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The periodic motions of a non-linear geared rotor-bearing system are
investigated by the incremental harmonic balance (IHB) method. A path following
procedure using arc length continuation technique is used to trace the bifurcation
diagrams. The system exhibits a period doubling route and a quasiperiodic route to
chaos in di!erent regions of excitation frequency. The chaotic motions are investi
gated by numerical integration and the Lyapunov exponents are computed. The
periodic solutions and subharmonic solutions obtained by the IHB method
compare very well with those obtained by numerical integration.
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1. INTRODUCTION

In geared rotor-bearing systems, while modelling the dynamic behavior,
non-linearities are induced due to gear backlash and bearing clearance. Backlash in
the gear pair and clearances in the shaft-bearing system may be introduced to
provide better lubrication and eliminate interference. These may also be induced
due to manufacturing errors and wear. Backlash-induced torsional vibrations may
cause tooth separation and impacts in geared rotor-bearing systems. Such impacts
result in intense vibration and will cause noise problems and large dynamic loads,
which may a!ect the life and reliability of geared drives. Thus, the analysis of geared
rotor-bearing systems with non-linearities becomes important.

Non-linear dynamics of geared rotor-bearing system with multiple clearance was
studied by Kahraman and Singh [1]. A three-degree-of-freedom (d.o.f.) model was
developed which included non-linearities associated with radial clearances in the
radial rolling element bearings and backlash between a spur gear pair. Several key
issues such as non-linear modal interactions and di!erences between internal static
transmission error excitation and external torque excitation were discussed.
Parametric studies were presented and period doubling and quasiperiodic routes to
chaos have been identi"ed. Kahraman and Singh [2] have studied the frequency
response characteristics of a non-linear geared rotor-bearing system with
time-varying mesh sti!ness. A single-degree-of-freedom (s.d.o.f.) spur gear model
022}460X/99/380469#24 $30.00/0 ( 1999 Academic Press
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with backlash and sinusoidal/periodic mesh sti!ness, and a three d.o.f. model with
clearance non-linearities associated with gear backlash and rolling element bearing
with time-varying mesh sti!ness were developed. The governing equations were
solved by numerical integration. A strong interaction between time-varying
sti!ness and gear backlash was found, while the coupling between time-varying
mesh sti!ness and bearing clearance was found to be weak. The analytical results
were found to be in good agreement with benchmark experimental results.

The s.d.o.f. spur gear model and three-d.o.f. model of a geared rotor bearing
without time-varying mesh sti!ness were analyzed for their dynamic behavior by
the IHB method by Raghothama [3]. The periodic, subharmonic and period-
doubling bifurcations were obtained by the IHB method and the results were
shown to be in good agreement with numerically integrated results. A mechanical
system with combined parametric excitation and clearance non-linearity was
examined analytically and experimentally by Blankenship and Kahraman [4].
A generalized methodology was proposed based on the harmonic balance method.
The mechanical system analyzed in their study has a signi"cant relevance
in automotive, aerospace, marine and industrial power transmission and gearing
applications. The steady state forced response of a system with clearance subject
to commensurate parametric and external forcing was investigated analytically
by considering a mechanical oscillator with time-varying sti!ness and a dead
zone type clearance non-linearity by Kahraman and Blankenship [5].
A generalized multiple-term harmonic balance procedure is utilized to "nd
periodic solutions. Interactions between periodically time-varying sti!ness
and forcing functions were characterized in the primary regimes. Closed-form
impact criteria were derived for period 1 solutions. The e!ects of system
parameters on subharmonic resonances were examined and experimental results
were included which conclusively demonstrated the existence of subharmonic
resonances in the geared systems. The importance of mean load e!ect has been
highlighted in the study of whirling asymmetric shafts, where signi"cant changes in
system responses and stability occur under the in#uence of gravity by
Padmanabhan and Singh [6]. They have studied the speci"c e!ect of mean load on
the dynamic behavior of a Hill's oscillator with a clearance-type non-linearity and
subjected to a periodic base displacement excitation. The parametric continuation
technique and method of harmonic balance has been used for the analysis. Issues
such as coupling between the mean load and dynamic response amplitude, and
interaction between the parametric excitation and clearance non-linearity have
been analysed.

