for up to
200 Hz. They showed that the number of elements required is a major
computational di$culty when a detailed structural model is implicated. In another
numerical model by Martin and Vignassa [15], the #oor was treated as a rigid part
and the internal walls covered with absorbing materials. The model included the
bulkhead simulated as a #exible piston. Although these numerical methods are
general and suitable for complex systems in the low-frequency range, it is clear that
more simple and physical models permitting easy parametric studies are necessary.

In our previous work [16], a semi-analytical formulation has been developed on
the free and forced vibrations of a shell-#oor system. The mechanical coupling
between sub-structures was modelled using the arti"cial spring technique. By
allowing wide variations of the spring sti!ness, di!erent joint conditions can be
simulated. As far as acoustic modelling is concerned, an integro-modal approach
[17] for computing the acoustic properties of cavities of arbitrary shape has also
been developed. The approach was based on a discretization of the total cavity into
sub-cavities interconnected by virtual elastic membranes. Continuity of both the
pressure and the pressure gradient at the boundaries of the interconnected regions
was ensured by considering membranes with zero mass and sti!ness.

The present work can be considered as an extension of the two previous works,
aimed at carrying out a complete vibroacoustic analysis of the shell}#oor-cavity
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con"guration. The following issues will be investigated. (1) Developing a general
formulation which couples the structural model [16] with the acoustic model [17].
(2) Validating the developed model using experimental data. (3) Analyzing the
acoustical and mechanical e!ects of the #oor on the internal sound pressure and
illustrating the sensitivity of the internal pressure to the #oor connection. (4)
Analyzing contributions of structural modes to the internal sound pressure. The
proposed approach helps to give some physical insight into the physical system and
o!ers a certain degree of #exibility in the design process.

2. DEVELOPMENT OF VIBROACOUSTIC MODEL

The structure to be investigated is composed of a thin "nite cylindrical shell with
an internal #oor partition as shown in Figure 1. Both the shell and the #oor are
assumed to be homogeneous and isotropic. The co-ordinate system related to each
main sub-structure is also de"ned in the same "gure. Structural coupling between
the shell and the #oor is ensured using the arti"cial spring system for every
permitted degree of freedom. For each junction, three translational springs (k

x
, k

y
,

k
z
) are introduced in the x, y

f
, z

f
directions, and for the rotational coupling,

a torsion spring k
r

is used. All spring sti!nesses are assumed to be uniformly
distributed along the two junctions.

2.1. STRUCTURAL MODEL

The boundary conditions at the two ends are assumed to be simply supported.
The displacement vector of the shell in the longitudinal, circumferential and radial
directions is written as [16]

G
u
s

v
s

w
s
H" 1

+
a/0

=
+

m/1

=
+

n
s/0

camn
s G

amn
s

cos (n
s
h!an

2
) cos (mnx

L
)

bmn
s
sin (n

s
h!an

2
) sin (mnx

L
)

1 cos (n
s
h!an

2
) sin (mnx

L
) H e*ut , (1)

where (amn
s
, bmn

s
, 1) is the vector of a shear diaphragm condition with n
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respectively the circumferential and longitudinal order, a"0 (or 1) denotes
symmetric (or antisymmetric) modes and ca
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For the #oor, bending and in-plane motions are expanded over a trigonometric
basis:
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where n
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and m are, respectively, the transversal and longitudinal order, ua
mnf

, va
mnf

and wa
mnf

, are the coe$cients to be determined once the shell-#oor are structurally
coupled.



Figure 1. Shell}#oor con"guration.
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The whole system is characterized using the classical Hamilton's principle, which
needs the calculation of the kinetic and strain energy of the combined system, as
well as the work done by the external driving forces and the #uid loading:
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are the energies related to the shell, ¹
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a
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the work done by the #uid and the external mechanical loading and E

k
the strain energy stored in the arti"cial springs introduced at the longitudinal
junctions.

The substitution of equations (1) and (2) in Hamilton's function (3) leads to
expressions in terms of the unknown sets camn

s
, uamn
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f
and wamn
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. Lagrange

equations can then be used to extramilize Hamilton's function. The whole
procedure yields the following governing equations of motion for the coupled
system:
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In the above equations, umn
s
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are respectively the natural frequencies

in-vacuo and the generalized modal mass of the shell, kwmn
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terms can be found in reference [16]. On the right-hand side of the equations (4),
one can note the external mechanical force Famn

s
, the internal mechanical loading

Famn
f
and the #uid loading terms Pamn

s
, Pamn

f
from the cavity. For the present model,

the e!ect of #uid loading from outside and the contribution of the bulkhead are
neglected.

