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The e!ect of free-surface waves on free vibrations of circular plates resting on
a free #uid surface is studied. The solution is achieved by using a perturbation
technique and the Hankel transformation method which give a couple of dual
integral equations of Titchmarsh type. The #uid is considered inviscid and
incompressible and the velocity potential describes its motion. The Kirchho!
theory of plates is used to model the elastic thin plate. The theory is suitable for all
axisymmetric plate boundary conditions. Numerical results are given in
non-dimensional form for modes up to "ve nodal circles and diameters for
clamped, simply supported and free-edge plates, to be ready-to-use in applications.
The e!ect of free-surface waves on the plate's natural frequencies is signi"cant only
when bluging and sloshing modes of the system have close natural frequencies.
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1. INTRODUCTION

Several studies have been addressed in the past to vibrations of circular plates in
stationary heavy #uids (liquids). After the poineering work of Lord Rayleigh [1],
the "rst study on this topic can be attributed to Lamb [2]. He studied the free
vibrations of clamped, circular ba%ed plates using simple assumed modes and an
approximation to obtain the hydrodynamic pressure; this solution was extended to
free-edge circular plates by McLachlan [3]. Amabili and Kwak [4] have recently
solved the same problem using a re"ned approach. The e!ect of a "nite #uid depth
above the ba%ed plate was investigated by Amabili [5]. Amabili et al. [6] extended
the study in reference [4] to annular, ba%ed plates. For this class of problems, the
boundary conditions on the #uid domain are homogeneous and give a Neumann
problem.

Elastic circular bottom plates in #uid-"lled cylindrical tanks have been largely
studied in relation to free vibrations and sloshing in the container; e.g., see
0022-460X/99/380407#18 $30.00/0 ( 1999 Academic Press
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references [7}17]. In this case, the #uid velocity potential can be obtained using the
method of separation of variables.

Free vibrations of circular plates resting on a free #uid surface have been studied
for the "rst time a few years ago by Kwak and Kim [18] for axisymmetric modes
and by Kwak [19] for the general case. These studies also address the circular
plates completely submerged in an in"nite #uid domain. Experiments con"rming
the results of references [18, 19] have been performed by Amabili et al. [20]. Kwak
and Amabili [21] extended this study to annular plates, successfully comparing
theoretical and experimental results. In all these studies, the boundary conditions
on the #uid domain are mixed and give a Dirichlet problem. In particular, a
zero-velocity potential is imposed at the free liquid surface, so that the e!ect of
free-surface waves is neglected.

Other interesting studies on vibrations of circular plates in stationary #uids can
be found in the literature; see, e.g., references [22}27].

The present study is addressed to free vibrations of circular plates resting on
a free #uid surface, which is the same problem already solved by Kwak [19];
however in this study, the e!ect of free-surface waves is retained. This e!ect was
previously investigated but only for bottom plates of cylindrical tanks, e.g. see
references [7, 13, 16]. In particular, in a #uid}structure system having a free surface
and under gravity, two families of modes appear: sloshing and bulging modes.
Sloshing modes are due to oscillation of the #uid and usually have low frequency.
Bulging modes are due to the structural vibration; they are a!ected by the free
surface oscillation and the presence of #uid}structure interface. Here, attention is
focused on bulging modes. The solution is achieved using a perturbation technique
and the Hankel transformation method which give a couple of dual integral
equations of Titchmarsh type. The #uid is considered inviscid and incompressible
and the velocity potential describes its motion. The Kirchho! theory of plates is
used to model the elastic thin plate. The theory is suitable for all axisymmetric plate
boundary conditions. Numerical results are given in the non-dimensional form for
modes up to "ve nodal circles and diameters for clamped, simply supported and
free-edge plates, to be ready-to-use in applications.

