
Journal of Sound and <ibration (1999) 226(1), 57}81
Article No. jsvi.1999.2282, available online at http://www.idealibrary.com on

00
DELAY-INDEPENDENT STABILITY OF RETARDED
DYNAMIC SYSTEMS OF MULTIPLE

DEGREES OF FREEDOM

Z. H. WANG AND H. Y. HU

Institute of <ibration Engineering Research, Nanjing ;niversity of Aeronautics and
Astronautics 210016 Nanjing, People1s Republic of China

(Received 11 August 1998, and in ,nal form 24 February 1999)

On the basis of generalized Sturm theory, this paper presents a simple, but
systematic approach to the delay-independent stability analysis of the linear
dynamic systems involving multiple degrees of freedom and possibly two time
delays. The approach enables one to complete the stability analysis in a much
simpler way than before through the use of a MAPLE routine given in the paper.
To demonstrate the approach, the paper gives a detailed analysis, the
corresponding su$cient and necessary conditions as well as stable regions in
parameter space of concern for the delay-independent stability of a vibrating
system with time delays in state feedback, an active-tendon for a tall structure and
an active suspension of a quarter car model. ( 1999 Academic Press
1. INTRODUCTION

Unavoidable time delays frequently appear in the controlled mechanical or structural
systems, especially in hydraulic actuators such as those used in the active suspensions
of ground vehicles and the active tendons of tall structures. Over the last decade,
great attention has been paid to the dynamics of those systems. It has been found that
the time delays not only make the systems retarded, but also give the systems a series
of unique dynamic features, say, the in"nite-dimensional subspace of solutions, the
possible chaotic behavior when the systems are characterized by only one unknown
variable of single dimension, etc. These features are quite di!erent from those of the
dynamic systems described by ordinary di!erential equations. The time delays also
give rise to some tough problems in studying the system dynamics. For example, the
characteristic equation of a linear system with time delays is a transcendental
equation involving exponential functions, and has an in"nite number of roots. Thus,
it is usually di$cult to carry out stability analyses for linear multiple degrees of
freedom (Md.o.f.) systems, though most engineering systems have to be simpli"ed to
the models of multiple degrees of freedom. It is one of the open problems, therefore, to
develop concise stability criteria for linear Md.o.f. systems with time delays.

The current stability criteria can be classi"ed into two catalogues according to
whether the stability depends on time delays or not. In the latter case, the system is
22-460X/99/360057#25 $30.00 ( 1999 Academic Press
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exponentially stable for arbitrary time delays. From the viewpoint of
mathematicians, the stability problem of a linear retarded dynamic system has been
solved since some su$cient and necessary conditions are available for the stability
analysis when the time delays in the system are given [1}3]. However, these
conditions do not show any explicit relationship between the system parameters
that the engineers are interested in. Moreover, when those conditions are used, the
stability test involves very tedious computations such as solving transcendental
equations or computing the spectrum of operators. In general, the analysis of
delay-independent stability is relatively simple. Though the conditions for the
delay-independent stability are usually too strict from the practical viewpoint, they
can o!er the engineers useful information in the initial phase of design. For
instance, the criterion of delay-independent stability in reference [4] enables one to
gain an insight into the dynamics of a class of single-degree-of-freedom systems
with one or two time delays in the state feedback. However, for linear Md.o.f.
systems with single delay or multiple time delays, even the analysis of the delay-
independent stability is not a trivial task [2]. Some examples can be found in
reference [2].

The aim of this paper is to develop a systematic approach to the
delay-independent stability analysis for linear retarded dynamic systems of multiple
degrees of freedom, possibly with two time delays. As usually done in analyzing the
stability of a linear dynamic system, the paper focuses on the corresponding
characteristic function, which is a quasi-polynomial when the system involves time
delays. In the analysis of delay-independent stability, the key is to determine if a
corresponding polynomial has real roots. For lower-dimensional systems with
given parameters, the delay-independent stability analysis can be completed
in a relatively simple way. The classical Sturm criterion can be used to determine
whether the corresponding polynomial has real roots. As for the systems
with parameters to be determined, the classical theory shows little hope to
give a full answer to the stability analysis. However, the generalized Sturm
theory developed in reference [5] is especially suitable for this purpose. Hence, the
paper begins with some mathematical preliminaries about the classical Sturm
theory and the generalized Sturm sequence in section 2, and then presents the
systematic approach to the delay-independent stability analysis in section 3. The
approach gives the stability criterion characterized by a su$cient and necessary
condition. For the stability test based on this approach, one needs to complete only
some algebraic computations to check this kind of condition. The approach is not
only applicable to the systems with single time delays, but also to those with two
time delays for some applications. To illustrate the approach, a detailed
delay-independent stability analysis is given in section 4 for a vibrating system with
time delays in state feedback, an active tendon of tall structure [6] and an active
suspension of a quarter car model [7]. For these systems, analysis shows that it is
the damping that makes the delay-independent stability possible. The
delay-independent stable regions in the space of interesting parameters are
bounded. In the computation of the examples, the computer algebra package
MAPLE [8] was used so that the stability analysis became very simple. Finally in
section 5, some concluding remarks are made.
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2. THEORETICAL BACKGROUND OF THE APPROACH

In the subsequent sections of this paper, one needs to know if a polynomial has
real roots (or to determine the exact number of real roots of the polynomial for
certain applications). Given a polynomial, the classical Sturm theory gives a full
answer to this problem. However, it does not work well if the polynomial involves
some unknown parameters. In these cases, the generalized Sturm theory developed
in reference [5] shows great advantages. To gain a better understanding of the
theory, we will "rst, in this section, give an outline of the classical Sturm theory, and
then present some basic facts about the generalized Sturm theory, following chapter
6 in reference [5] and reference [9].

2.1. THE CLASSICAL STURM CRITERION

Given a real number sequence l
1
, l

2
,2, l

n
(l
1
l
2
2l

n
O0), the sign sequence

[s
1
, s

2
,2, s

n
] with s

i
"sign(l

1
), (i"1, 2,2, n) is called the sign table of the

sequence. If l
j
l
j`1

(0, we say that the sign has changed once from l
j
to l

j`1
. For

any given real sequence l
1
, l

2
,2, l

n
(l
1
l
2
2l

n
O0), we can "gure out the number of

variation of signs of the sequence. For instance, the number of variation of signs of
1, 3,!2, 1, !4, !10, !1, 4, 2 is 4. If a sequence contains some zeros, then the
number of variation of signs is de"ned as the number of variation of a new sequence
obtained by deleting the zeros. For example, the number of variation of signs of real
sequence !3, !5, 0, 3, 0, 2, !6, 0 is 2, while the number of variation of signs of 0,
!3, 2 is 1.