2.2. ACOUSTICAL MODEL

The interior space is considered as an irregular-shaped cavity where variable
separation techniques cannot be applied. The internal pressure is simulated using
the integro-modal approach [17]. The method used a mixture of sub-cavities, of
both regular and irregular shapes. The modal characteristics of regular sub-cavities
are obtained analytically. For irregular ones, the procedure consists in enclosing
the irregular sub-volume by envelopes or bounding sub-cavities, for which modal
information is available. Since the natural modes of the irregular-shaped cavity are
not known analytically,the modes of the bounding sub-cavities are used to perform
the pressure decomposition and to obtain the Green's function.

In each sub-cavity, the internal pressure p
f
can be calculated by transforming the

Helmholtz equation into an integral from via the second Green's theorem,
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where n is the outward normal vector of the boundary surface S
b
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with volume <, G (r, r
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) is Green's function corresponding to a transfer function

obtained between an observation point (r) and the source (r
0
). The construction of

the function G (r, r
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) for a Neumann boundary is based on the inhomogeneous

Helmholtz equation with an in"nite surface impedance [18]. Euler's equation of
motion for a #uid particle can be combined with the continuity of the normal
velocity component at the shell-sub-structure surfaces to establish the boundary
conditions
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where o
f

is the #uid density, w
s
and w

f
are respectively the radial displacement of

the shell and the #exural displacement of the #oor.
Once the cavity of the shell}#oor system is discretized into N sub-cavities, the

integro-modal solution is obtained using either a direct method or an indirect one
described as follows.

2.2.1. Indirect method

The indirect method uses the integro-modal formulation [17] to compute the
modal characteristics of the whole cavity (natural frequencies, mode shapes and
generalized mass). This information is then used to calculate the forced response.

The mode shapes 'k
n

in each sub-cavity k (Figure 2), computed using the
integro-modal approach, are used as a basis of the expansion of the distributed
pressure "eld:
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where c
f
is the speed of the sound in the internal medium, nN are the modal indices of

the cavity and anN (t) the modal pressure amplitudes to be determine. "1 nN is the
generalized acoustic mass of order nN . Assuming that no absorbent boundary
conditions are present and that the interior noise is due to arbitrary vibrating
surfaces with structural modal co-ordinates qmN (t) (which is the whole set of the
Figure 2. Discretization procedure using four sub-cavities.
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structural unknows camn
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with ¸ijn6 m8 being the modal coupling coe$cient between the structural mode of order
mJ and the cavity mode of order nN . This term characterizes the coupling in space
between the two modes. The natural frequencies are obtained using the
integro-modal approach for the calculation of the 2D natural frequencies and the
condition given by the separation of variables applied to the longitudinal geometry:
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where q is the acoustical longitudinal order and u
i
is a 2-D natural frequency of

order i, ¸ is the length of the cavity.

2.2.2. Direct method

Compared to the indirect method, the direct approach does not require
calculations of modal characteristics of the real cavity. In each sub-cavity, however,
the acoustic equation is written using analytical mode shapes of its bounding
sub-cavity (called envelope), whilst structural motion of each membrane is
characterized by assigning zero mass and sti!ness. The forced response of the
system is then computed.

The internal pressure in each sub-cavity is obtained by using a modal basis of the
bounding sub-cavity or envelope
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Using the integro-modal approach, the substitution of equation (11) in equation

(5) leads to the following modal acoustic equations inside each sub-cavity:
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where the modal acoustic characteristics u
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¸i,j
nmJ is again the acoustoelastic coupling between virtual membrane modes and

acoustical models of the bounding sub-cavity.

2.3. SOUND-STRUCTURE INTERACTION

2.3.1. Direct method
Using the direct method, the "nal matrix equations based on equations (4) and

(12) can be written as
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where ;s, ;m and P are respectively the unknowns related to the structural
components, virtual membranes and acoustical vectors. K

SS
is the dynamic sti!ness

matrix of the structural system. K
SF

is the #uid}structure coupling matrix. C
FF

is
the continuity matrix across arti"cial membranes. B

FS
and B

FM
are matrices

obtained using various coe$cients of the acoustoelastic coupling. A
FF

contains the
acoustical mass and sti!ness matrices. F

SS
is the vector related to the mechanical

excitation force.

