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1. INTRODUCTION

In the "rst part of this study [1], the Volterra series was used to approximate the
Frequency Response Function (FRF) of a Sd.o.f. Du$ng oscillator system under
random excitation. The results were rather interesting; it was found that the
non-linear system FRF had a greatly augmented pole-zero structure as compared
to the underlying linear system. This served to explain the observed peak in the
Du$ng oscillator spectrum at three times the natural frequency and also indicated
that peaks at higher multiples could be expected. It was also shown that the poles
for the non-linear system FRF were all in the upper-half of the complex plane and
thus that the system would appear to be linear on applying the Hilbert transform
test. The object of the current paper is to extend the analysis to Md.o.f. systems in
the simplest way possible. The composite FRF for a 2d.o.f. system with cubic
non-linearity is computed for a white Gaussian excitation of spectral density P. The
calculation is carried out to O(P2).

The layout of this Letter is as follows. Section 2 describes how the composite
FRF for non-linear system is computed in terms of the Volterra series. Section 3
describes the 2d.o.f. system which forms the basis of the analysis. The pole structure
FRF is obtained in section 4 and the results of the calculations are veri"ed by
numerical simulation in section 5.

2. THE COMPOSITE FRF

The standard form of the Volterra Series is assumed for an input}output process
x(t)Py(t) [2],
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The functions h
n

are the Volterra kernels. The higher-order FRFs (HFRFs) or
<olterra kernel transforms, H
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The composite FRF for random excitation, K
r
(u) is de"ned by analogy with that for

a linear systems,
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and the term composite FRF is used because K
r
(u), for a non-linear system, will not

generally be equal to H
1
(u) but will receive contributions from all H

n
. It is also

dependent upon the characteristics of the input. In the speci"c case of interest here,
the form of the input is "xed as Gaussian white noise (S
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(u)"P). As

a consequence, the FRF depends only on the power spectral density of the input,
and it is shown in reference [1] that
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Note that K
r
(u) tends to the linear FRF as the power spectral density of the

excitation tends to zero.

3. THE Md.o.f. SYSTEM

The system investigated here is a simple 2d.o.f. non-linear system with
lumped-mass characteristics. The equations of motion are
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The underlying linear system is symmetrical but the non-linearity breaks the
symmetry and therefore shows itself in both modes (this will be elaborated later). If
the FRFs for the processes x(t)Py

1
(t) and x (t)Py

2
(t) are denoted H (1)

1
(u) and
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(u), then it is a straightforward matter to establish that
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sThe de"nition of the FRF of a linear system based on the input/output cross-spectrum, S
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(u), and
input autospectrum, S
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(u), is well known, H(u)"(S
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and the R
1

and R
2

are (up to a multiplicative constant) the FRFs of the individual
modes
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where u
n1

and u
n2

are the "rst and second undamped natural frequencies and f
1

and f
2

are the corresponding dampings. p
1

and p
2

are the poles of the "rst mode
and q

1
and q

2
are the poles of the second mode. According to elementary theory

p
1
, p

2
"$u

d1
#if

1
u

n1
, q

1
, q

2
"$u

d2
#if

2
u

n2
, (9)

where u
d1

and u
d2

are the "rst and second damped natural frequencies.
From this point on, the calculation will concentrate on the FRF H (1)

1
(u) and the

identifying superscript will be omitted, the expressions are always for the process
x(t)Py

1
(t).

In order to calculate the FRF up to order O(P2) it is necessary to evaluate the
kernel transforms H
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accomplished by using the method of harmonic probing [3]. H
1

is given above in
the "rst of equations (8). The calculation for H

3
is a straightforward extension of the

Sd.o.f. calculation in reference [1] and the result needed for the composite FRF is
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A slightly more lengthy calculation yields
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and the "rst three terms in expansion (5) are now within reach:
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The simple geometry chosen here results in an identical functional form for K
r
(u)

in terms of H
1
(u) as that obtained in reference [1]. The critical di!erence is now

that H
1
(u) corresponds to a multi-mode system, and this complicates the integrals

in equation (5) a little.

4. THE POLE STRUCTURE OF THE COMPOSITE FRF

The "rst integral which requires evaluation in equation (12) is the order P term,
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However, as the integral does not involve the parameter u, it evaluates to
a constant, so the order P term does not introduce any new poles into the FRF but
raises the order of the linear system poles.

The order P2 term requires more e!ort; this takes the form
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The "rst and second integrals may be dispensed with as they also contain integrals
which do not involve u, and there is no need to give the explicit solution here; no
new poles are introduced. The terms simply raise the order of the linear system
poles to three again.

