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An approximate method for analyzing the free vibration of rectangular plates
with a hole of di!erent shapes is proposed. The shapes of the holes are circular,
semi-circular, elliptic, square, rectangular, triangular, rhombic, etc. These
rectangular plates with a hole can be considered ultimately as a kind of rectangular
plates with non-uniform thickness. A hole in a plate can be considered as an
extremely thin part of the plate. Therefore, the free vibration problem of a plate
with a hole can be translated into the free vibration problem of the equivalent
rectangular plate with non-uniform thickness. For some plates with
di!erent-shaped holes the convergency and accuracy of the numerical solutions
calculated by the proposed method are investigated.

( 1999 Academic Press
1. INTRODUCTION

Rectangular plates with a square, rectangular or circular hole are used in many
types of civil, mechanical, marine or aeronautical structures to lighten the weight of
a structure, to obtain the convenient connection of structural members or to change
the resonant frequency of a member or structure. Therefore, the characteristics of
free vibration of plates with an opening hole have been investigated for obtaining
the design data of such structures.

Most previous investigations have been con"ned to plates with circular holes
[1}3, 5], and square or rectangular holes [4, 6}8]. Further, in these studies the
positions of holes were limited to the central part of the plates.

In this paper an approximate method for analyzing the free vibration of
rectangular plates with an arbitrarily-located hole of di!erent shapes is proposed
by applying the discrete solution [9] for a rectangular plate with variable thickness.
The shapes of the hole are circular, semi-circular, elliptic, square, rectangular,
triangular and rhombic, etc. These rectangular plates with a hole can be considered
ultimately as a kind of rectangular plates with non-uniform thickness. As a hole in
0022-460X/99/390769#18 $30.00/0 ( 1999 Academic Press
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a plate can be considered as an extremely thin part of the plate, the free vibration
problem of a plate with a hole can be translated into the free vibration problem of
the equivalent rectangular plate with non-uniform thickness, and by applying the
discrete Green function, the free vibration problem of the plate is translated into the
eigenvalue problem. For some examples of plates with an arbitrarily located hole of
di!erent shapes, the convergency and accuracy of numerical solutions calculated by
the proposed method are investigated, and much numerical data are obtained.

2. DISCRETE GREEN FUNCTION OF RECTANGULAR PLATE
WITH ARBITRARILY VARIABLE THICKNESS

The Green function of a plate bending problem is given by the displacement
function of the plate with a unit concentrated load. Thus, the Green function
w(x, y,x

q
, y

r
)/PM of a rectangular plate with arbitrarily variable thickness can be

obtained from the fundamental di!erential equations of the plate with
a concentrated load PM at a point (x

q
, y

r
), which are given by following equations:
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where Q
x
, Q

y
are the shearing forces, M

xy
the twisting moment, M

x
, M

y
the bending

moments, h
x
, h

y
the slopes, w the de#ection, D"Eh3/12(1!v2) the bending

rigidity, E, G the modulus and shear modulus of elasticity, respectively, v-Poisson's
ratio, h"h(x, y) the thickness of the plate, t

s
"h/12, d(x!x

q
), d (y!y

r
) Dirac's

delta functions.
By introducing the non-dimensional expressions
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the di!erential equations (1a}h) are rearranged as follows:
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Figure 1. Discrete points on plate.
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where t"1&8, k"b/a, g"x/a, f"y/b, D
0
"Eh3

0
/12(1!v2) is the standard

bending rigidity, h
0

the standard thickness of plate, a, b the breadth, length of the
rectangular plate, P"PM a/D

0
(1!v2), d

ft
Kronecker's delta, and F

1te
, F

2te
, F

3te
are

given in Appendix A.
A rectangular plate divided vertically into m equal-length parts and horizontally

into n equal-length parts as shown in Figure 1. The plate is considered as a group of
discrete points which are intersections of the (m#1)-vertical and (n#1)-horizontal
dividing lines. In this paper, the rectangular area, 0)g)g

i
, 0)f)f

j
,

corresponding to the arbitrary intersection (i, j) as shown in Figure 1, is denoted as
the area [i, j]. The intersection (i, j ) denoted by U is called the main point of the
area, and the intersections denoted by s are called the inner-dependent points of
the area, and the intersections denoted by d are called the boundary-dependent
points of the area.