The experimental results on a non-linear system with clearance subjected to
combined parametric and external excitation were presented in a recent paper by
Kahraman and Blankenship [7]. The experimental results showed subharmonic
motions, jump phenomena, long periodic motions up to the order of period 9 and
chaotic motions.

Wong et al. [8] have investigated a s.d.o.f. non-linear system subjected to
harmonic excitation with un-symmetrical piecewise linear sti!ness by the extended
incremental harmonic balance method. Subharmonic, harmonic and
superharmonic resonances and bifurcations were observed for the oscillator model
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considered. The IHB method was extended by Lau and Zhang [9] to analyze
periodic motions of systems with piecewise linear sti!ness characteristics.

In this paper, the IHB method is used to obtain the periodic motions of a 3-d.o.f.
non-linear model of a geared rotor system subjected to parametric and external
harmonic excitations. The stability of the periodic motions is investigated by the
Floquet theory and in combination with a path following and arc length
parametric continuation procedure, the bifurcation behavior is traced. In the
geared rotor-bearing system the non-linearities are induced by gear backlash and
bearing clearances. The gear mesh sti!ness is not only non-linear but time
dependent also. The time-varying mesh sti!ness arises due to change in the number
of conjugate tooth pairs in contact during the involute action. This leads to the
parametric excitation and the external excitation is caused by the static
transmission error induced by kinematic errors and tooth de#ections. The Jacobian
matrix and the residue vector arising in the IHB formulations are derived explicitly.
In addition to the familiar period doubling bifurcation scenario leading to chaos, in
this example, a quasiperiodic route to chaos is also observed which occurs through
an initial Hopf bifurcation. The periodic, subharmonic solutions and the
bifurcation points obtained by the IHB method compare very well with the results
obtained by numerical integration.

2. NON-LINEAR MODEL OF A GEARED ROTOR-BEARING SYSTEM

The geared rotor-bearing model considered in this study is shown in Figure 1(a).
The model is essentially the same as considered by Kahraman and Singh [2]. The
same model was also considered by numerical integration and the IHB method by
the "rst author [3] for the system without parametric excitation. In this model,
friction forces at the mesh point are assumed to be negligible. Because of this the
transverse vibrations along the directions of pressure line and the vibrations along
the direction perpendicular to the pressure line are uncoupled. Bearings and shafts
that support the gears are represented by equivalent damping and non-linear
sti!ness elements as shown in Figure 1. The damping elements are characterized by
linear viscous damping coe$cients c

1
and c

2
, and the non-linear sti!ness elements

are de"ned by non-linear force}displacement functions f
1

and f
2

with
corresponding scaling constants k

1
and k

2
. The e!ect of the prime mover and the

load inertias are not considered. Also it is assumed that the system is symmetric
about the plane of the gears and that the axial motion parallel to the shafts is
negligible. A high-frequency internal excitation arising out of static transmission
error is included in the equations of motion. External radial preloads F

1
and F

2
are

also applied to both the rolling element bearings.
Under these assumptions, the equations of coupled transverse}torsional motion

of the non-linear geared rotor-bearing system with time-varying mesh sti!ness can
be expressed as
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Figure 1. Non-linear model of a geared rotor-bearing system.
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In these equations, the number of overdots represents the order of di!erentiation
with respect to time t, y

i
and u

i
are the transverse and torsional displacements of

the ith gear (i"1, 2), m is the equivalent gear pair mass, F
m

is the average force
transmitted through the gear mesh. m

1
and m

2
are the gear masses, I

1
and I

2
are the

mass moments of inertia of the gears and d and d are the base circle diameters of
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the gears. f
h
is the non-linear function representing the force}displacement relation

of the gear mesh. The time-varying mesh sti!ness k
h
(t) is periodic and is expanded

in Fourier series form with k
h0

(t) being the mean component and k
hr

the harmonic
components corresponding to integral multiples of the gear meshing frequency u,
which is also the fundamental excitation frequency corresponding to the internal
displacement or static transmission error. c

h
represents the linear viscous damping

of the gear mesh and ¹
1

and ¹
2

are the input and output torque's at gears 1 and
2 and e(t) is the static transmission error. The above equations are simpli"ed further
by de"ning a new variable q(t), which is the di!erence between the dynamic
transmission error and the static transmission error e(t), that is

q(t)"x(t)#y
1
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2
(t)!e(t). (4)