Suppose that f (x) is a real polynomial without repeated roots. A sequence of real
polynomials.

f
0
(x)"f (x), f

1
(x),2 , f

s
(x) (1)

is called the Sturm sequence of polynomial f (x) if the following conditions hold:

(i) Any two neighboring polynomials in equation (1) have no common roots:
(ii) The last polynomial f

s
(x) has no real roots;

(iii) If there exist some k, (1)k)s!1) such that f
k
(a)"0, then

f
k~1

(a) f
k`1

(a)(0;
(iv) If f (a)"0, then there exists a su$ciently small positive number e such that

f
0
(k) f

1
(k)(0 for k3(a!e, a) and f

0
(k) f

1
(k)'0 for k3(a, a#e).

Now, we are in a position to state the following classical Sturm theorem.

Sturm criterion. Assume that a real polynomial f (x) has no repeated roots and
has p real roots in the interval (a, b), satisfying f (a) f (b)O0. If the numbers of
variation of signs of the sequences

f
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(a), f

1
(a),2, f

s
(a); f

0
(b), f

1
(b),2, f

s
(b) (2a, b)

are l (a) and l(b), respectively, then p"l (b)!l(a).
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Some methods are available to construct the Sturm sequence of a polynomial
with no repeated roots. What follows is the most common way. Let f

0
(x)"f (x), and

f
1
(x)"f @ (x) be the derivative of f (x). Dividing f (x) one gets the polynomial f

2
(x)

from f
0
(x)"f

1
(x)q

1
(x)!f

2
(x). The other polynomials in the Sturm sequence can

be constructed in the same way, namely,

f
k
(x)"f

k`1
(x)q

k`1
(x)!f

k`2
(x) (0)k(s!2) (3)

except for the last one by f
s~1

(x)"f
s
(x)q

s
(x).

Since only the signs of the Sturm sequence are used in the applications of the
Sturm criterion, all the positive factors can be deleted out at each step of
constructing a Sturm sequence.

Example. Considering a real polynomial

f
0
(x)"x5#5x4#5x3!5x2!5x!7 (4)

the Sturm sequence can be constructed as follows. Let

f
0
(x)"f (x)"x5#5x4#5x3!5x2!5x!7,

f
1
(x)"f @(x)/5"x4#4x3#3x2!2x!1,

Dividing f
0
(x) by f

1
(x), one arrives at f

0
(x)"f

1
(x)(x#1)!2(x2#1)(x#3). Since

2(x2#1) is a positive factor, one can take

f
2
(x)"x#3.

Dividing f
1
(x) by f

2
(x), one has f

1
(x)"f

2
(x)(x3#x2!2)!(!5). Hence it follows

that f
3
(x)"!5. The Sturm sequence of f (x) consists of the four polynomials f

0
(x),

f
1
(x), f

2
(x), f

3
(x).

In order to understand the real roots of f (x), we study the number variation of
signs of its Sturm sequence. Some cases are listed in Table 1. By using the Sturm
criterion, we see that f (x) has only one real root in (!R, #R), and the root falls
into (1, 2).

If f (x) has repeated roots, the last polynomial f
s
(x) in the Sturm sequence is the

(non-constant) greatest common divisor of f
0
(x) and f

1
(x), i.e., f

s
(x)"d (x)g

x
(x),

where d (x)"g.c.d( f (x), f @(x)), the leading coe$cient is set to be 1, while g
s
(x) is the

leading coe$cient of f
s
(x). Let

f
k
(x)"d(x)g

k
(x) (k"0, 1, 2,2, s) (5)



TABLE 1

The sign tables of the Sturm sequence

x f
0
(x) f

1
(x) f

2
(x) f

3
(x) l

!R ! # ! ! 2
0 ! ! # ! 2
1 } # # ! 2
2 # # # ! 1

#R # # # ! 1
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then g
0
(x) is a real polynomial with no repeated roots, and g

0
(x), g

1
(x),2, g

s
(x) is

the Sturm sequence of g
0
(x). Thus, the Sturm criterion is still valid for polynomials

with repeated roots in the sense that each of the repeated roots is counted only
once.

2.2. DISCRIMINATION'S SEQUENCE

In the generalized Sturm theory, the discrimination's sequence takes the same
role as the Sturm sequence in the classical Sturm theory. The discrimination's
sequence is constructed by using the so-called Bezout matrix. The Bezout matrix is
originally created for simplifying the computation of the resultant, which is one of
the most important concepts in the theory of polynomial.

Consider two real polynomials of order n:

f (x)"a
0
xn#a

1
xn~1#2#a

n~1
x#a

n
, (6a)

g (x)"b
0
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1
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n
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and rewrite them in the form

f (x)"f
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(x), g(x)"g
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(x), (7)

where

f
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1
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,

f
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n
,
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1
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n~i
,

g
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n~i`1
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n
.
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Let
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(x) f
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(x)
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(x) g
i2

(x) K,
n
+
j/1

d
ij
xn~j (8)

then the Bezout matrix is de"ned as the coe$cient matrix of n polynomials
p
n~i`1

(x), (i"1, 2,2, n) in the form

A
d
11

d
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2 d
1n

d
21

d
22

2 d
2n

F F } F
d
n1

d
n2

2 d
nn
B . (9)

Now, let f (x) be a real polynomial of order n and regard f @(x) as a polynomial of
order n with zero leading coe$cient, one de"nes the Bezout matrix of f (x) and f @(x)
as the discriminant matrix of f (x) and denotes it by discr ( f ), which can be proved to
take the following explicit form:

discr ( f )"(c
n~i,j~1

), i, j"1, 2,2, n,

c
ij
"(n!max(i, j))a

i
a
j
!

.*/(i,j )~1
+
p/0

(i#j!2p)a
p
a
i`j~p

, (10)

where a
k
,0 if k(0 or k'n.