2. MIXED BOUNDARY VALUE PROBLEM

A polar co-ordinate system (O, r, h) is introduced with the origin at O the centre
of the plate. The mode shapes, related to transverse de#ection w, for in vacuo free
vibrations of thin elastic circular plates are expressed by

w(r, h, t)"=
nm

(r) cos (nh) sin(ut), (1)

where =
nm

(r)"[J
n
(j

nm
r/a)#a

nm
I
n
(j

nm
r/a)], n is the number of nodal diameters,

m is the number of nodal circles, u is the radian frequency and j
nm

and a
nm

are the
frequency and mode-shape parameters, respectively, both dependent on the plate's
boundary conditions. J

n
and I

n
are the Bessel function and the modi"ed Bessel

function of order n, respectively. The equations that give j
nm

and a
nm

are reported in
section 6; some of these data can be found in reference [28]. The radian in vacuo
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frequency of vibration u
V

and the frequency parameter j
nm

are related by
u

V
"j2

nm
JD/(o

P
ha4), where D"(Eh3)/[12(1!l2)], o

P
is the plate mass density,

h is the plate thickness, a is the plate radius, E is Young's modulus and l is the
Poisson ratio. In equation (1) the Kirchho! theory of plates [29] was used.

The hypothesis is made that the mode-shapes of vibrating plate on the #uid
surface are the same as in vacuo. This means that the dynamic loading of the #uid is
assumed to have a negligible e!ect on the natural mode-shapes of the plate.
Experimental tests, performed by Montero de Espinosa and Gallego-Juàrez [22],
Amabili et al. [20] and Amabili and Kwak [21] show that mode shapes are little
modi"ed by the presence of water, especially for free-edge plates. Amabili and
Kwak [4] theoretically computed the actual mode shapes of a ba%ed circular plate
in contact with liquid on one side. They showed that the actual mode shapes are
quite close to the ones in vacuo, and for free-edge plates the di!erences are
particularly small. With this assumption, equation (1) is also valid for a plate on the
#uid surface.

If the #uid is incompressible and inviscid and its movement irrotational, it is
possible to describe the #uid motion (due to the plate's vibration) by the velocity
potential U that must satisfy the Laplace equation +l 2U"0. The #uid velocity is
given by v"!+U. By using the variable separation with respect to the angular
co-ordinate, U can be expressed as

U(r, h, z, t)"/(r, z) cos (nh)u cos (ut), (2)

where / satis"es

L2/
Lr2

#

L/
rLr

#

L2/
Lz2

!

n2

r2
/"0 in the #uid domain (3)

and u is the radian frequency of the #uid}plate system. Then, the following is
imposed: (i) a contact without cavitation at the #uid}plate interface S

B
; (ii) the

linearized free-surface condition on the free #uid surface S
F

and (iii) the radiation
condition at an in"nite distance from the plate S (see Figure 1). The super"cial
Figure 1. Circular plate on a free #uid surface; co-ordinate system and symbols.
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tension of the #uid is neglected. Therefore, the boundary conditions can be
expressed as

L/
Lz

"!=
nm

(r) on S
B
, /!

g
u2

L/
Lz

"0 on S
F
, /,

L/
Lr

,
L/
Lz

P0 on S
R
,

(4}6)

where g is the gravity acceleration. To solve the mixed boundary value problem it is
useful to use the modi"ed Hankel transformation, as addressed by Kwak and Kim
[18] and Kwak [19]. It is de"ned as

/1
h
"P

=

0

r/(r, z)J
n
(mr) dr. (7)

Applying the Hankel transform to the "rst, second and fourth term of equation (3),
one can "nd

P
=

0

rA
L2/
Lr2

#

1
r

L/
Lr

!

n2

r2
/B J

n
(mr) dr"!m2P

=

0

r/(r, z)J
n
(mr) dr"!m2/M

h
(m, z).