In terms of q(t), equations (1)}(3) become
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A non-dimensional form of the above equations is obtained by letting
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as harmonic with e(t)"e
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is the fundamental frequency of the

internal static transmission error excitation. Introducing the non-dimensional
frequency X"u
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n
, we get the following governing equations of motion in the

non-dimensional form with time-varying mesh sti!ness,
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where

MG(q)N"MGN
m
#MG(q)N

i
"G

!G
1

G
2

G
m

H#G
0

0

G
a
X2 H sinXq, (7)

with

f
ii
"c

i
/2m

i
u

n
, f

i3
"c

h
/2m

i
u

n
(i"1, 2) and f

33
"c

h
/2mu

n

k
ii
"u2

i
/u2

n
, k

i3
(t)"k

h
(t)/m

i
u2

n
, G

i
"F

i
/m

i
b
c
u2

n
, i"1, 2

k
ii
"u2

i
/u2

n
, k

i3
"m/m

i
, G

i
"F

i
/m

i
b
c
u2

n
(i"1, 2)

k
33

(t)"k
h
(t)Nk

m
"1#

=
+
r/1

e
r
cos(rXt#/

r
).

By taking r"1 and /
r
"n, we get k

33
(t)"1!e cosXq.

Also G
m
"F

m
/(mb

c
u2

n
), G

a
"e

0
/b

c
in which G

i
and G

m
are the dimensionless

components of the mean force vector G
m
, and G

h
pertains to the internal excitation
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force vector. The displacement force relation at the bearings is taken as

linear in the current study but the algorithm presented is more general and can be
used to get the solution by including the bearing non-linearities together with gear
mesh clearance. In the present analysis at the gear mesh displacement force
relationship is taken as clearance-type dead space functions with backlash 2b

h
which is piecewise linear and can be written as
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The value of b
h
/b

c
in the present study is taken as unity. This function is shown in

Figure 1(b).

3. IHB METHOD FOR MULTI-DEGREE-OF-FREEDOM SYSTEMS

Consider the set of non-linear ordinary di!erential equations (ODE)
representing the non-linear dynamical system of the following general form:

f(xK , x5 , x, F, X, h)"0. (9)

In this vector equation, x"x(h) is the response of the non-linear system, or in
general, the dependent variable vector, F is the vector of amplitudes of external



BIFURCATIONS IN GEARED SYSTEM 475
harmonic excitations, X represents a set of non-dimensional frequencies of
relevance (non-dimensionalized with respect to a reference frequence), h is a non-
dimensional time and the number of overdots represents the order of di!erentiation
with respect to h.

The "rst step in applying the IHB method in obtaining a periodic solution of
equation (9) is to increment from some initial guess of the solution x

0
, F

0
, X

0
, to the

actual solution x*, F*, X*. In other words, an increment in x, F, X is sought which
when added to the initial state x

0
, F
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0
, produces the desired solution to equation

(9) in an iterative manner. Using Taylor series expansion we get
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where Lf/Lx, etc., are the matrices of the "rst partial derivatives of f with respect to
x, etc.

Neglecting the higher-order terms yields the incremental equation
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coe$cient, ODEs. Also, as x
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0
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the intention is to obtain periodic solutions to equation (11), a periodic solution can
be obtained by expanding x in a truncated "nite Fourier series and applying the
Galerkin's procedure. Thus assume
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The increment Dx can also be expanded in a Fourier series of the form
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where N represents the number of harmonics considered in the solution. When
equations (12) and (14) are substituted into equation (11), since they represent only
approximate solutions, the right-hand side of equation (11) will not be zero, but will
contain a time-varying error term e (h). The explicit form of e(h) is given by
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The Galerkin method requires that the increments Da
n
, Db

n
, DF, DX be chosen so

as to minimize e(h), by making e(h) orthogonal to each term in the expansion (12),
that is,
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DF represents the increment in the amplitude of exciting force vector and DX the
increment in the frequency of excitation. C refers to the Jacobian matrix. Dac, Dbs

are increments in the Fourier coe$cients of the assumed solution. R represents the
residue vector. In general, P is the parametric gradient vector and Q is frequency
gradient vector.
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The superscripts c and s refer to the cosine and sine coe$cient terms respectively.
The convergence of the periodic solution is checked by evaluating the following
error estimates e