The discriminant sequence of f (x) is de"ned as the principal sub-determinant
sequence taken in order, and denoted by

D
1
( f ) , D

2
( f ),2,D

n
( f ) (11)

respectively. This sequence can be simply obtained by using a short MAPLE
routine discr shown in Figure 1. The command discr ( f (x), x) on the MAPLE
platform gives sequence (11).

The repeated roots of a polynomial f (x) are determined exactly by the greatest
common divisor of f (x) and f @(x). One de"nes the sequence of sub-resultants of f (x)
and f @(x) as the sequence of multiple order factors of f (x), and denotes it by D

0
( f ),

D
1
( f ),2, D

n~1
( f ).

2.3. A MODIFIED SIGN TABLE

To express the generalized Sturm theory in a compact form, some agreements are
needed. Given a real number sequence l
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], with s
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1
), (i"1, 2,2, n] is called the sign table of the



Figure 1. The Maple routine of discr.
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original sequence. The modi"ed sign table [e
1
, e

2
,2, e

n
] can be written out by

following the rules as below:

(1) For any segment [s
i
, s

i`1
, s

i`2
,2, s

i`j
] with s

i
O0, s

i`1
"s

i`2
2"s

i`j~1
"

0 and s
i`j

O0 of a given sign table, [s
i`1

,
i`2

,2, s
i`j~1

] is replaced by
[!s

i
, !s

i
, s

i
, s

i
, !s

i
, !s

i
, s

i
, s

i
,2].

(2) All the other terms in the table are kept unchanged.

For example, the sign table [1, !1, 0,0, 0, 0, 1, 0, 0, 0, !1, 0] will be modi"ed by
[1,!1, 1, 1, !1, !1, 1, !1, !1, 1, !1, 0] according to these two rules.

2.4. NUMBER OF REAL ROOTS OF A POLYNOMIAL VIA DISCRIMINANT SEQUENCE

Based on the discriminant sequence and its modi"ed sign table, we state the
following theorem that plays an important role in the stability analysis.

Theorem 1. ¸et f (x) be a polynomial of order n and D
1
( f ), D

2
( f ),2,D

n
( f ) be the

corresponding discriminant sequence, and p
i
"D

qi
(i"1, 2,2, k) is the ith non-zero

term of the discriminant sequence, p
0
"1. ¸et q

0
"0, s

i
"q

i`1
!q

i
!1, (i"0, 1,

2,2, k!1). Assume that the number of variation of signs in the modi,ed sign table is
l. If l is the integer satisfying D

l
( f )O0, D

m
( f )"0 (m'l), then we have

(1) ¹he number of distinct pairs of conjugate complex roots of f (x) is l.
(2) ¹he number of distinct real roots of f (x) is l!2l, which satis,es 1

l!2l"
k~1
+

i/0, si are even

(!1)si@2 signA
p
i`1
p
i
B . (12)
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(3) a is a root of multiplicity of p of f (x) if and only if it is a root of multiplicity p!1
of D

n~l
( f ).

(4) Except for some positive factors, D
1
( f ), D

2
( f ),2, D

l
( f ) is the discriminant

sequence of polynomial f /g.c.d.( f, f @), which has no repeated roots.

Example 1. Let f (x)"x18!x16#2x15!x14!x5#x4#x3!3x2#3x!1.
Then, the sign table of its discriminant sequence is [1, 1, !1, !1, !1, 0, 0, 0, !1,
1, 1, !1, !1, 1, !1, !1, 0, 0]. Thus, the modi"ed sign table is [1, 1, !1, !1,
!1, 1, 1, !1, !1, 1, 1, !1, !1, 1, !1, 1, !1, 0, 0] and the number of variation
of signs is 7. As a result, f (x) has two distinct real roots and seven distinct pairs of
conjugate complex roots. As g.c.d.( f, f @)"x2!x#1, the remaining two roots of
f (x) are a pair of conjugate complex roots repeated to one of the above seven pairs.

Example 2. To ensure that a polynomial of order 6 with positive leading coe$cient
has no real roots, one needs to make sure that one of the following 14 cases, listed in
Appendix A (Table 2) of the modi"ed sign table is held true.

The above theorem gives us full information about the numbers of real roots and
complex roots of a polynomial. However, it is the case l"2l for some l"1, 2,2,
which serves the purpose of delay-independent stability analysis.

3. STABILITY ANALYSIS OF RETARDED DYNAMIC SYSTEMS

Now, consider the delay-independent stability analysis of a linear dynamic
system with possibly two time delays. The characteristic equation of the system is in
the form

D(j, q
1
, q

2
),P(j)#Q

1
(j)exp(!j q

1
)#Q

2
(j) exp(!jq

2
)"0, (13)

where q
1
*0 and q

2
*0 are the time delays, P(j), Q

1
(j) and Q

2
(j) are three

polynomials of real coe$cients under the conditions deg(P)"n'deg(Q
i
), (i"1,

2). As is well known, the system of concern is delay-independent stable if and only if
each of its characteristic roots has negative real part for all given q

1
*0 and q

2
*0.

Moreover, we have the following theorem to ensure delay-independent stability.

Theorem 2. ¹he linear delayed dynamic system with equation (13) as the
characteristic equation is delay-independent stable if and only if the following two
conditions are held true:

(i) ¹he polynomial P(j)#Q
1
(j)#Q

2
(j), corresponding to the case q

1
"q

2
"0,

is Hurwitz stable, and
(ii) D(iu, q

1
, q

2
)"0 has no real roots u for all q

1
*0 and q

2
*0.

To demonstrate the theorem, let us "rst consider a one-dimensional system

xR "ax#bx(t!q), a, b3R. (14)
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The characteristic equation of the system reads

D (j),j#a#b exp(!jq)"0. (15)

When q"0, the characteristic function j#a#b is Hurwitz stable if and only if
a#b(0. In order that D (iu)"0 has no real roots for all q*0, it is su$cient and
necessary to ensure that D iu#aD"Db D or u2"b2!a2 has no real roots, that is,
b2!a2(0. Thus, the system is delay-independent stable if and only if a#b(0
and b2!a2(0. Here, system (14) with a"0 cannot be delay-independent stable.