(8)

Using equation (3), the result of equation (8) must be equal to

!P
=

0

r
L2/
Lz2

J
n
(mr) dr"!

d2

dz2
/M

h
(m, z). (9)

Therefore equation (3) is reduced to the following ordinary di!erential equation:

d2/M
h
/dz2!m2/M

h
"0. (10)

The general solution of equation (10) that satis"es equation (6) is

/M
h
(m, z)"B(am)e~mz. (11)

The investigation formula for the Hankel transform gives

/(r, z)"P
=

0

m/M
h
(m, z)J

n
(mr) dm. (12)

3. PERTURBATION APPROACH AND SUPERPOSITION PRINCIPLE

To solve the problem, it is useful to introduce the perturbation parameter

e"g/au2 (13)

which makes it possible to write the function / as the sum of two contributions

/"/
0
#e/

1
, (14)

where /
0

is the contribution related to the following mixed boundary value
problem in which free-surface waves are neglected [19],

L/
0
/Lz"!=

nm
(r) on S

B
, /

0
"0 on S

F
(15)
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and /
1

is the contribution related to the following mixed boundary value problem
in which the plate is considered rigid and only sloshing of the free surface is
considered:

L/
1
/Lz"0 on S

B
, /

1
"a L/

0
/Lz on S

F
(16)

The second of equations (16) was obtained by neglecting the terms in e2 in the
free-surface condition. By using the principle of superposition, the sum of the two
mixed boundary value problems gives the actual one. This method is described in
detail in reference [30]. The perturbation parameter e is introduced in the second
term of equation (14) to indicate that it gives a small contribution with respect to
the "rst one when we are studying the bulging modes (where the plate oscillates,
moving the liquid).

Upon substituting equations (11) and (12) in equations (15) and (16), two sets of
dual integral equations of Titchmarsh type [31] are obtained,

P
=

0

m2B
0
(am)J

n
(mr) dm"=

nm
(r), 0(r)a,

P
=

0

mB
0
(am)J

n
(mr) dm"0, r'a, (17)

P
=

0

m2B
1
(am)J

n
(mr) dm"0, 0(r)a,

P
=

0

mB
1
(am)J

n
(mr) dm"!a P

=

0

m2B
0
(am)J

n
(mr) dm, r'a, (18)

where the unknown functions B
0

and B
1

are related to the two mixed boundary
value problems given by equations (15) and (16) respectively.

Upon introducing the non-dimensional variables

o"r/a, g"am, A
0
(g)"gB

0
(g), A

1
(g)"gB

1
(g), (19)

the transformed equations become

P
=

0

gA
0
(g)J

n
(og) dg"a3=

nm
(o), 0(o)1,

P
=

0

A
0
(g)J

n
(og) dg"0, o'1, (20)

P
=

0

gA
1
(g)J

n
(og) dg"0, 0(o)1,

P
=

0

A
1
(g)J

n
(og) dg"!P

=

0

gA
0
(g)J

n
(og) dg, o'1. (21)
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4. KINETIC ENERGIES OF THE FLUID AND THE PLATE

In section 2, it is assumed that the wet mode shapes are the same as the mode
shapes in vacuo, so that there is no change in kinetic and elastic potential energies of
the plate. For a plate vibrating in vacuo, one can write

u2
V
"<

P
/¹*

P
, (22)

where <
P

is the maximum potential energy of the plate and ¹*
P

is its reference
kinetic energy. For a plate vibrating on the #uid free surface one has [30, 32]

u2
F
"(<

P
#<

F
)/(¹*

P
#¹I *

F
), (23)

where <
P

and ¹*
P

are the same as in equation (22), <
F

is the maximum potential
energy associated to free surface waves and ¹I *

F
is the reference kinetic energy of the

#uid. It is well-known that by using Green's theorem [33, 30] it is possible to
evaluate the reference kinetic energy of the #uid with a surface integral on the
boundary of the #uid domain, i.e. on S

B
#S

F
in this case, as a consequence that the

integral on S
R

is zero. Amabili [30] proved that equation (23) can be simpli"ed into

u2
F
"<

P
/(¹*

P
#¹*

F
), (24)

where ¹*
F

is the reduced reference kinetic energy of the #uid computed by
integrating only over the wet plate surface S

B
.

By using the non-dimensional variables, the potential at the free surface can be
expressed as

/(o, 0)"
1
a2 P

=

0

A (g)J
n
(og) dg. (25)

The reduced reference kinetic energy of the #uid is expressed as

¹*
F
"!