1
and e

2
:

e
1
"J(Rc2

#Rs2), e
2
"J(Dac2

#Dbs2), (21)

Error estimate e
1

indicates the closeness of the Fourier transform and the actual
Fourier contents while e

2
represents the Euclidean norm of the Newton}Raphson

increments obtained during iteration. The iteration should be continued till the
error estimate becomes less than an acceptable limit. By having a su$cient number
of Fourier coe$cients and iterations, the periodic solution with the prescribed error
tolerance can be obtained. The Jacobian matrix and the residue vector for the
piecewise linear system with cosine parametric excitation occurring in equation (6)
are derived below. Considering in general the piecewise linear restoring force with
cosine parametric excitation of the form
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In these expressions, Aj, i, Bj, i , etc., are the result of the integrals occurring in the
IHB method and the expressions to evaluate these terms are given in Appendix A.
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¸ represents the number zeroes of the equation Dx(h) D"1. Thus, the evaluation of
the above integrals requires the knowledge of the zeroes of the equation Dx (h) D"1.
In the computer program, this is achieved at each iteration through a procedure
that uses the bisection and interpolation methods on the transcendental equation
Dx (h) D"1. Considering a period 2n, where h
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4. PATH FOLLOWING AND PARAMETRIC CONTINUATION

The IHB method can be used to obtain both the stable and unstable periodic
solutions. The stability of the periodic solutions can be investigated by the Floquet
theory. Stability analysis of the periodic solutions also enables one to obtain the
bifurcation points. In the Floquet theory, the stability of the periodic solutions is
investigated by perturbing the state variables about the steady state solutions. The
transformation matrix or the monodromy matrix is obtained, which transforms the
state vector at an instant time to another instant of time one period ahead. If the
absolute values of the eigenvalues of the monodromy matrix are less than unity the
periodic solution is stable. The way in which the eigenvalues leaves the unit circle
determines the nature of the bifurcations. The monodromy matrix is determined
using a procedure given by Friedmann et al. [10]. The IHB method with variable
parameter is ideally suited to parametric continuation for obtaining the response
diagrams of non-linear systems. After obtaining the solution for a particular value
of the parameter, the solution for new parameter values slightly perturbed from the
old value can be obtained by using the previous solution as an approximation. In
this paper, the parametric continuation is performed by the arc length procedure
given by Leung and Chui [11]. The main aim of the path following and parametric
continuation is to e!ectively trace the bifurcation sequence as a system parameter is
varied. Introducing path parameter c, the augmenting equation corresponding to
equation (9) for a general m.d.o.f. system can be written as

g (x)!c"0, (29)

where x"[Ma6 NT, F]T, a6 "MMaT
1
, aT

2
,2, aT

N
NTN and a

i
"Ma

io
, a

i1
,2, a

iN
,

b
i1
,2, b

in
NT. A good choice of the function g (x) is g(x)"xTx. Considering the

increments in a6 , F and c in equation (29), we get the incremental equation as

N(2M`1)
+
j/1

Lg
La6

j

MDa6
j
N#

Lg
LF

DF!Dc#g (x)!c"0, (30)

where a6
j
is the jth element of a6 .



Figure 2. A portion of the equilibrium path.
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Considering the portion of the equilibrium path of the solution branch shown in
Figure 2, the augmenting equation (29) is written as

g(x)!c"Mx@NTMx!x
c
N"0 (31)

The "rst prediction of the new point x
u
of the solution along the equilibrium path

is given in terms of the two previous points x
c
and x

cc
as follows:

x
u
"x

c
#Dcx@ (32)

where
x@"Mx

c
!x

cc
N/Ex

c
!x

cc
E (33)

and Dc is an arbitrary step length taken in the computation by experience.