In general, the well-known Routh}Hurwitz criterion is available to make sure
that the system is asymptotically stable [namely, P(j)#Q

1
(j)#Q

2
(j) is Hurwitz

stable] when q
1
"q

2
"0. With these stability conditions as a basic assumption, the

system is delay-independent stable if and only if equation (13) has no pure
imaginary roots $iw for all q

1
*0 and q

2
*0. Let

PR (w)"Re(P(iw)) PI(w)"Im(P(iw)),

QR
j
(w)"Re(Q

j
(iw), QI

j
(w)"Im(Q

j
(iw)) ( j"1, 2). (16)

Since PR (w), QR
j
(w), ( j"1, 2) are even functions and PI (w), QI

j
(w), ( j"1, 2) are odd

functions, equation (13) has no pure imaginary roots $iw for all q
1
*0 and q

2
*0

if and only if

(PR(w))2#(PI(w))2!((QR
1
(w))2#(QI

1
(w))2#(QR

2
(w))2#(QI

2
(w))2)

!(!2QI
1
(w)QR

2
(w)#2QR

1
(w)QI

2
(w)) sin(w (q

2
!q

1
))

!(2QI
1
(w)QI

2
(w)#2QR

1
(w)QR

2
(w)) cos(w(q

2
!q

1
))"0 (17)

has no non-negative root w for all q
1
*0 and q

2
*0.

In the case of q
1
"q

2
, the left-hand side of equation (16) can simply be rewritten

as

F(w),w2n#b
1
w2(n~1)#b

2
w2(n~2)#2#b

n~1
w2#b

n
. (18)

If q
1
Oq

2
, an even function G(w) in w is de"ned as follows:

G(w)"(PR(w))2#(PI(w))2!((QR
1
(w))2#(QI

1
(w))2#(QR

2
(w))2#(QI

2
(w))2)

!J(!2QI
1
(w)QR

2
(w)#2QR

1
(w)QI

2
(w))2#(2QI

1
(w)QI

2
(w)#2QR

1
(w)QR

2
(w))2 .

(19)

It can be shown that equation (17) has no non-negative roots for all q
1
*0 and

q
2
*0 if and only if G(w) has no non-negative roots, or G(w2) has no real roots. In

general, G (w) is not a polynomial. However, for certain applications, the system
with linear, delayed state feedback fall into this category. For these systems, the
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analysis of delay-independent stability can be converted to the study on the real
roots of a polynomial.

According to (ii) of Theorem 1, one can "nd that F(w) (or G (w2)) has no real roots
if and only if the modi"ed sign table subjects to l"2l for l"1, 2, 3, 4,2, n (or 2n),
where l and l are de"ned in Theorem 1.

Based on the above analysis, an approach to the delay-independent stability can
be summarized as below.

Algorithm
(1) Find out the characteristic equation (13) and the corresponding function F(w)

(or G(w2)).
(2) Determine the discriminant sequence (11) by using the MAPLE routine discr.
(3) Justify the stability as follows. The system is delay-independent stable if and

only if l"2l for some l"1, 2, 3, 4,2, n (or 2n), and the polynomial
P(j)#Q

1
(j)#Q

2
(j) is Hurwitz stable.

Remark. If the terms in the discriminant sequence are factorized, the computation
in stability test will be greatly reduced.

In practice, especially in the design phase of a controlled system, one usually
wants to know the delay-independent stable region in a parameter space. Once the
discriminant sequence is obtained and each term is factorized, one can set each
factor equal to zero and draw its graph. These graphs divide the parameter space
into several sub-regions. Each of them can be easily determined to be or not to be
delay-independent stable by checking the corresponding sign tables. This will be
discussed in detail later.

4. APPLICATIONS

This section gives three example to illustrate the presented approach. The "rst
example is about the stability analysis of a vibrating system with time delays in
state feedback. It shows that the approach is not only applicable to the systems with
single time delay, but also available for some systems with multiple time delays. The
second example deals with the delay-independent stability of an active-tendon for
tall structure, which is a three-dimensional system. The "nal example is on the
stability analysis of an active suspension of a quarter car model with 2 d.o.f.

4.1. STABILITY OF A VIBRATING SYSTEM WITH TIME DELAYS IN STATE FEEDBACK

Consider a vibrating system of single d.o.f. with two time delays in the paths of
displacement feedback and velocity feedback, respectively. The equation of motion
of the system yields

xK (t)#axR (t)#bx(t)"s
1
x (t!q

1
)#s

2
xR (t!q

2
). (20)
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The corresponding characteristic equation reads

j2#aj#b!s
1
exp(!jq

1
)!s

2
jexp(!jq

2
)"0. (21)

4.1.1. General results

Assume that a's
2
and b's

1
. These inequalities are the su$cient and necessary

conditions under which the system is exponentially stable when q
1
"q

2
"0. In

order that the system is delay-independent stable, it is su$cient and necessary to
make sure that equation (13) has no pure imaginary roots $iw for all q

1
*0 and

q
2
*0.
In the case of single time delay, i.e., q

1
"q

2
, it is easy to "nd out the discriminant

sequence of the system as follows:

1, !(a2!s2
2
!2b), (a2!s2

2
!2b) (4(b2!s2

1
)!(a2!s2

2
!2b)2),

(4(b2!s2
1
)!(a2!s2

2
!2b)2)2(b2!s2

1
). (22)

Therefore, the system is delay-independent stable if and only if the modi,ed sign
tables of the discriminant sequence (22) is in one of the following three cases:
[1, !1, 0, 0], [1, !1, !1, 1] and [1, 1, !1, 1].

In practice, it is required that the stability condition should be in terms of the
original sign tables of the discriminant sequence. As [1, !1, !1, 1] may be the
modi"ed sign table of [1, 0, 0, 1], the second and the third term in [1, !1, !1, 1]
should be understood to be non-positive when it is regarded as an original sign
Table 1. Thus, the stability conditions can be expressed in a more explicit form.
That is, the system with equal time delays q

1
"q

2
is delay-independent stable if and

only if the sign table of [A, 4B!A2, B],[a2!s2
2
!2b,

4(b2!s2
1
)!(a2!s2

2
!2b)2, b2!s2

1
] takes one of the following four cases: [1, 0,

1], [1, 1, 1], [1, !1, 1], [!1, 1, 1]. These conditions can be simpli"ed to

A'0, B'0, or A)0, A2!4B(0 (23)

which are identical to those derived in reference [2] by using another method.
It is easy to know from the above conditions that the delay-independent stable

region in the parameter space (s
1
, s

2
) is symmetrical and bounded in the region

D"M(s
1
, s

2
) : Ds

1
D(DbD, Ds

2
D(DaDN. If ab"0, the vibrating system with retarded

feedback cannot be delay-independent stable.
When two distinct time delays q

1
Oq

2
appear in the feedback paths, the system is

delay-independent stable if and only if the following equation

w4#(a2!s2
2
!2b)w2#b2!s2

1
!2s

1
s
2
w sin(wq

2
!wq

1
)"0 (24)

has no real roots [4], or in turn, if and only if

w8#(a2!s2
2
!2b)w4#b2!s2

1
!2Ds

1
s
2
Dw2,w8#pw4#qw2#r"0 (25)
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has no real roots. Here, the left-hand side of equation (25) is the function G(w2), and
in fact, the coe$cients p, and r are the same as A, and B respectively. The conditions
in equation (23) are certainly true in this case.