1
2

o
F
a2D

n P
1

0

/ (o, 0)
L/(o, 0)

Lz
odo

"

1
2

o
F
a2D

nC P
1

0

/
0
(o, 0)=

nm
(o)odo#e P

1

0

/
1
(o, 0)=

nm
(o)odoD

"¹*
F0
#e¹*

F1
, (26)

where

¹*
F0
"

1
2

o
F
a2D

n P
1

0

/
0
(o, 0)=

nm
(o)odo, (27)

¹*
F1
"

1
2

o
F
a2D

n P
1

0

/
1
(o, 0)=

nm
(o)odo, (28)

and

D
n
"G

2n
n

if n"0,
if n*1.H
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¹*
F0

and ¹*
F1

represent the zero order and the "rst order kinetic energies of the #uid,
respectively.

To simplify the formulation one can introduce the new variables

d(o)"P
=

0

gA (g)J
n
(og) dg, s(o)"P

=

0

A(g)J
n
(og) dg. (29, 30)

Then, the potential at the free surface can be written as

/(o, 0)"(1/a2)s (o), (31)

and the dual integral equations can be rewritten as

d
0B

(o)"a3=
nm

(o),
s
0F

(o)"0,
0(o)1,
o'1,

d
1B

(o)"0,
s
1F

(o)"!d
0F

(o),
0(o)1,
o'1.

(32, 33)

The "rst subscript to d and s refers to the variables B
0
and B

1
and the second to the

domains S
B

and S
F
. To calculate the kinetic energy ¹*

F
, the terms s

0B
(o), s

1B
(o),

d
0F

(o) need to be determined.
Based on the result of Sneddon [31] applied to equation (32), one can write

s
0B

(o)"
2
n

on P
1

o

u~2nF*(u) du

Ju2!o2
, (34)

where

F* (u)"a3 P
u

0

vn`1=
nm

(v) dv

Ju2!v2
"a3un`1 P

1

0

yn`1=
nm

(uy) dy

J1!y2
.

(35)

Using the above result, one can derive the zero order kinetic energy of the #uid

¹*
F0
"

1
2

o
F
D

n P
1

0

s
0B

(o)=
nm

(o)odo

"

1
2

o
F
D

n
a3

2
n P

1

0

u2 AP
1

0

yn`1=
nm

(uy) dy

J1!y2 B
2

du. (36)

The above calculation was carried out by Kwak [19]. The "nal result has the form [34]

¹*
F0
"

o
F
D

n
a3

2j
nm

P
1

0

u[J
n`1@2

(j
nm

u)#a
nm

I
n`1@2

(j
nm

u)]2 du"
1
2

o
F
D

n
a3D

F0
, (37)

where

D
F0
"(1/2j

nm
)[d

F1
#2a

nm
d
F2

#a2
nm

d
F3

], (38)

in which

d
F1
"J2

n`1@2
(j

nm
)!J

n~1@2
(j

nm
)J

n`3@2
(j

nm
),

d
F2
"

1
j
nm

[J
n`1@2

(j
nm

)I
n~1@2

(j
nm

)!J
n~1@2

(j
nm

)I
n`1@2

(j
nm

)],

d
F3
"I2

n`1@2
(j

nm
)!I

n~1@2
(j

nm
)I

n`3@2
(j

nm
).
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To calculate the "rst order kinetic energy of the water, one needs to calculate
d
0F

and s
1B

. Following the result of Sneddon [31], one obtains

d
0F
"!a3

2o~nJo2!1
n P

1

0

un`1J1!u2=
nm

(u) du
o2!u2

(39)

and

s
1B

(o)"!

2J1!o2 on

n P
=

1

t1~nd
0F

(t) dt

(t2!o2)Jt2!1

"a3
4J1!o2 on

n2 P
=

1

t1~2n

t2!o2 P
1

0

un`1J1!u2=
nm

(u) dudt
t2!u2

. (40)

Inserting equation (40) into equation (28), one obtains

¹*
F1

"

1
2

o
F
D

n P
1

0

s
1B

(o)=
nm

(o) odo

"

1
2

o
F
D

n
a3

4
n2 P

=

1

t1~2n C P
1

0

un`1J1!u2=
nm

(u) du

t2!u2
2 D

2
dt. (41)

Upon introducing a dummy variable, t"1/o to reduce the integal on in"nite
domain into one on "nite domain, the "rst order kinetic energy can be expressed as

¹*
F1
"

1
2

o
F
D

n
a3D

F1
, (42)

where

D
F1
"

4
n2 P

1

0

o2n`1;2
nm

(o) do (43)

in which

;
nm

(o)"P
1

0

un`1J1!u2=
nm

(u) du
1!o2u2

.