By integrating equation (2) over the area [i, j], the following integral equation is
obtained:
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where u(g!g
q
), u(f!f

r
) are unit step functions.

Next, by applying the numerical integration method, the simultaneous equation
for the unknown quantities X

eij
"X

e
(g

i
, f

j
) at the main point (i, j) of the area [i, j] is

obtained as follows:
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where
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The solution X
pij

of the simultaneous equation (4) is obtained as follows:
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where p"1, 2,2, 8, i"1, 2,2, m, j"1, 2,2, n, and A
pe

, B
pe

, C
pekl

are given in
Appendix B.

In equation (5), the quantity X
pij

at the main point (i, j) of the area [i, j] is related
to the quantities X

ek0
and X

e0l
at the boundary-dependent points of the area and

the quantities X
ekj

, X
eil

and X
ekl

at the inner-dependent points of the area. With the
spreading of the area [i, j] according to the regular order [1, 1], [1, 2],2, [1, n],
[2, 1], [2, 2],2, [2, n],2, [m, 1], [m, 2],2, [m, n], a main point of smaller area
becomes one of the inner-dependent points of the following larger areas. Whenever
the quantity X

pij
at the main point (i, j) is obtained using equation (5) in the

above-mentioned order, the quantities X
ekj

, X
eil

and X
ekl

at the inner-dependent
points of the following larger areas are eliminated by substituting the results
obtained in the corresponding terms of the right-hand side of equation (5). By
repeating this process, the equation X

pij
at the main point is related to only the

quantities X
vk0

, (l"1, 3, 4, 6, 7, 8) and X
s0l

, (s"2, 3, 5, 6, 7, 8) which are six
independent quantities at each of the boundary-dependent points along the
horizontal axis and the vertical axis in Figure 1 respectively. The results are as
follows:
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equation (6), the discrete Green function of a rectangular plate with variable
thickness is obtained from X

8ij
"G(x

i
, y

j
, x

q
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r
). [PM a/D

0
(1!l2)] which is the

displacement at a point (x
i
, y

j
) of a plate with a concentrated load P1 at a point

(x
q
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r
).

3. INTEGRAL CONSTANT AND BOUNDARY CONDITION
OF RECTANGULAR PLATE

The integral constants (Q
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xy
)
0l
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involved in the discrete solution (6) are to be evaluated by the boundary conditions
of a rectangular plate. The combinations of the integral constants and the
boundary conditions for three cases are shown in Figures 2}4, in which the integral
constants and the boundary conditions at the four corners are shown in the boxes.
The integral constants and the boundary conditions along the four edges are given
at the equally spaced discrete points. In this paper simply supported, "xed and free
edges are denoted by solid line**, thick solid line== and dotted line .......... and
each plate in Figure 2, Figure 3 and Figure 4 by ssss, cccc and fsfs plates
respectively.
Figure 2. Simply supported plate.

Figure 3. Fixed plate.



Figure 4. Plate with simple opposite edges and the other free edges.
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4. EQUIVALENT RECTANGULAR PLATE OF PLATE WITH HOLE
OF DIFFERENT SHAPES

Rectangular plates with a di!erent-shaped hole ** circular, semi-circular,
elliptic, square, rectangular, triangular or rhombic** can be translated into their
equivalent rectangular plates with non-uniform thickness by considering the hole
to be an extremely thin part of the plate.