The third term in equation (14) is the most complicated. However, it is routinely
expressed in terms of 32 integrals I

jklmn
, where
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In fact, because of the manifest symmetry in u
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and u
2
, it follows that
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and this reduces the number of independent integrals to 20. A little further thought
reveals the relation
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where the s operator changes the value of the index from 1 to 2 and vice versa and
the S operator exchanges the subscripts on the constants, i.e. u
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Evaluation of the integral is a straightforward exercise in the calculus of residues,
which nonetheless requires some help from computer algebra. The expression is
rather lengthy and will not be given here; the important point is that the term I
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It transpires, that, as a result of pole-zero cancellation, the number of poles varies
for each of the independent integrals. I
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and this exhausts all the possibilities.
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This calculation motivates the following conjecture. In a Md.o.f. system, the
composite FRF from random excitation has poles at all the combination
frequencies of the single-mode resonances. This is a pleasing result; there are echoes
of the fact that a two-tone periodically excited non-linear Md.o.f. has output
components at all the combinations of the input frequencies. A further observation
is that all of the poles are in the upper half-plane. This means that the Hilbert
transform test will fail to diagnose non-linearity from the FRF [1]. It was observed
in reference [1], that in the Sd.o.f. system, each new order in P produced higher
multiplicities for the poles leading to the conjecture that the poles are actually
isolated essential singularities. It has not been possible to pursue the calculation
here to higher orders. The results above do show however, that the multiplicity of
the linear system poles appears to be increasing with the order of P in much the
same way as for the Sd.o.f. case.

In reference [1], the case of a Du$ng oscillator with an additional quadratic
non-linearity was considered and it was found that poles occurred at even multiples
of the fundamental. It is conjectured on the basis of the results above, that an even
non-linearity in a Md.o.f. system will generate poles at all the even sums and
di!erences.

5. VALIDATION

The validation of the results above will be carried out using data from numerical
simulation. Consider the linear mass}damper}spring system of Figure 1 which is
a simpli"ed version of equation (6). The equations of motion are
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The system clearly posesses a certain symmetry. Eigenvalue analysis reveals that
the two modes are (1, 1)T and (1,!1)T. Suppose a cubic non-linearity is added
between the two masses, the equation are modi"ed to
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and the non-linearity couples the two equations. In modal space, the situation is
a little di!erent. Changing to normal co-ordinates via
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Figure 1. Basic 2d.o.f. linear system.
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The system decouples into two Sd.o.f. systems, one linear and one non-linear. This
is due to the fact that in the "rst mode, masses 1 and 2 are moving in phase with
constant separation. As a result, the non-linear spring is never exercised and the
mode is linear.

Suppose the non-linearity were between the "rst mass and ground. The
equations of motion in physical space would then be
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and in modal co-ordinates would be
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and the two modes are coupled by the non-linearity.
Both systems (22) and (27) were simulated by using fourth order Runge}Kutta

with a slight modi"cation; a quadratic non-linearity was added to the cubic of the



Figure 2. Spectrum from 2d.o.f. system with non-linear spring centred.
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form k
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"5]109. The excitation x

2
was zero and x

1
initially had r.m.s. 2)0,

but this was low-pass "ltered into the interval 0 to 100 Hz. With these parameter
values the undamped natural frequencies were 15)92 and 27)57 Hz. The sampling
frequency was 500 Hz. By using the acceleration response data yK

1
, the

output spectra were computed; a 2048-point FFT was used and 100 averages were
taken.

Figure 2 shows the output spectrum for system (22). As only the second mode
is non-linear, the only additional poles above those for the linear system occur
at multiples of the second natural frequency. The presence of the poles is
clearly indicated by the peaks in the spectrum at twice and thrice the
fundamental.

Figure 3 shows the output spectrum for system (27). Both modes are non-linear
and as in the analysis above, poles occur at the sum and di!erences between the
modes. Among the peaks present are: 2u
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the positions is due to the fact that the peaks move as result of the interactions
between the poles as discussed in reference [1].



Figure 3. Spectrum from 2d.o.f. system with non-linear spring grounded.
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6. CONCLUSIONS

The conclusions from these results are very simple. The poles for a non-linear
system composite FRF appear to occur at well-de"ned combinations of the natural
frequencies of the underlying non-linear system. As in the Sd.o.f. case, frequency
shifts in the FRF peak at higher excitations can be explained in terms of the
presence of the higher order poles. Because of the nature of the singularities as
conjectured above, the implications for curve-"tting are not particularly hopeful
unless the series solution can be truncated meaningfully at some "nite order of P.
The results above also shed further light on the experimental fact that the Hilbert
transform test for non-linearity fails on FRFs obtained using random excitation.
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