It is impossible to express ¹*
F1

in closed form, because the integral in equation (43)
must be performed numerically.

The kinetic energy of the plate can be expressed as

¹*
P
"

1
2

o
P
hD

n
a2D

P
, (44)

where

D
P
"

1
2

[d
P1

#2a
nm

d
P2
#a2

nm
d
P3

] (45)
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in which

d
P1

"J2
n
(j

nm
)!J

n~1
(j

nm
)J

n`1
(j

nm
),

d
P2
"

1
j
nm

[J
n
(j

nm
)I

n~1
(j

nm
)!J

n~1
(j

nm
)I

n
(j

nm
)],

d
P3
"I2

n
(j

nm
)!I

n~1
(j

nm
)I

n`1
(j

nm
).

5. NON-DIMENSIONAL PARAMETERS

Using equations (22), (24) and (26), one can derive

u2
V
"A1#

¹*
F0

¹*
P

#e
¹*

F1
¹*

P
B u2

F
, (46)

where u
V

is the radian frequency of the plate in vacuo and u
F

is the radian
frequency of the plate in contact with the #uid surface. It is useful to introduce the
non-dimensional parameters

¹*
F0

¹*
P

"A
o
F
a

o
P
hB

D
F0

D
P

"bC
nm

(47)

in which b"o
F
a/o

P
h is the so-called thickness correction factor and C

nm
"D

F0
/D

P
is the nondimensionalized added virtual mass incremental (NAVMI) factor [18, 19]
or zero order NAVMI factor. In addition, one can derive

e
¹*

F1
¹*

P

u2"
g

au2
V

b
D

F1
D

P

u2
V
"e

V
bP

nm
u2

V
, (48)

where e
V
"g/au2

V
is de"ned as the non-dimensionalized free-surface e!ect factor

and P
nm
"D

F1
/D

P
is de"ned as the "rst order non-dimensionalized added virtual

mass incremental factor. Hence, one can express the frequency change in the form

u
F

u
V

"S
1!e

V
bP

nm
1#bC

nm

. (49)

6. NUMERICAL RESULTS AND DISCUSSION

Initially, the frequency and mode-shape parameters for plates in vacuo have been
calculated. The frequency parameters of circular plates having clamped, simply
supported, and free-edge boundary conditions can be obtained by solving the
characteristic equations

J
n
(j

nm
)I

n`1
(j

nm
)#I

n
(j

nm
)J

n`1
(j

nm
)"0 for a clamped circular plate,

J
n`1

(j
nm

)
J
n
(j

nm
)
#

I
n`1

(j
nm

)
J
n
(j

nm
)
"

2j
nm

1!l
for a simply supported circular plate
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and

j2
nm

J
n
(j

nm
)#(1!l)[j

nm
J@
n
(j

nm
)!n2J

n
(j

nm
)]

j2
nm

I
n
(j

nm
)!(1!l)[j

nm
I@
n
(j

nm
)!n2I

n
(j

nm
)]

"

j2
nm

J@
n
(j

nm
)#(1!l)n2[j

nm
J@
n
(j

nm
)!J

n
(j

nm
)]

j2
nm

I@
n
(j

nm
)!(1!l)n2[j

mn
I@
n
(j

nm
)!I

n
(j

nm
)]

for a free-edge circular plate,

where J@
n

and I@
n

indicate the derivatives of Bessel functions with respect to the
argument.

The mode-shape parameter can be calculated by using the equations

a
nm
"!J

n
(j

nm
)/I

n
(j

nm
) for a clamped and simply supported circular plate

and

a
nm
"

j2
nm

J
n
(j

nm
)#(1!l)[j

nm
J@
n
(j

nm
)!n2J

n
(j

nm
)]

j2
nm

I
n
(j

nm
)!(1!l)[j

mn
I@
n
(j

nm
)!n2I

n
(j

nm
)]

for a free-edge circular plate.