2.3.2. Indirect method

Using the indirect method, the matrix system based on equations (4) and (8) is
written as
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Compared with the direct method, the system to be solved is of reduced size,
since modal characteristics of the whole cavity (natural frequency, generalized mass
and mode shape) should be calculated a priori using the integro-modal approach.

The vibroacoustic parameters are chosen to characterize the structural and
acoustical responses of the system. In fact, at each excitation frequency, the motion
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of the each sub-structure is characterized by the quadratic velocity for the shell and
the #oor de"ned by
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For the cavity, an average quadratic pressure is de"ned as
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where p*
f

is the complex conjugate of p
f

at an arbitrary point M in the cavity.

3. RESULTS AND DISCUSSIONS

In all calculations reported hereafter the shell and the #oor are assumed to have
the same thickness and the same material properties. The used data are
o
s
"7860 kg/m3, l"0)3, E"2)07E11 N/m2, ¸"1)209 m, a"0)254 m,

h
s
"h

f
"3)2]10~3 m, h

f
"1313. Unless speci"ed, the shell}#oor attachment is

assumed to be rigid with (kM "109) and the sti!ness parameters are normalized with
respect to the #exural rigidity of the structure. The speed of sound and the air
density are respectively c

f
"343 m/s and o

f
"1)2 kg/m3. The input load is a unit

point force acting either at the external surface of the shell (x"0)31 m, h"903) or
inside the cavity on the #oor (x"0)31 m, y

f
"0)10 m). Structural damping models

are used for both the structure and the cavity. In both cases, loss factors are set to be
5]10~3. In all calculations, the acoustic model is based on the direct method using
one bounding cylindrical cavity.

The truncation of the in"nite series, used in both the structural displacement and
sound pressure decomposition, to a limited number of terms is a computational
restriction. The general procedure to "nd a suitable series truncation is aimed at
assuring the desired accuracy in the resulting solutions. This requirement can be
achieved by increasing the number of terms used in the expansions in equations (1),
(2), (7) or (11) until convergence is achieved in the frequency range of interest. In
numerical simulations, a single cylindrical cavity was used as the envelop. During
the calculations a careful convergence study was carried out for the
shell}#oor-cavity response in the case of an excitation on the external surface of the
shell. A typical results is presented in Figure 3, where there curves are compared
using di!erent maximum orders (longitudinal, circumferential and radial) or (5, 5,
5), (8, 8, 8) and (10, 15, 10) for the acoustical response. The maximum structural
terms used in equations (1) and (2) are truncated to 10 longitudinal terms, 15



Figure 3. Convergence curves of the internal pressure:***, (5, 5, 5); } } } , (8, 8, 8); }. }. }, (10, 15 10).
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circumferential terms for the shell, and 18 terms for the #oor including the in-plane
motion (n*

m
"10, n*

s
"15, n*

w
"8, n*

u
"n*

v
"5). It can be observed that good

convergence is obtained for the three di!erent bases of truncation up to 800 Hz.
Beyond this frequency limit, a (8, 8, 8) truncation is su$cient to ensure a good
convergence up to 1600 Hz. A systematic convergence analysis has also been
performed in the case where the full coupling between the cavity and the
surrounding sub-structures is considered [19]. It was noted that #uid loading e!ect
of the acoustic cavity on the structure is relatively weak. Slight di!erences can only
be noticed above 1000 Hz in our case. In following calculations, the #uid loading
due to the cavity below the #oor partition is therefore neglected.

3.1. EXPERIMENTAL VALIDATION

In order to validate the proposed vibroacoustic model, experimental tests were
performed to assess the method using a cavity simulating an aircraft cabin. In
numerical simulations, the terms used are respectively (8, 8, 8) for the cavity and (10,
15, 8, 5, 5) for the structure.