The discriminant sequence of w8#pw4#qw2#r is in the form

1, d
0
, d

0
d
1
, d

1
d
2
, d

2
d
3
, d

3
d
4
, d

4
d
5
, d2

5
d
6
, (26)

where

d
0
"0, d

1
"!p, d

2
"!p2, d

3
"!(2p3!8pr#9q2),

d
4
"q(!48pr#27q2#4p3),

d
5
"!(27q4#4p3q2!144pq2r!16p4r#128p2r2!256r3),

d
6
"r'0.

As the second and the third term in the discriminant sequence vanish, the "rst three
terms of the modi"ed sign tables must be 1, !1, !1. Thus, the system is
delay-independent stable if and only if its modi,ed sign table of the discriminant
sequence is in one of the 13 cases listed in Appendix A. (Table 3).

4.1.2. Case study

Now, two examples are given to demonstrate how to get the delay-independent
stable region in the (s

1
, s

2
) plane.

Example 1. Consider the case of a"0)5, and b"1. Since the expressions of d
i
are

even functions with respect to s
1

and s
2
, we give the d

i
's for positive s

1
and s

2
only.

d
0
"0, d

1
"1)75#s2

2
'0, d

2
"!(1)75#s2

2
)2(0,

d
3
"2s6

2
#1)05]10s4

2
#(!28s2

1
#1)0375]10)s2

2
!3)2813#14)00s2

1
,

d
4
"s

1
s
2
[8s6

2
#42s4

2
#(!2)25]10}120s4

1
)s2

2
#(!1)2513]102#168s2

1
)],

d
5
"16s8

2
#(112!28s2

1
)s6

2
#(166!467s2

1
#16s4

1
)s4

2

#(!105!3)6925]102s2
1
#560s4

1
)s2

2
#1)4063]10

!1)3406]102s2
1
#376s4

1
!256s6

2
,

d
6
"1!s2

1
'0. (28)

The curve determined by d
3
"0 is ellipse-like, as shown in Figure 2. The inside of

the &&ellipse'' is governed by d
3
(0, while the outside by d

3
'0. The graph of d

4
"0

is hyperbola-like, the corresponding sub-region containing the origin is featured by
d
4
(0, the other parts by d

4
'0. The graph of d

5
"0 consists of four line-like



Figure 2. The rhombus-like region is the delay-independent stable region in (s
1
, s

2
) plane for the

vibrating system with two time delays in state feedback when a"0)5, and b"1.
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curves, the w-like region and the m-like region are determined by d
5
(0, and the

other parts by d
5
'0. Following the present approach, one can see that only the

combination (s
1
, s

2
) in the rhombus-like region that makes the vibrating system

delay-independent stable. The stable region is characterized by d
5
'0 and Ds

1
D(1.

Example 2. When a"1)5, and b"1, one has

d
0
"0, d

1
"0)25#s2

2
'0, d

2
"!(0)25#s2

2
)2(0,

d
3
"2s6

2
!1)50s4

2
#(!7.625!28s2

1
)s2

2
#1)9688!2s2

1
,

d
4
"s

1
s
2
(8s6

2
!6s4

2
#(!94)5!120s2

1
)s2

2
#(2)3875]10!24s2

1
),

d
5
"16s8

2
#(!16#4s2

1
)s6

2
#(!122!323s2

1
#16s4

1
)s4

2
#(63#1)675

]10s2
1
!80s4

1
)s2

2
#2.4806]102!7)5206]102s2

1
#760s4

1
!256s6

1

d
6
"1!s2

1
'0. (29)

As done in the above example, the delay-independent stable region in the (s
1
, s

2
)

plane can be determined easily by checking the sign tables of the discriminant
sequence as shown in Figure 3.

It should be pointed out that this problem has been studied by a di!erent method
in reference [4]. However, from the viewpoint of computation in the stability test,
the present approach is simpler.



Figure 3. The delay-independent stable region, the biggest rhombus-like region, in (s
1
, s

2
) plane for

the vibrating system with two time delays in stable feedback when a"1)5, and b"1.
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4.2. STABILITY OF AN ACTIVE-TENDON FOR TALL STRUCTURE

Following reference [6], one has the dimensionless equation of motion of the
active-tendon of tall structure

XQ (t)"<(t)

<Q (t)"!2m<(t)!X (t)#e(t)!Z(t),

ZQ (t)"acX(t!q)#ad<(t!q)!aZ(t), (30)

where q'0 is the time delay, e (t) is the external force, a is a positive number, m is
the damping ratio, c and d are the displacement and velocity control gains
respectively. The characteristic equation of the system is the quasi-polynomial

j3#(a#2m)j2#(1#2am)j#a#a(dj#c) exp(!jq)"0. (31)

4.2.1. General results

In the case of q"0, the system is stable if and only if

a#2m'0, 1#c'0, (a#2m) (ad#2am#1)'a (1#c). (32)

The "rst inequality in equation (22) is a trivial case due to the positiveness of a and
m. When q'0, it is easy to "nd that the function F(w) in equation (9) takes the form

F(w),w6#(a2#4m2!2)w4#(1!2a2!a2d2#4a2m2 )w2#a2(1!c2)