The thickness of the actual part of an original rectangular plate is expressed by
h
0
, and the thickness of an extremely thin part of the equivalent rectangular plate is

expressed by h in this paper. The thickness of the equivalent rectangular plate varies
discontinuously on the boundary line between the original actual part and the
translated extremely thin part. An example of translation from an original plate
with a hole to its equivalent rectangular plate with non-uniform thickness is shown
in Figure 5, and the thickness h at each intersection marked by j of the extremely
thin part of the equivalent rectangular plate which is inside the hole of the original
plate is taken as h;h

0
as shown in the numerical work.
Figure 5. Example of equivalent plate.
5. CHARACTERISTIC EQUATION OF FREE VIBRATION OF PLATE
WITH HOLE OF DIFFERENT SHAPES

By applying the Green function w(x
0
, y

0
, x, y)/PM which is the displacement at

a point (x
0
, y

0
) of a plate with a concentrated load PM at a point (x, y), the
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displacement amplitude wL (x
0
, y

0
) at a point (x

0
, y

0
) of the equivalent rectangular

plate during the free vibration is given as follows:
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where o is the mass density of the plate material.
Using the non-dimensional expressions
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the integral equation (7) can be rewritten as follows:
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By applying the numerical integration method, by equation (8) is discretely
expressed as
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The characteristic equation of the free vibration of the equivalent rectangular
plate is obtained from equation (10) as follows:
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6. NUMERICAL WORK

The convergency and accuracy of numerical solutions have been investigated for
the free vibration problem of some rectangular plates with a di!erent-shaped hole
circular, semi-circular, elliptic, square, rectangular, triangular or rhombic ** as
shown in Figure 6 (a)}(h). The numerical solutions for the natural frequency
parameters of these plates have been obtained for the case of aspect ratio b/a"1
and Poisson's ratio l"0)3 using Richardson's extrapolation formula for the two
cases of divisional numbers m ("n).

6.1. CONVERGENCY AND ACCURACY OF NUMERICAL RESULTS FOR PLATES WITH HOLE

6.1.1. ¹hin ssss square plate with square hole

To examine the convergency of numerical values for the natural frequency
parameter j obtained from the proposed method, and determine the suitable values
of the thickness ratio h/h

0
of the extremely thin part thickness h and actual part

thickness h
0

and the divisional numbers m and n, the lowest 12 natural frequency
Figure 6. Rectangular plates with holes of di!erent shapes.
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parameters for the ssss square plates with a square hole of size ratio c/a"0)5
shown in Figures 6(a) and (b) were analyzed. The thickness h

0
/a of these plates is

0)01. The results are shown in Figures 7 and 8. These show good convergency of the
numerical solutions by the proposed method. After studying the curves of Figures
7 and 8, it was decided to set the thickness ratio h/h

0
"0)1 and the combination of

the divisional number applying Richardson's extrapolation formula, m("n), at 12
and 16.

Numerical values for the lowest 12 natural frequency parameter j of the ssss
square plates with a square hole of size ratio c/a"0)5 at the central or lower part
shown in Figures 6(a) and (b) are given in Table 1. Table 1 contains the other
theoretical value by Ali and Atwal [7], and it shows the su$cient accuracy of the
numerical solutions obtained by the present method. The nodal patterns of the 12
modes of the two plates are shown in Figure 9.

6.1.2. Moderately thick ssss square plate with square hole

Numerical solutions for the lowest 12 natural frequency parameters j of the ssss
square plate with a moderate thickness of h

0
/a"0)2 and a square hole of size ratio

c/a"0)5 at the central part shown in Figure 6(a) are given in Table 2. Table
2 contains the other theoretical value of the fundamental frequency in Reddy [8],
and it shows the adequate accuracy of the numerical solutions obtained by the
present method. The nodal patterns of the 12 modes of the plate are shown in
Figure 10.

6.1.3. Cccc square plate with circular hole

Numerical solutions for the lowest 12 natural frequency parameters j of the cccc
square plate with a circular hole of size ratio d/a"0)2 at the central part shown in
Figure 6(c) are given in Table 3. The thickness h

0
/a of the plate is 0)01. Table 3
Figure 7. Convergency of natural frequency parameter (m"12).



Figure 8. Convergency of natural frequency parameter (h/h
0
"0)1).