The experimental set-up and instrumentation used are illustrated in Figure 4.
The cavity was formed by a steel cylinder with a #oor welded to the inner shell skin.
The interior space of concern was the volume above the #oor. Two steel end caps of
0)0254 m thick were used to form the rigid acoustic boundaries. The test cylinder
had an internal diameter of 0)504 m and was 1)1684 m long. The #oor was made of
steel as the cylinder, and was located at an angle h of 1313. Two 1 in microphones
f 2



Figure 4. Experimental set-up.
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were placed inside the cavity supported by a thin tube along the cylinder centerline.
The tube could rotate and be moved along the centerline to get any desired
measurement point. A point force was produced by a shaker and applied on the
outside of the shell surface. Accelerometers and force transducers were used to
measure the structural response and the excitation force. Measured data were
treated using a multi-channel B&K 3550 FFT Analyzer. Comparisons between
predicted and measured results are performed in terms of transfer functions.

A comparison between the predicted and measured displacement/force transfer
functions averaged over six measuring points, made over both a narrow and 1

3
octave band is given in Figures 5 and 6 respectively. The six points were chosen at
positions on the surface of the shell de"ned by angular positions of 50 and 703 and
longitudinal positions at 0)24 m, 0)48 and 0)72 m. It can be seen that the agreement
between the vibroacoustic model and the experimental data is generally
satisfactory. The fact that so many resonances occur over the measured frequency



Figure 5. Predicted and measured structural response in narrow band: ***, predicted; } } },
measured.

Figure 6. Predicted and measured structural response in 1
3

octave band: e**e*, predicted; }*}*},
measured.
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Figure 7. Predicted and measured acoustical response in narrow band: **, predicted; } } },
measured.
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zone illustrates the complexity of the dynamics of the structure investigated.
However, one notices local di!erences in both the levels and the resonant
frequencies. This is certainly due to diverse several factors such as welding, lack of
symmetry, di!erences in the experimental structural boundary conditions, etc. It
should be noted that in the 1

3
octave band, the discrepancy between the two curves

does not exceed 5 dB beyond 200 Hz.
Using the same con"guration, comparisons were also made of the response of the

cavity using sound pressure/force transfer functions. A total of 18 measurement
points inside the cavity was used [angular position: (20, 40 and 603), radial position:
(0)56]radius, 0)19]radius), longitudinal position: (0)8567, 0)5567 and 0)2567 m)].
The comparison in the narrow band, between experiment and simulation, is
illustrated in Figure 7. The response of the two signals in the third octave band is
illustrated in Figure 8. Generally speaking, the tendencies observed indicate an
acceptable agreement between the two models. However, while following the
evolution of the two curves in the narrow band, one notes di!erences in the levels in
the resonant frequencies. As a whole, the proposed model seems to be powerful
enough to predict the general tendency of the response of the system.

3.2. EFFECTS OF THE FLOOR

Regrding the e!ects of the #oor, numerical results are presented herein in terms
of the average sound pressure level inside the cavity and the quadratic velocity of



Figure 8. Predicted and measured acoustical response in 1
3

octave band: e**e*, predicted; }*}*},
measured.
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the shell and the #oor. The quadratic velocity is represented in terms of dB
referenced to 5]10~8 m/s.

Previous work [16] has identi"ed the existence of three types of mode shapes.
The "rst type is a #oor dominated by a strong #oor motion. The second type is
essentially a shell mode in which a slight deformation of the #oor and a dominate
shell motion are observed. The third type is a coupled mode in which the two
sub-structures vibrate with comparable levels. It was also noticed that when the
shell is directly excited, the vibration levels for both sub-structures are of the same
order of magnitude at both the low and middle frequencies, indicating a strong
coupling between them. It is therefore interesting to investigate the contribution of
each component (#oor and shell) in terms of acoustic radiation. This is illustrated in
Figure 9, where the individual contributions of the shell and that of the #oor to the
internal sound pressure are compared. One notices that the #oor radiation can
attain a comparable level to that of the shell at several low frequencies. Generally
speaking, however, although the #oor certainly a!ects the dynamics of the shell, its
direct radiation seems to be negligible. Consequently, the sound pressure inside the
cavity seems to come mainly from the shell radiation.

From a pratical point of view, although the excitations usually apply to the shell,
an excitation of the #oor can be an interesting con"guration for a better
understanding of the system. It may also be of practical use in ship structure
analysis, where embarked equipment on board can generate strong vibrations and
noise. To this end, a point force was applied to the #oor at (x"0.31 m,
y "0.10 m). Figure 10 compares the quadratic velocity levels of both shell and the

f



Figure 9. Sound pressure level ratiated by shell and #oor with excitation on the shell:***, shell;
} )} ) }, #oor.