The frequency parameters j
nm

and the zero-order NAVMI factors C
nm

are given in
Appendix A for n and m up to "ve and for free-edge, simply supported and clamped
plates. The "rst order NAVMI factors are given in Tables 1, 2 and 3 for free-edge,
simply supported and clamped plates respectively. These coe$cients are
TABLE 2

First order NA<MI factors P
nm

for simply supported circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 0)07055 0)01706 0)007603 0)004314 0)002788 0)001953
1 0)01263 0)005882 0)003442 0)002274 0)001620 0)001216
2 0)005298 0)003059 0)002024 0)001448 0)001092 0)0008550
3 0)002908 0)001886 0)001344 0)001013 0)0007942 0)0006409
4 0)001836 0)001282 0)0009608 0)0007517 0)0006064 0)0005008
5 0)001264 0)0009289 0)0007223 0)0005812 0)0004795 0)0004032

TABLE 1

First order NA<MI factors P
nm

for clamped circular plates

m n"0 n"1 n"2 n"3 n"4 n"5

0 0)05336 0)01078 0)004294 0)002254 0)001377 0)0009227
1 0)01721 0)005973 0)002925 0)001746 0)001142 0)0008011
2 0)008202 0)003696 0)002099 0)001344 0)0009295 0)0006784
3 0)004767 0)002502 0)001555 0)001057 0)0007628 0)0005748
4 0)003109 0)001804 0)001194 0)0008501 0)0006344 0)0004904
5 0)002186 0)001363 0)0009467 0)0006974 0)0005346 0)0004224



TABLE 3

First order NA<MI factors P
nm

for free-edge circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 * * 0)01922 0)01326 0)009991 0)007938
1 0)004209 0)001298 0)0008576 0)0007460 0)0006920 0)0006500
2 0)0009123 0)0004691 0)0003261 0)0002707 0)0002452 0)0002310
3 0)0004064 0)0002463 0)0001797 0)0001478 0)0001310 0)0001213
4 0)0002311 0)0001533 0)0001161 0)0000960 0)0000843 0)0000770
5 0)0001493 0)0001051 0)0000820 0)0000684 0)0000600 0)0000543
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ready-to-use in applications, in conjunction with equation (49), due to their
non-dimensional form.

Figures 2}4 show the ratio u
F
/u

V
versus the non-dimensionalized free-surface

e!ect factor e
V

for the "rst modes with m"0 of free-edge, simply supported and
clamped plates, respectively. These "gures are otained from equation (49) for
b"50. They show that the e!ect of the liquid on natural frequencies decrease with
n and that, for b"50, it is very large for all the modes considered. In particular, it is
larger for simply supported and clamped plates with respect to free-edge plates.
Moreover, this e!ect increases with e

V
; it is to note that e

V
"0 corresponds to the

case studied by Kwak [19] where free-surface waves are neglected. For the modes
considered, a value of e

V
in the range between 0)1 and 0)5 corresponds to a

signi"cant e!ect of free-surface waves on the natural frequencies of the system. For
e
V
(0)1 and b"50, the e!ect of free-surface waves is negligible for most of the

modes; this means that, for su$ciently high natural frequencies of the plate in vacuo
and a radius not too small, the e!ect of free-surface waves is negligible.

The e!ect of the thickness correlation factor b on the ratio u
F
/u

V
is shown in

Figure 5, where curves for three di!erent values of b are given for the "rst
axisymmetric mode (n"0, m"0) of simply supported circular plates. Figure 5
shows that the e!ect of free surface waves is increased signi"cantly for large values
of b.

To understand better the e!ect of free-surface waves, it is useful to compare the
present result u

F
with the radian frequency obtained neglecting the e!ect of free

surface waves, (u
F
)
NW

, i.e. computed for e
V
"0 and already studied by Kwak [19].