TABLE 1

Natural frequency parameter j for ssss square plates with square hole

Mode Central hole Lower hole

m Extraplation m Extrapolation
References

12 16 [7] 12 16

1 4)731 4)779 4)839 4)936 4)713 4)663 4)600
2 6)595 6)525 6)435 6)502 6)377 6)591 6)867
3 6)595 6)527 6)440 6)502 7)234 7)078 6)878
4 8)818 8)676 8)492 8)525 8)751 8)745 8)738
5 9)531 9)244 8)875 8)813 10)080 9)668 9)138
6 11)552 11)225 10)805 * 11)526 10)952 10)213
7 11)552 11)237 10)831 * 12)387 11)682 10)776
8 12)757 12)553 12)291 * 11)781 11)519 11)182
9 15)112 14)422 13)534 * 14)181 13)555 12)749

10 16)136 15)249 14)108 * 14)875 14)020 12)920
11 15)174 14)763 14)234 * 15)268 14)494 13)499
12 15)174 14)769 14)247 * 16)113 15)559 14)848
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Figure 9. Nodal patterns for ssss square plate with square hole.

TABLE 2

Natural frequency parameter j for ssss moderately thick square plate with central
square hole (h

0
/a"0)2)

Mode m Extrapolation Reference
[8]

12 16

1 4)533 4)574 4)628 4)753
2 5)775 5)792 5)814 *

3 5)775 5)792 5)814 *

4 7)731 7)486 7)329 *

5 7)579 7)501 7)401 *

6 9)065 8)964 8)833 *

7 9)065 8)964 8)833 *

8 10)032 9)884 9)694 *

9 10)886 10)601 10)235 *

10 11)341 11)105 10)802 *

11 11)341 11)105 10)802 *

12 12)249 11)691 11)333 *
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contains the other theoretical value in Kumai [1], and it shows the su$cient
accuracy of the numerical solutions obtained by the present method. The nodal
patterns of the 12 modes of the plate are shown in Figure 11.



Figure 10. Nodal patterns for ssss moderately thick square plate with square hole.

TABLE 3

Natural frequency parameter j for cccc square plate with central circular hole
(d/a"0)2)

Mode m Extrapolation Reference
[1]

12 16

1 6)188 6)211 6)240 6)099
2 8)943 8)731 8)457 8)396
3 8)940 8)731 8)462 *

4 11)033 10)683 10)233 *

5 12)157 11)965 11)719 *

6 12)747 12)551 12)299 12)008
7 13)718 13)420 13)037 *

8 13)715 13)420 13)041 *

9 16)459 16)007 15)426 *

10 16)505 15)215 13)556 *

11 16)503 15)215 13)560 *

12 17)626 16)802 15)741 *

Figure 11. Nodal patterns for cccc square plate with central circular hole (d/a"0)2).
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6.2. NUMERICAL RESULTS FOR PLATES WITH HOLE

6.2.1. Ssss square plate with semi-circular hole

Numerical solutions for the lowest 12 natural frequency parameters j of the ssss
square plates with a semi-circular hole of size ratio d/a"1/2 at the central part



Figure 12. Nodal patterns for ssss square plate with semi-circular hole.

TABLE 4

Natural frequency parameter j for ssss square plate with semi-circular hole

Mode m Extrapolation

12 16

1 4)522 4)532 4)545
2 6)666 6)568 6)416
3 7)027 7)005 6)977
4 8)988 8)947 8)893
5 10)194 9)927 9)584
6 11)568 11)083 10)459
7 11)904 11)578 11)160
8 11)630 11)559 11)466
9 13)188 13)048 12)868

10 14)159 13)719 13)154
11 14)924 14)481 13)910
12 15)480 14)844 14)027
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shown in Figure 6(d) are given in Table 4. The thickness h
0
/a of the plate is 0)01. The

nodal patterns of the 12 modes of the plate as shown in Figure 12.

6.2.2. Ssss square plate with triangular hole

Numerical solutions for the lowest 12 natural frequency parameters j of the ssss
square plate with a triangular hole at the central part shown in Figure 6(e) are given
in Table 5. The thickness h

0
/a of the plate is 0)01. The nodal patterns of the 12

modes of the plates are shown in Figure 13.