5. RESULTS AND DISCUSSION

5.1. PERIOD DOUBLING ROUTE TO CHAOS

The periodic motions of the geared rotor system given by equations (6) are
obtained by the IHB method. The stability of the periodic solutions is investigated
by the Floquet theory and the response diagrams are obtained by the path
following technique and parametric continuation using the arc length procedure.
The non-dimensional frequency X is taken as the bifurcation parameter in the same
region of interest as studied in Kahraman and Singh [1] but with e"0)20. While in
their paper the main consideration is to obtain the response amplitude for
a di!erent set of parameters, in this paper we are mainly concerned with tracing the
bifurcation diagrams and identifying the types of bifurcations:
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Figure 3. Response diagram in the period doubling region: (a) max x
1

versus X; (b) max x
2

versus
X; (c) max p versus X.
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A
13
"A

23
"0)0125, e"0)20. Both the frequencies of parametric excitation and

external excitation are taken as the same in the present study. The response
diagrams are given in Figures 3(a}c). In these diagrams, starting from point &&a'',
X"1)60 and with the excitation frequency of the system decreasing, there exists
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a period 1 response corresponding to the forcing period 2n/X which bifurcates into
a period 2 response at point &&b'', X"1)52. The nature of bifurcation is period
doubling and is con"rmed by the movement of one of the Floquet multipliers
corresponding to point &&b'', which leaves the unit circle in the !1 direction. For
further decrease in the excitation frequency, the period 2 response undergoes
further period doubling bifurcation resulting in a period 4 response at point &&c'',
X"1)498. The period 4 response bifurcates into a period 8 response at point &&d'',
X"1)43 for further decrease in the excitation frequency. One of the eigenvalues of
the monodromy matrix moves out of the unit circle in the !1 direction
corresponding to each of the period doubling bifurcations. In the response
diagrams, the solid lines indicate stable responses and dashed lines indicate
unstable responses.

The phase plane diagrams corresponding to the periodic and subharmonic
responses obtained by the IHB method are given in Figures 4(a}l). The solid line
indicates the response computed by the IHB method and the cross marks represent
the solutions computed by numerical integration. The number of harmonics used in
the "nite Fourier series expansion in the IHB method are respectively 8, 16, 24, 32
for obtaining the period 1, 2, 4, and 8 responses. Excellent "t between the
numerically integrated solutions and the IHB solution is thus observed. In
obtaining the periodic solutions by the IHB method, the residue and norm of the
increments of the Fourier coe$cients are reduced to a value of less than
1)0]10~05.

The period doubling bifurcations lead ultimately to chaos. The chaotic
trajectories are obtained by numerical integration. The time histories, phase plane
diagrams, Poincare' sections and Fourier spectra corresponding to the chaotic
response are presented in Figures 5a}l. In obtaining the Poincare' sections, the
phase points are stroboscopically projected corresponding to one period of the
excitation. The Poincare' sections have the appearance of a strange attractor
typical of chaos. The Lyapunov exponents are computed by the Gram}Schmidt
orthonormalization procedure given by Wolf et al. [12]. The Lyapunov exponents
are shown in Figure 6. The largest Lyapunov exponent is positive in the chaotic
region.

5.2. QUASIPERIODIC ROUTE TO CHAOS

There exists a quasiperiodic route to chaos in the lower ranges of the excitation
frequency X. Again the non-dimensional frequency X is taken as the bifurcation
parameter. The other parameter of the system are taken to be
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parametric excitation and external excitation are taken as the same as before. The



Figure 4. Phase planes for periodic and subharmonic motions (a}c) X"1)53, period 1; (d}f)
X"1)51, period 2; (g}i) X"1)48, period 4; (j}1) X"1)42, period 8.
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response diagrams for this case obtained by the IHB method with path following
procedure are shown in Figures 7a}c. In these "gures, starting form point &&a'',
X"0)62, there exists a period 1 response corresponding to the period of the
external excitation 2n/X. This period 1 response continues to exist till point &&b'',
X"1)06816, at which a saddle-node bifurcation occurs evidenced by one of the
eigenvalues of the monodromy matrix moving out of the unit circle along the #1
direction and the period 1 response becomes unstable. The response curve turns