Figure 10. Structural response with the #oor subjected to a unit point force:***, shell; } ) } ) },
#oor.
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Figure 11. Sound pressure level ratiated by shell and #oor with excitation on the #oor: ***,
shell; } ) } ) }, #oor.
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#oor. Being directly excited, the #oor manifests a dominating role in the structural
response. Resonances correspond to motions dominated by #oor controlled modes
and coupled modes. The mechanical energy transmitted to the shell across the
junctions seems to be comparable to that of the #oor at high frequencies. Sound
pressure contributions of each components are compared in Figure 11. It should be
noted that, despite the relatively weak vibration level of the shell, the latter still
remains a strong sound radiator. Although not directly excited, the shell plays
a signi"cant role in terms of sound radiation.

Numerical simulations have also been performed to illustrate the e!ects of
the joint conditions between the shell and the #oor on teh generated cavity noise.
As has been poinhted out, by setting di!erent values for the sti!ness parameter
varying from 0 to in"nity, both limit cases (rigid and free) and elastic cases can
simulated.

An example with a hinged joint is also given. Figure 12 compares the sound
pressures levels inside the cavity with two di!erent joint conditions: rigid and
hinged connnection (k

r
"0). It can be seen that the connection via rotation does

not basically change the general trend of the overall pressure levels of the cavity.
Figures 13 and 14 illustrated comparisons between the vibration level of each
sub-structure in the case of rigid and pinned connection. It can be noticed that the
e!ects are not signi"cant on the shell response, even if changes can be observed on
the locations of resonant peaks. In addition, the curves presented in Figure 14 show
that this kind of connection is signi"cant for the #oor. Indeed, a #exible connection
via rotation shifted the "rst resonance towards the low frequencies. Generally



Figure 12. Acoustic e!ects of a rigid and hinged connection: ***, hinged; } )} ) }, rigid.

Figure 13. E!ects of a rigid and hinged connection on the shell vibration:***, hinged; } ) } ) },
rigid.
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Figure 14. E!ect of a rigid and hinged connection on the #oor vibration:***, hinged; } ) } ) }, rigid.
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speaking, the vibration level is decreased for most frequency ranges. Details
concerning the elastic cases can be found in reference [19].

As mentioned before, the use of purely cylindrical con"gurations in the
investigation of noise transmission in aircraft fuselages usually provides much
simpler models. Fuller and Jones [20] have demonstrated that the circumferential
modal response is the dominant factor in the problem of noise transmission. The
structual modi"cation introduced by the #oor has a frequency-dependent sti!ening
e!ect on the radial motion at the #oor attachment points. Consequently, the sound
pressure level associated with structural vibration is also changed. In addition, the
insertion of the #oor also changes the acoustic modes by converting a cylindrical
cavity into a less irregular shape. An analysis was performed to separate the
structural e!ect from the acoustical one in order to isolate the contribution of each
individual modi"cation.

The acoustic e!ect of the #oor was simulated using a rigid #oor without any
structural attachment to the shell. This was carried out by cutting o! the terms
related to the #oor motion and the connecting springs in the equations. The
comparison with the standard con"guration is made in Figure 15. A decrese in the
sound pressure level can be observed at low frequencies which can be attributed to
the elimination of the #oor mode in this region. The acoustical e!ect of the #oor is
obvious above this zone. Since, as already illustrated in Figure 9, the #oor radiation
is almost negligible in this region compared to that of the shell, the di!erence
noticed in Figure 15 must be due to the acoustic e!ect (change of acoustic modes) of
the #oor.



Figure 15. Acoustic e!ect of the #oor:***, standard con"guration; } ) } ) }, modi"ed con"gura-
tion.
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On the other hand, the structural e!ect of the #oor is simulated by considering it
as an integral part of the structure while being transparent from the acoustic point
of view. The sound pressure in the upper part of the cylindrical cavity is compared
with that of the standard con"guration in Figure 16. One can notice that the
structural in#uence is frequency dependent. It remains however, less signi"cant
than the acoustic e!ects mentioned above. These conclusions are consistent with
the experimental results of Fuller and Jones [21, 22] obtained for a number of
discrete frequencies with a simpli"ed aircraft fuselage model. The present analysis
provides a more detailed description of the phenomena covering a wide spectrum of
frequencies. It can thus be concluded that the presence of the #oor a!ects the
internal sound "eld basically via the modi"cations of the acoustic cavity rather
than its direct structural e!ect.