,w6#b
1
w4#b

2
w2#b

3
. (33)
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F(w) has no real roots only for b
3
'0 (namely DcD(1). By using the MAPLE

routine discr, one has the discriminant sequence

1, !b
1
, 3b

1
b
2
!b3

1
, 7b2

1
b2
2
!9b

1
b
2
b
3
#b4

1
b
2
#3b3

1
b
3
#12b3

2
,

!8b2
1
b4
2
#37b3

1
b2
2
b
3
!84b

1
b3
2
b
3
#27b2

1
b
2
b2
3
#b4

1
b3
2
!4b5

1
b
2
b
3

!12b4
1
b2
3
!81b

1
b3
3
#16b5

2
#108b2

2
b2
3
,

(!16b6
1
b2
3
#8b5

1
b2
2
b
3
!b4

1
b4
2
#144b4

1
b
2
b2
3
!216b3

1
b3
3
!68b3

1
b3
2
b
3
#8b2

1
b5
2

!270b2
1
b2
2
b2
3
#144b

1
b4
2
b
3
#972b

1
b
2
b3
3
!729b4

3
!16b6

2
!216b3

2
b2
3
)b

3
(34)

To reduce the computation in the stability test, one can factorize the above six
terms and get

1, d
0
, d

0
d
1
, d

1
d
2
, d

2
d
3
, d2

3
d
4
, (35)

where

d
0
"!b

1
, d

1
"b2

1
!3b

2
, d

2
"b2

1
b
2
#3b

1
b
3
!4b2

2
,

d
3
"!(4b3

1
b
3
!b2

1
b2
2
!18b

1
b
2
b
3
#4b3

2
#27b2

3
) d

4
"!b

3
(0. (36)

This indicates that the sign tables of equation (34) can be obtained by computing
the signs of d

i
(i"0, 1, 2, 3, 4), instead of computing the terms in equation (34)

directly.
According to the analysis in section 2, the system is delay-independent stable if

and only if (i) equation (32) holds and (ii) one of the 14 cases of the modi,ed sign
tables listed in Appendix A (Table 2) holds true.

4.2.2. Case study

Now, let a"2. Then we have

d
0
"!2!4m2(0, d

1
"25#12d2!32m2#16m4,

d
2
"!64d4#(!64m4#448m2!240)d2!200

#986m2!880m4!24c2!48c2m2#256m6,

d
3
"256d6#(256m4!2816m2#1408)d4

#((1152m2#576)c2!2048m6#11136m4!11520m2#2000)d2

#4096m8!16896m6#22800m4!10000m2

#(1024m6!3072m4#480m2#2000)c2!432c4 ,

d
4
"4c2!4(0. (37)
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It follows that the number of variation of signs [1, !1, !1, !1, !1, !1] of the
discriminant sequence is 1 if the damping ratio m"0. This means that the system is
not delay-independent stable, since F(w) has 4("6!2]1) real roots. Thus, it is
also the damping that makes the delay-independent stability possible.

For the damped systems, say, m"0)02 taken from reference [6], one has

b
1
"2)0016, b

2
"!6)9936!4d2, b

3
"4(1!c2)3(0, 4]

and

d
0
"!2)0016(0, d

1
"2)4987]10#12d2'0,

d
2
"!64d4!2)3982]102d2!2)4019]10c2!1)9964]102(0,

d
3
"256d6#1)4069]103d4#(5)7646]102c2#1)9954]103)d2

#2)0002]103c2!432c4!3)9964,

d
4
"!b

3
(0. (38)

If d
3
'0 (or d

3
"0), the sign table of the discriminant sequence (34) is [1, !1, !1,

!1, !1] or [1, !1, !1, !1, 0, 0]), whose number of variation of signs is 1, the
function F(w) has two real roots (6!2]1), and consequently, the system is not
delay-independent stable. Thus, the system with a"2, m"0)02 is delay-
independent stable if and only if the small gains of retarded state feedback control
yield

(i) d
3
(0 and

(ii) !1(c, (2#2]0)02)(2d#2]2]0)02#1)'2(1#c).

Since the line 1)02(2d#1)08)"1#c does not cross the region, determined by
d
3
!0, in the (c, d) plane, the delay-independent stable region is governed by

d
3
(0 only as shown in Figure 4.
Figure 5 shows the delay-independent stable region of the active tendon

structure in the (c, d) plane for a"2, and m"0)5.

4.3. STABILITY OF AN ACTIVE SUSPENSION OF QUARTER CAR MODEL

Finally, consider the delay-independent stability of a four-dimensional system
described by

m
b
x@@#cN

s
(x@!y@ )#kM

s
(x!y)#u"0

m
t
yA!cN

s
(x@!y@ )!kM

s
(x!y)!u#kM

t
(y!f )"0 (39)

This is the linearized model of an active suspension for a quarter car model. Here,
( )@,d/dtN ( ), x is the vertical displacement of the vehicle body m

b
, y is the vertical



Figure 4. The delay-independent stable region of active-tendon structure (c, d) plane when a"2,
m"0)02.

Figure 5. The delay-independent stable region of active tendon structure in (c, d) plane when a"2,
m"0)5.
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displacement of the unsprung mass m
t
, f is the road disturbance, cN

s
*0, kM

s
*0 and

kM
t
*0 are the damping coe$cient, the sti!ness of spring, and the sti!ness of tire,

respectively. To reduce the vibration of the vehicle body, an active control force u is
introduced in the form of linear state feedback of the vehicle body with a time delay
caused mainly by the hydraulic actuator

u"gN
1
x (tN!qN )#gN

2
x@(tN!qN ) . (40)
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This control is an extension of the so-called &&sky-hook'' damper. In the stability
analysis of the steady state motion of a linear system it is not necessary to take the
external excitation, i.e., the road disturbance here, into account. Let w

s
"JkM

s
/m

b
,

b"m
b
/m

t
, q"qN w

s
, k

t
"kM

t
/kM

s
, c

s
"cN

s
/Jm

b
kM
s
, g

1
"gN

1
//kM

s
, g

2
"gN

2
/Jm

b
kM
s
, and

t"w
s
tN , one can cast equation (39) without f into

xK#c
s
(xR !yR )#(x!y)#g

1
x (t!q)#g

2
xR (t!q)"0

yK!c
s
b (xR !yR )!b (x!y)#k

t
by!g

1
bx(t!q)!g

2
bxR (t!q)"0 (41)

The characteristic equation of equation (41) reads

j4#c
s
(1#b )j3#(1#b#k

t
b )j2#c

s
k
t
bj#k

t
b#(g

2
j#g

1
)

](j2#k
t
b ) exp(!jq)"0. (42)

4.3.1. General results

If q"0, the characteristic equation is

j4#(c
s
(1#b)#g

2
)j3#(1#b#k

t
b#g

1
)j2#k

t
b(c

s
#g

2
)j#k

t
b (1#g

1
)"0.