Figure 5. Chaotic motion in the period doubling region X"1)40, (a}c) Time history, (d}f) phase
plane; (g}i) Poincare' section; ( j}l) Fourier spectrum.
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back now for decreasing values of X, and at point &&c'', X"0)9591 another
saddle-node bifurcation takes place with one of the Floquet multipliers entering the
unit circle from the #1 direction and the period 1 response becomes again stable.
Thus, in between points &&b'' and &&c'' there are multiple period 1 responses, two
stable period 1 responses and one unstable period 1 response. The phase planes of
the two stable period 1 solutions and the one unstable period 1 solution obtained
by the IHB method are given in Figures 8a}c at X"0)99. The numerically



Figure 6. Lyapunov exponents in the period doubling region.
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integrated solutions are superposed on the IHB solutions by the &&x''mark showing
the excellent match between the two with the increasing X corresponding to point
&&c'', the period 1 response continues till point &&d'', X"1)3122, at which it loses
stability by a Hopf bifurcation resulting in a quasiperiodic response. This is
evidenced by the movement of a pair of complex conjugate eigenvalues of the
monodromy matrix moving radially out of the unit circle in the complex plane. The
quasiperiodic response bifurcates into chaotic response in the region &&d'' to &&e'',
X"1)5486. At &&e'' the unstable period 1 response becomes again stable and a pair
of complex conjugate eigenvalues of the monodromy matrix enters the unit circle
radially. The time histories, phase plane diagrams, Poincare' sections and Fourier
spectra of the period 1 response just before the Hopf bifurcation at point &&d'',
X"1)25, for the systems are given in Figures 9(a}l). The time histories, phase plane
diagrams, Poincare' sections and Fourier spectra of the bifurcated quasiperiodic
response at X"1)46 for the system are shown in Figures 10(a}l). From the Fourier
spectrum of the period 1 response shown in Figures 9(j}l), we can see that the
spectrum shows an additional peak apart from the one corresponding to the
excitation frequency, which is typical of torus 2 bifurcation which leads to the
quasiperiodic motion. The Poincare' sections for this case are closed curves which
are typical of a quasiperiodic response. The time histories, phase plane diagrams,
Poincare' sections and Fourier transforms of the chaotic response at X"1)48 are
shown in Figures 11(a}l).

The Lyapunov exponents are also computed for these parameter values and the
variation of the Lyapunov exponents with X as the parameter is shown in Figure
12. It can be observed that one of the Lyapunov exponents moves around the zero
line in the region corresponding to the regions &&d''}&&e'' representing the
quasiperiodic region and crossing the zero axis on the positive side for a small
region of chaotic behavior. The Lyapunov exponents for the chaotic trajectories at



Figure 7. Response diagram in the quasiperiodic region: (a) max x
1

versus X, (b) max x
2

versus X;
(c) max p versus X.
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X"1)48 for the system are 0)0124, !0)0130, !0)0157, !0)0365, !0)0595,
!0)1616. Also in the parameter regions studied in this paper, similar types of
response behavior have been shown by Kahraman and Singh [1] but without
time-varying mesh sti!ness.



Figure 8. Multiple responses at X"0)99.

Figure 9. Phase planes and Fourier transform of the period 1 response at X"1)20.
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Figure 10. Quasiperiodic response X"1)46. (a}c) Time history; (d}f) phase plane; (g}i) Poincare'
section; ( j}l) Fourier spectrum.
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6. CONCLUSIONS

In this paper, the periodic motions of three d.o.f. geared rotor-bearing system
with piecewise linear sti!ness characteristics and subjected to parametric and
external harmonic excitations are obtained by the IHB method. The elements of the
Jacobian matrix and the residue vector occurring in the IHB formulations are



Figure 11. Chaotic response X"1)48. (a}c) Time history; (d}f) phase plane; (g}i) Poincare' section;
(j}l) Fourier spectrum.
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explicitly derived. The periodic responses of the geared rotor-bearing system
computed by the IHB method compare very well with the numerically obtained
solutions. The bifurcation points and the response diagrams are obtained by
combining the IHB method with the path following technique. The bifurcation
points also match well with the numerically integrated results. A period doubling as



Figure 12. Lyapunov exponents in the quasiperiodic region.
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well as a quasiperiodic route to chaos are observed in di!erent ranges of excitation
frequencies. Saddle-node bifurcations leading to multiple steady state solutions are
also present. The example considered demonstrates the e!ectiveness of the IHB
method in obtaining periodic solutions of m.d.o.f. systems with piecewise non-
linearities.