It is also useful to introduce the sloshing frequency of the #uid (liquid) in order to
compare it with the natural frequency of the bulging modes (the only ones
considered in the present study) of the system. In particular, the sloshing radian
frequency of an undisturbed free liquid surface of in"nite depth and extension is
given by

u2
S
"gk

h
, (50)

where k
h
"Jk2#l2 is the horizontal wave number and k and l are the (integer)

wave numbers in two orthogonal directions on the free surface. Actually, the
sloshing frequencies of the present system are di!erent from the values computed



Figure 2. Ratio u
F
/u

V
versus e

V
for free-edge circular plates and b"50. ** n"2, m"0;

} } } n"3, m"0; } ) } ) } n"4, m"0.

Figure 3. Ratio u
F
/u

V
versus e

V
for simply supported circular plates and b"50. ** n"0,

m"0; } } } n"1, m"0; } ) } ) } n"2, m"0.
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by equation (50) as a consequence of the presence of the plate on the surface and the
circular shape of waves instead of the linear one assumed to obtain expression (50).
In any case, the lower frequency computed from equation (50), i.e. u

S
"Jg, can be

used as representative of the lower frequency range of sloshing modes.
The ratio u

F
/(u

F
)
NW

versus the ratio u
S
/(u

F
)
NW

is given in Figures 6}8, with the
following material and geometric properties assumed: E"206]109 MPa,
o
P
"7850 kg/m3, o

F
"1000 kg/m3, v"0)3 and h"0)5 mm. In particular, the

ratio u
F
/(u

F
)
NW

indicates the e!ect of free surface waves on natural frequencies of
the system and the ratio u /(u ) shows the di!erence between the natural
S F NW



Figure 4. Ratio u
F
/u

V
versus e

V
for clamped circular plates and b"50. ** n"0, m"0;

} } } n"1, m"0; } ) } ) } n"2, m"0.

Figure 5. Ratio u
F
/u

V
versus e

V
for the "rst axisymmetric mode (n"0, m"0) of simply supported

plates. ** b"10; } } } b"50; } ) } ) } b"200.
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frequency of the wet plate (neglecting waves) (u
F
)
NW

for the mode considered and
the sloshing frequency u

S
of the #uid. Figures 6}8 show that when the natural

frequency of the wet plate (neglecting waves) (u
F
)
NW

approaches the sloshing
frequency u

S
, the e!ect of free surfaces waves is signi"cant. In contrast, when

(u
F
)
NW

is much larger than u
S

the e!ect of free-surface waves on the natural
frequency of the system is negligible. In particular, the "gures show that the "rst
axisymmetric mode (n"0, m"0) of the simply supported circular plate is the one
more a!ected by free surface waves. Moreover, for u

S
/(u

F
)
NW

"1 the e!ect of free
surface waves is varying from signi"cant to very large for all the modes considered.



Figure 6. Ratio u
F
/(u

F
)
NW

versus u
S
/(u

F
)
NW

for free-edge circular plates. ** n"2, m"0;
} } } n"3, m"0; } ) } ) } n"4, m"0.

Figure 7. Ratio u
F
/(u

F
)
NW

versus u
S
/(u

F
)
NW

for simply supported circular plates. ** n"0,
m"0; } } } n"1, m"0; } ) } ) } n"2, m"0.
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7. CONCLUSIONS

The results show that the e!ect of free-surface waves signi"cantly a!ects the
natural frequencies of the bulging modes (where the plate oscillates, thus moving
the #uid) only for very #exible plates, i.e. plates having fundamental frequency quite
close to frequencies of surface waves. However, when this is veri"ed, the interaction
between sloshing and bulging modes is very large and the natural frequencies of
bulging modes are largely decreased. It is to note that the present perturbation



Figure 8. Ratio u
F
/(u

F
)
NW

versus u
S
/(u

F
)
NW

for clamped circular plates. ** n"0, m"0;
} } } n"1, m"0; } ) } ) } n"2, m"0.
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approach is based on the hypothesis that e is small (i.e. that e2 is negligible with
respect to e). As a consequence of a direct relation between e and e