(43)

By using the Routh}Hurwitz criterion, one can readily know that the system with
q"0 is stable if and only if

g
1
#1'0, g

2
#c

s
'0,

g
1
g
2
#(1#b)g

2
#c

s
(1#b )g

1
#b2c

s
(1#k

t
)#2bc

s
#c

s
'0,

g2
2
#c

s
(b#bk

t
)g

2
!c

s
g
1
g
2
!c2

s
(1#b)g

1
#bc2

s
k
t
#g

2
c
s
'0. (44)

When q'0, the function F(w) in equation (18) is in the form

F(w)"w8#b
1
w6#b

2
w4#b

3
w2#b

4
, (45)

where

b
1
"!2!2b!2k

t
b#c2

s
#2c2

s
b#c2

s
b2!g2

2
,

b
2
"1#4k

t
b#2k

t
b2#k2

t
b2#2g2

2
k
t
b!2c2

s
k
t
b2!g2

1
!2c2

s
k
t
b#2b#b2 ,

b
3
"!k

t
b (!c2

s
k
t
b#2k

t
b#2b#g2

2
k
t
b!2g2

1
#2),

b "(1!g2)k2b2 . (46)

4 1 t
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To guarantee the delay-independent stability of the system, b
4

must be positive,
namely, Dg

1
D(1. By using discr, one obtains the discriminant sequence

1, d
0
, d

0
d
1
, d

1
d
2
, d

2
d
3
, d

3
d
4
, d

4
d
5
, d2

5
d
6
, (47)

where

d
0
"!b

1
, d

1
"!8b

2
#3b2

1
, d

2
"b2

1
b
2
#3b

1
b
3
!4b2

2
,

d
3
"!3b3

1
b
3
#b2

1
b2
2
!6b2

1
b
4
#14b

1
b
2
b
3
!4b3

2
#16b

2
b
4
!18b2

3
,

d
4
"!b2

1
b2
2
b
3
!18b

1
b
2
b2
3
#7b2

1
b
3
b
4
#12b

1
b2
2
b
4
!48b

2
b
3
b
4
#4b3

2
b
3

#16b
1
b2
4
#27b3

3
#4b3

1
b2
3
!3b3

1
b
2
b
4
,

d
5
"!27b4

1
b2
4
#18b3

1
b
2
b
3
b
4
!4b3

1
b3
3
!4b2

1
b3
2
b
4
#b2

1
b2
2
b2
3
#144b2

1
b
2
b2
4

!6b2
1
b2
3
b
4
!80b

1
b2
2
b
3
b
4
#18b

1
b
2
b3
3
!192b

1
b
3
b2
4
#16b4

2
b
4

!4b3
2
b2
3
!128b2

2
b2
4
#144b

2
b3
2
b
4
#256b3

4
!27b4

3
,

d
6
"b

4
'0. (48)

One can easily list the possible cases, subject to l"2l for l"1, 2, 3, 4, of the
modi"ed sign tables. The system has totally 41 possible cases (which is omitted for
saving space of sign tables of the discriminant sequence that make the system delay-
independent stable!

Equation (39) or (41) is delay-independent stable if and only if (i) the conditions in
equation (44) hold and, (ii) one of the 41 cases of the modi,ed sign tables to be hold
true.

For m
b
"290, m

t
"59, kM

s
"16812, kM

t
"19000, and cN

s
"100, one has b"4)9153,

k
t
"1)1301, c

s
"0)0453. It is easy to "nd that d

0
'0, and d

1
'0 always hold true.

Thus, in order that the system is delay-independent stable, at least one of the values
of d

2
, and d

3
should be negative. Otherwise, the sign table of the discriminant

sequence cannot change its signs twice. It is also easy to get Dg
2
D(0)4943. If this is

the case one has d
2
'0. Therefore, the system is delay-independent stable only for

d
4
(0 and d

5
'0. Drawing the graphs of d

3
"0, d

4
"0, and d

5
"0, one can easily

get the delay-independent stable region shown in Figure 6.

4.3.2. Example: a vehicle equipped with sky-hook damper

Now, consider the delay-independent stability of the vehicle model equipped
with the so-called sky-hook damper. When the sky-hook damper is introduced, the
delayed state feedback control force is in the form u"g

2
xR (t!q). The system

parameters are given in Table 4.
From Table 4, one obtains the dimensionless parameters of the vehicle

b"4)9153, k
t
"1)1301, c

s
"0&0)4438. (49)

The corresponding expressions, in terms of g
2

and c
s
, of d

i
, (i"0, 1, 2,2, 6) are

listed in Appendix B. It is easy to see that if c
s
"0, then d

i
'0, (i"0, 1, 2, 3, 5, 6) for

all given g
2
. Hence, the system cannot be delay-independent stable. This



Figure 6. The delay-independent stable region is the region bounded by the two thick curves and
Dg

1
D"1, when m

b
"290, m

t
"59, kM

s
"16 812, k

t
"19 000, and cN

s
"100.

TABLE 4
The system parameters of a vehicle

m
b

m
t

cN
s

kM
s

kM
t

290 (kg) 59 (kg) 0&980 (N s/m) 16 812 (N/m) 19 000 (N/m)
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demonstrates that it is, here again, the damping that makes delay-independent
stability possible when the sky-hook damper is introduced.

The conditions in equation (44) can be simpli"ed to

6)2294]10c
s
#5)9153g

2
'0, (50a)

g2
2
#1)1470]10g

2
c
s
#5)5548c2

s
'0. (50b)

By solving the above inequalities, one gets

g
2
'!1)0531]10c

s
(50c)

and
g
2
(!1)0963]10c

s
or g

2
'!0)5067c

s
. (50d)

Equation (50c) and the "rst inequality in equation (50d) cannot hold true
simultaneously, thus, to guarantee the delay-independent stability, one must have

g
2
'!0)5067c

s
. (51)

As c
s
varies from 0 to 0)4438, one always has d

o
'0 and de'0. Thus, in order that

the system is delay-independent stable, at least one of the values of d
1
, d

2
, and d

3
should be negative. By drawing the graphs of d 's (i"1, 2, 3, 4, 5) and checking the
i



Figure 7. The delay-independent stable region in M(g
2
, c

s
) : Dg

2
D(0)6, 0(c

s
(0)5N of vehicle with

&&sky-hook'' damper. Only the points in the narrow V-shape region make the system delay-
independent stable.
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sign tables of the discrimination sequence, we see that only the points in the narrow
V-shape region, shown in Figure 7, make the system delay-independent stable.
The boundary of the region is given by d

5
"0.