REFERENCES

1. A. KAHRAMAN and R. SINGH 1991 Journal of Sound and <ibrations 144, 469}506.
Nonlinear dynamics of a geared rotor bearing system with multiple clearance.

2. A. KAHRAMAN and R. SINGH 1991 Journal of Sound and <ibration 146, 135}156.
Interactions between time-varying mesh sti!ness and clearance nonlinearities in geared
system.

3. A. RAGHOTHAMA 1993 M.S. thesis, Indian Institute of ¹echnology, Madras. Bifurcation
and chaos in Gear and cam mechanisms with clearance type of nonlinearities.

4. G. W. BLANKENSHIP and A. KAHRAMAN 1995 Journal of Sound and <ibration 185,
743}765, Steady state forced response of a mechanical oscillator with combined
parametric excitation and clearance type nonlinearity.

5. A. KAHRAMAN and G. W. BLANKENSHIP 1996 Journal of Sound and <ibration 194,
317}336. Interactions between commensurate parametric and forcing excitations in
a system with clearance.

6. C. PADMANABHAN and R. SINGH 1996 Journal of Acoustical Society of America 99,
324}334. Analysis of periodically forced nonlinear Hill's oscillator with application to
a geared system.

7. A. KAHRAMAN and G. W. BLANKENSHIP 1997 Journal of Applied Mechanics 64, 217}226
Experiments on nonlinear dynamic behavior of an oscillator with clearance and
periodically time-varying parameters.

8. C. W. WONG, W. S. ZHANG and S. L. LAU 1991 Journal of Sound and <ibration 149,
91}105. Periodic forced vibration of unsymmetrical piecewise linear systems by
incremental harmonic balance method.

9. S. L. LAU and W.-S. ZHANG 1992 Journal of Applied Mechanics 59, 153}160. Nonlinear
vibrations of piecewise linear systems by incremental harmonic balance method.



BIFURCATIONS IN GEARED SYSTEM 491
10. P. FRIEDMANN, C. E. HAMMOND and T. H. WOO 1977 International Journal of Numerical
Methods in Engineering 11, 1117}1136. E$cient numerical treatment of periodic
systems with application to stability problems.

11. A. Y. T. LEUNG and S. K. CHUI 1995 Journal of Sound and <ibration 181, 619}633.
Nonlinear vibration of coupled Du$ng oscillators by an improved incremental
harmonic balance method.

12. A. WOLF, J. B. SWIFT, H. L. SWINNEY and J. A. VASTANO 1985 Physica 16D, 285}331
Determining Lyapunov exponents from a time series.

APPENDIX A: TERMS APPEARING IN EQUATIONS (23)}(27) IN
THE IHB FORMULATION

A
m,n

(h
l
)"h

lC
sin(m!n)h

l
(m!n)h

l

#

sin(m#n)h
l

(m#n)h
l
D ,

B
m,n

(h
l
)"G

h
lC

cos(m!n)h
l

(m!n)h
l

!

cos(m#n)h
l

(m#n)h
l
D if mOn,

!h
lC

cos(2mh
l
)

(2mh
l
) D if m"n,

C
m,n

(h
l
)"B

m,n
(h

l
),

D
m,n

(h
l
)"h

l C
sin(m!n)h

l
(m!n)h

l

!

sin(m#n)h
l

(m#n)h
l
D,

E
m
(h

l
)"h

lC
sinm h

l
m h

l
D ,

F
m
(h

l
)"!h

lC
cosm h

l
m h

l
D .

APPENDIX B: LIST OF SYMBOLS

b backlash
c viscous damping coe$cient
d diameter
e static transmission error
f non-linear displacement function
F, G force
I rotary inertia
k sti!ness
m mass
p relative displacement
q displacement
t time
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¹ torque
x relative displacement
y transverse displacement
/ phase angle
u an angle
k dimensionless sti!ness
u natural frequency
X excitation frequency
A damping ratio
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