6.2.3. Ssss square plate with elliptic hole

Numerical solutions for the lowest 12 natural frequency parameters j of the ssss
square plate with an elliptic hole of size ratio d/a"3/8 and d/e"2 at the central
part shown in Figure 6(f ) are given in Table 6. The thickness h

0
/a of these plates is

0)01. The nodal patterns of the 12 modes of the three plates are shown in Figure 14.



TABLE 5

Natural frequency parameter j for ssss square plate with triangular hole

Mode m Extrapolation

12 16

1 4)455 4)482 4)517
2 7)311 7)265 7)207
3 7)254 7)241 7)225
4 9)191 9)161 9)122
5 10)684 10)367 9)959
6 10)462 10)298 10)088
7 12)061 11)850 11)579
8 12)031 11)860 11)640
9 14)478 13)888 13)129

10 14)212 13)770 13)202
11 14)434 14)024 13)497
12 15)527 14)860 14)002

Figure 13. Nodal patterns for ssss square plate with triangular hole.

TABLE 6

Natural frequency parameter j for ssss square plate with elliptic hole

Mode m Extrapolation

12 16

1 4)510 4)482 4)447
2 6)980 6)912 6)824
3 7)086 7)103 7)125
4 9)053 8)721 8)295
5 10)233 10)200 10)159
6 11)451 10)889 10)167
7 11)754 11)457 11)074
8 13)698 12)777 11)593
9 11)823 11)780 11)724

10 14)095 13)720 13)238
11 14)942 14)381 13)659
12 15)404 14)794 14)010
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Figure 14. Nodal patterns for ssss square plate with elliptic hole.

TABLE 7

Natural frequency parameter j for ssss square plate with rhombic hole

Mode m Extrapolation

12 16

1 4)628 4)547 4)442
2 7)332 7)138 6)889
3 7)442 7)276 7)062
4 9)176 9)145 9)106
5 10)467 10)239 9)947
6 11)565 10)996 10)264
7 11)982 11)651 11)225
8 12)232 11)888 11)446
9 14)778 13)502 11)862

10 14)925 14)076 12)983
11 15)195 14)456 13)505
12 15)496 14)950 14)249

Figure 15. Nodal patterns for ssss square plate with rhombic hole.
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6.2.4. Ssss square plate with rhombic hole

Numerical solutions for the lowest 12 natural frequency parameters j of the ssss
square plate with a rhombic hole at the central part shown in Figure 6(g) are given
in Table 7. The thickness h

0
/a of the plate is 0)01. The nodal patterns of the 12

modes of the plate are shown in Figure 15.



TABLE 8

Natural frequency parameter j for fsfs square plate with circular hole

Mode m Extrapolation

12 16

1 3)299 3)036 2)699
2 4)308 4)233 4)137
3 6)231 5)880 5)428
4 6)975 6)865 6)724
5 7)263 7)096 6)881
6 9)257 8)849 8)324
7 9)124 8)793 8)367
8 10)523 9)745 8)745
9 10)728 10)358 9)877

10 11)936 11)301 10)485
11 12)274 11)713 10)992
12 14)675 13)612 12)246

Figure 16. Nodal patterns for fsfs square plate with square hole.
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6.2.5 Fsfs square plate with circular hole

Numerical solutions for the lowest 12 natural frequency parameters j of fsfs
square plate with a circular hole at the central part shown in Figure 6(h) are given in
Table 8. The thickness ratio h

0
/a of these plates is 0)01. The nodal patterns of the 12

modes of the plate are shown in Figure 16.

7. CONCLUSIONS

By adopting the view that plates with a hole can be considered ultimately as
a kind of rectangular plates with non-uniform thickness, an approximate method
was proposed for analyzing the free-vibration problem of rectangular plates with
variously-shaped and arbitrary-located hole using the Green function of the
equivalent rectangular plate with non-uniform thickness.

As a result of numerical work, it was shown that the numerical solutions
obtained by the proposed method had good convergency and su$cient accuracy
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for some examples of plates with a hole, and a lot of numerical data have be
obtained.
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