To see this, three cases are checked as follows:

Case 1: cN
s
"50, namely c

s
"0)0226.

The corresponding expressions, in terms of g
2
, of d

i
, (i"0, 1, 2,2, 6), read
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2
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d
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2
,
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2
,

d
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#3)0858]10g8
2
,
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2
#5)1766]106g4

2
#4)0799]105g6

2
#1)6955]104g8

2
#2]10~6g10

2
,

d
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2
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2
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2
#1)3609]107g8

2
#5)1261]105g10

2
,

d
6
"3)0858]10. (52)

Since the "rst four signs of the discriminant sequence are 1, 1, 1, and 1, the last four
signs must be !1, 1, !1, and 1 to ensure the delay-independent stability. Hence, in
order that the system is delay-independent stable, one must have d

3
(0, d

4
(0,

d
5
'0. They are certainly true for small Dg

2
D. If Dg

2
D'J8)6414/1)4475]102"

0)5970, then d '0. It follows that the system is not delay-independent stable.

3
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Case 2: cN
s
"500, namely c

s
"0)2264.

The corresponding expressions, in terms of g
2
, of d

i
, (i"0, 1, 2,2, 6) are in the

forms

d
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"2)1146]10#g2

2
'0, d

1
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1
(g2
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d
2
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2
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2
),
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d
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4
(g2

2
), d

5
"6)0000]107#p

5
(g2

2
),

d
6
"3)0858]10, (53)

where p
i
(x) are polynomials with p

i
(0)"0. If the control gain Dg

2
D is small then the

system is delay-independent stable since the number of variation of signs of the
discriminant sequence [1, 1, 1, !1, 1, !1, 1] is 4.

Case 3: cN
s
"980, namely c

s
"0)4438.

In this case, we have the following expressions:
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2
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1
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2
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2
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#1)3377]103g6

2
#3)0858]10g8

2
,

d
4
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2
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4
(g2

2
) ,

d
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5
(g2

2
),

d
6
"3.0858]10, (54)

where q
i
(x) are polynomials with q

i
(0)"0. If Dg

2
D is small, then the system is also

delay-independent stable since the number of variation of sign table of the
discriminant sequence [1, 1, !1, 1, 1, 1, !1, 1] is 4.

4.4. COMMENTS ON RETARDED STATE FEEDBACK CONTROL

The above analysis shows that it is the damping that makes the delay-
independent stability of these systems possible. When a system is damped, and
retarded feedback control is performed, the delay-independent stable regions in
parameter space of concern are bounded.

5. CONCLUDING REMARKS

The paper presents a systematic approach to the delay-independent stability
analysis of linear Md.o.f. dynamic systems with two time delays. The approach
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makes the stability analysis much simpler than before. To complete the stability
test, one needs to complete some algebraic computations only.

The approach is applicable to the theoretical analysis for the delay-independent
stability of Md.o.f. dynamic systems with two time delays. It gives su$cient and
necessary conditions for delay-independent stability. Once the discriminant
sequence of a system is determined through the use of MAPLE routine discr given
in section 2.2, the su$cient and necessary conditions for delay-independent
stability can be written by hand. It is only required to "nd out all the possible
modi"ed sign tables. In general, the number of modi"ed sign tables may become
very large when the system dimension increases, but every sign table can be
constructed by following a very simple rule, and all the cases can be treated in
a uni"ed way.

In addition, the number of modi"ed sign tables may be very small if only a few
uncertain parameters are involved in the system, which enables the su$cient and
necessary conditions be in terms of a few inequalities. By drawing the graphs of d

i
's,

one can easily obtain the delay-independent stable region in the parameter space of
concern.
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APPENDIX A

The possible sign tables of the discriminant sequence of real polynomial of orders
6 and 8 and positive leading coe$cient (sections 2.3 and 4.2) are shown in Tables
2 and 3.
TABLE 2

Sign tables of the discriminant sequence of real polynomial of order 6 and with positive
leading coe.cient (section 2.3 and 4.2)

D
1
( f ) D

2
( f ) D

3
( f ) D

4
( f ) D

5
( f ) D

6
( f ) l"2l

1 !1 0 0 0 0 l"1

1 !1 1 1 0 0
1 !1 !1 1 0 0 l"2
1 1 !1 1 0 0

1 !1 1 1 1 !1
1 !1 !1 !1 1 !1
1 1 1 !1 1 !1
1 !1 1 1 !1 !1
1 !1 !1 1 1 !1 l"3
1 1 !1 1 1 !1
1 1 !1 !1 1 !1
1 !1 1 1 !1 !1
1 !1 1 !1 !1 !1
1 1 !1 1 !1 !1

TABLE 3

Sign tables of the discriminant sequence of a real polynomial of order 8
(section 4.1)

D
1
( f ) D

2
( f ) D

3
( f ) D

4
( f ) D

5
( f ) D

6
( f ) D

7
( f ) D

8
( f ) l"2l

1 !1 !1 1 0 0 0 0 l"2

1 !1 !1 1 !1 !1 0 0 l"3
1 !1 !1 1 1 !1 0 0

1 !1 !1 1 !1 !1 !1 1
1 !1 !1 !1 1 !1 !1 1
1 !1 !1 !1 !1 1 !1 1
1 !1 !1 1 1 !1 !1 1
1 !1 !1 !1 1 1 !1 1
1 !1 !1 1 !1 1 1 1 l"4
1 !1 !1 1 1 1 !1 1
1 !1 !1 1 !1 !1 1 1
1 !1 !1 !1 1 !1 1 1
1 !1 !1 1 1 !1 1 1



STABILITY OF RETARDED MDOF SYSTEMS 81
APPENDIX B

The expressions of d
i
(i"0, 1, 2,2, 6) of the discriminant sequence of vehicle with

sky-hook damper (Section 4.3):
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