3.3 MODAL RADIATION EFFICIENCY

In typical problems of cavity}structure interaction, structural modes do not
contribute in the same way to the radiated sound. Any control noise actions should
be taken on the most radiating modes. It is therefore interesting to highlight the
contribution of each structural mode to the internal radiation of the vibrating
sub-structures. Using the present formulation, an analysis is performed using
several representative structural modes. The procedure consists of solving the
eigenvalue problem of equation (4) without the #uid and the mechanical



Figure 16. Structural e!ect of the #oor: ***, standard con"guration; } ) } ) }, modi"ed con"g-
uration.
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excitations. Substituting the structural unknowns in equation (12) from the
resulting eigenvectors makes it possible to calculate the acoustic modal amplitudes
and to deduce the internal pressure and other vibroacoustic parameters. As pointed
out in a previous publication [23], the commonly used radiation e$ciency in free
"eld radiation problems in no longer suitable for the cavity problems, since in this
case, the radiated power becomes the power absorbed by the cavity. A new
parameter p6 using the radiated potential acoustic energy is de"ned as

p6 "10 log A
E

ac
E

cg
B, (20)

where E
ac

is the potential acoustic energy in the cavity due to the vibration of the
surrounding walls, and E

cg
the total kinetic energy of these walls. These two energy

quantities are de"ned respectively by
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p6 is a dimensionless parameter which is calculated for each selected structural mode
of show its sound contribution with respect to frequencies. Figure 17 illustrates the
modal radiation e$ciency of four selected structural modes (with m"1) whose
deformations are plotted in Figure 18. It is noted that peaks which are present in
the spectrum correspond to the natural frequencies of the cavity to which the
structural modes are coupled. The "rst mode considered is totally controlled by



Figure 17. Modal radiation e$ciency of four typical structural modes: ***, mode 1; } } },
mode 2; } ) } ) }, mode3; . . . . , mode 4.

Figure 18. Mode shapes of the selected structural modes: (a) mode 1, (b) mode 2, (c) mode 3, (d)
mode 4.
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#oor motion, whose radiation e$ciency is strong in the middle frequency range. It
is interesting to compare the three other modes, all involving strong shell motion.
Of the three modes, mode 3 seems to be the most radiating over a large frequency
range. One of the plausible explanations may be given by noticing the wave front of
each mode as illustrated in Figure 18. In the part of the shell above the #oor, modes
2 and 4 have the same number of positive and negative cells, so that there may be
a cancellation process in the circumferential direction. Mode 3 however, has three
positive cells and tow negative ones so that the cancellation e!ect may be less
e!ective. In addition, it can be noticed that the wave number is smaller for mode
2 than for mode 4. The results seem to indicate that modes with mismatched
positive and negative cells and those having smaller wave numbers in the
circumferential direction are susceptible to radiate more strongly. Veri"cations
were also made using a series of other modes with m"1, the aforementioned
observation seems to be valid in most cases. It should be stressed that the modal
e$ciency of each mode strongly depends on the cavity con"guration and is
certainly a complex matter. Further analysis using other con"gurations is therefore
required for a better understanding of the phenomena.

4. CONCLUSION

This paper presented a vibroacoustic study of a shell}#oor-cavity system. Two
previously established methods (Arti"cial Springer technique and the
integro-modal approach) were combined into a complete vibroacoustic model.
Experiments were carried out to assess the established model. Although further
improvements are still needed, numerical predictions using the present formulation
seem to agree reasonably well with experimental data. The method is shown to be
powerful enough to predict the vibroacoustic response of the shell}#oor-cavity
system.

Numerical analyses were performed to highlight the structural and acoustic
e!ects of the #oor on the sound "eld. It was noted that in any case, shell vibration
plays an important role in the sound radiation into the cavity. When the excitation
is applied to the shell, the #oor becomes a very weak sound radiator. In this case,
the e!ect of the #oor is limited to changes in shape of the cylindrical acoustic cavity,
leading to signi"cant di!erences in terms of sound level compared to what would
have been predicted using a purely cylindrical shell con"guration. When the
excitation is applied to the #oor, however, shell radiation can still remain strong.
Using the present con"guration, analyzes of the modal radiation e$ciency were
also performed. Results revealed a possible cancellation process between cells of
opposite phase in circumferential direction.
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