V
, the present

results can be considered accurate only when e
V

is su$ciently small.
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APPENDIX A: ZERO-ORDER NAVMI FACTORS AND FREQUENCY
PARAMETERS

In this appendix, the zero order NAVMI factors C
nm

and the frequency
parameters j of circular plates are given in Tables 4}9 for three di!erent
TABLE 6

Zero order NA<MI factors C
nm

for free-edge circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 * * 0)1612 0)1275 0)1065 0)09192
1 0)2181 0)1727 0)1386 0)1159 0)09986 0)08800
2 0)1371 0)1135 0)09717 0)08523 0)07610 0)06888
3 0)09630 0)08386 0)07451 0)06720 0)06131 0)05647
4 0)07403 0)06642 0)06037 0)05544 0)05133 0)04785
5 0)06009 0)05496 0)05074 0)04719 0)04415 0)04153

TABLE 5

Zero order NA<MI factors C
nm

for simply supported circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 0)4946 0)2874 0)2083 0)1651 0)1375 0)1182
1 0)1958 0)1509 0)1243 0)1064 0)09332 0)08335
2 0)1217 0)1025 0)08910 0)07916 0)07143 0)06520
3 0)08818 0)07755 0)06953 0)06320 0)05805 0)05376
4 0)06911 0)06238 0)05703 0)05264 0)04896 0)04582
5 0)05680 0)05217 0)04835 0)04513 0)04236 0)03996

TABLE 4

Zero order NA<MI factors C
nm

for clamped circular plates

m n"0 n"1 n"2 n"3 n"4 n"5

0 0)4667 0)2723 0)1986 0)1583 0)1324 0)1142
1 0)2032 0)1523 0)1239 0)1055 0)09233 0)08235
2 0)1265 0)1045 0)08996 0)07945 0)07142 0)06503
3 0)09121 0)07922 0)07047 0)06372 0)05832 0)05388
4 0)07118 0)06368 0)05786 0)05318 0)04931 0)04603
5 0)05830 0)05319 0)04906 0)04562 0)04271 0)04020

nm



TABLE 7

Frequency parameters j
nm

for clamped circular plates

m n"0 n"1 n"2 n"3 n"4 n"5

0 3)1962 4)6109 5)9059 7)1442 8)3466 9)5257
1 6)3064 7)7987 9)2114 10)5361 11)8367 13)1074
2 9)4395 10)9581 12)4020 13)7949 15)1499 16)4751
3 12)5771 14)1089 15)5792 17)0050 18)3960 19)7583
4 15)7164 17)2560 18)7451 20)1921 21)6084 22)9979
5 18)8565 20)4010 21)9009 23)3660 24)8015 26)2117

TABLE 8

Frequency parameters j
nm

for simply supported circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 2)2215 3)7280 5)0610 6)3212 7)5393 8)7294
1 5)4516 6)9627 8)3736 9)7236 11)0319 12)3093
2 8)6114 10)1377 11)5887 12)9875 14)3475 15)6773
3 11)7609 13)2967 14)7717 16)2014 17)5957 18)9613
4 14)9069 16)4489 17)9399 19)3910 20)8098 22)2018
5 18)0513 19)5977 21)1001 22)5670 24)0042 25)4164

TABLE 9

Frequency parameters j
nm

for free-edge circular plates (l"0)3)

m n"0 n"1 n"2 n"3 n"4 n"5

0 * * 2)3148 3)5269 4)6728 5)7875
1 3)0005 4)5249 5)9380 7)2806 8)5757 9)8364
2 6)2003 7)7338 9)1851 10)5804 11)9344 13)2565
3 9)3675 10)9068 12)3817 13)8091 15)1997 16)5606
4 12)5227 14)0667 15)5575 17)0070 18)4232 19)8117
5 15)6727 17)2203 18)7226 20)1882 21)6234 23)0330
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boundary conditions: (i) clamped plates in Tables 4 and 7 (ii) simply supported
plates in Tables 5 and 8; (iii) free-edge plates in Tables 6 and 9. Coe$cients given in
Tables 4}9 have been recalculated for the present study and can be satisfactorily
compared with those published by Kwak [19] and Amabili et al. [20].
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