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An approximate method for analyzing the free vibration of rectangular plates
with a hole of different shapes is proposed. The shapes of the holes are circular,
semi-circular, elliptic, square, rectangular, triangular, rhombic, etc. These
rectangular plates with a hole can be considered ultimately as a kind of rectangular
plates with non-uniform thickness. A hole in a plate can be considered as an
extremely thin part of the plate. Therefore, the free vibration problem of a plate
with a hole can be translated into the free vibration problem of the equivalent
rectangular plate with non-uniform thickness. For some plates with
different-shaped holes the convergency and accuracy of the numerical solutions
calculated by the proposed method are investigated.

© 1999 Academic Press

1. INTRODUCTION

Rectangular plates with a square, rectangular or circular hole are used in many
types of civil, mechanical, marine or aecronautical structures to lighten the weight of
a structure, to obtain the convenient connection of structural members or to change
the resonant frequency of a member or structure. Therefore, the characteristics of
free vibration of plates with an opening hole have been investigated for obtaining
the design data of such structures.

Most previous investigations have been confined to plates with circular holes
[1-3, 5], and square or rectangular holes [4, 6-8]. Further, in these studies the
positions of holes were limited to the central part of the plates.

In this paper an approximate method for analyzing the free vibration of
rectangular plates with an arbitrarily-located hole of different shapes is proposed
by applying the discrete solution [9] for a rectangular plate with variable thickness.
The shapes of the hole are circular, semi-circular, elliptic, square, rectangular,
triangular and rhombic, etc. These rectangular plates with a hole can be considered
ultimately as a kind of rectangular plates with non-uniform thickness. As a hole in
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a plate can be considered as an extremely thin part of the plate, the free vibration
problem of a plate with a hole can be translated into the free vibration problem of
the equivalent rectangular plate with non-uniform thickness, and by applying the
discrete Green function, the free vibration problem of the plate is translated into the
eigenvalue problem. For some examples of plates with an arbitrarily located hole of
different shapes, the convergency and accuracy of numerical solutions calculated by
the proposed method are investigated, and much numerical data are obtained.

2. DISCRETE GREEN FUNCTION OF RECTANGULAR PLATE
WITH ARBITRARILY VARIABLE THICKNESS

The Green function of a plate bending problem is given by the displacement
function of the plate with a unit concentrated load. Thus, the Green function
w(x, y,x,,¥,)/P of a rectangular plate with arbitrarily variable thickness can be
obtained from the fundamental differential equations of the plate with
a concentrated load P at a point (x,, y,), which are given by following equations:

0. 00, - oM, oM,
9y 4 PS(x — x)3(y — yy) = y v _ o, =
oM, M, . 00, a0, M, a0, a0, M,
ax T dy —0:=0, 8x+vay_D’ 6y+véx_D’
00, 0, 2 M, 0w 0. ow 0,
D Dy Wig =2 g la-h
dy o (1—v) D’ ox T Gty oy + O Gty (la-h)

where Q,, Q, are the shearing forces, M, the twisting moment, M., M, the bending
moments, 0,, 0, the slopes, w the deflection, D = Eh3/12(1 — v?) the bending
rigidity, E, G the modulus and shear modulus of elasticity, respectively, v-Poisson’s
ratio, h = h(x, y) the thickness of the plate, t; = h/12, 6(x — x,), 6(y — y,) Dirac’s
delta functions.

By introducing the non-dimensional expressions

2

[Xb XZ] = D [Mxya Mya Mx:|>

a
Dol — ) [0y, Ox], [ X3, X4, X5] = D

4
o(1 —v?)

[X6s X7, XS] = [Gya Bx, w/a],

the differential equations (1a-h) are rearranged as follows:

8 0X, oxX,
ZI |:Fltea—€ + Fzzea—n + F3teXe:| + Po(n — ny)0(L — )04, =0, (2)
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Figure 1. Discrete points on plate.

where t = 1~8, u=b/a, n=x/a,{ = y/b, Dy = Eh3/12(1 — v?) is the standard
bending rigidity, ho the standard thickness of plate, a, b the breadth, length of the
rectangular plate, P = Pa/Dy(1 — v?), §;, Kronecker’s delta, and Fy,,, Fs;., F3;. are
given in Appendix A.

A rectangular plate divided vertically into m equal-length parts and horizontally
into n equal-length parts as shown in Figure 1. The plate is considered as a group of
discrete points which are intersections of the (m + 1)-vertical and (n + 1)-horizontal
dividing lines. In this paper, the rectangular area, 0 <n <n;, 0<{<{(,
corresponding to the arbitrary intersection (i, j) as shown in Figure 1, is denoted as
the area [, j]. The intersection (i, j) denoted by @ is called the main point of the
area, and the intersections denoted by O are called the inner-dependent points of
the area, and the intersections denoted by @ are called the boundary-dependent
points of the area.

By integrating equation (2) over the area [, j ], the following integral equation is
obtained:

Fu f [X(1.0) — X, 0] dy + B, j X 0) — X.(0,0)]dC

0 0

e=1 m pl;
+F3tej j Xe(naC)dndC

0 JO

+ Pu(’? - nq)u(C - Cr)élt = 0; (3)

where u(n — n,), u({ — {,) are unit step functions.

Next, by applying the numerical integration method, the simultaneous equation
for the unknown quantities X,;; = X.(1;, {;) at the main point (i, j) of the area [i,/] is
obtained as follows:

i

J i
ﬁik(Xekj - XekO) + FZIe Z ﬂjl(Xeil - XeOl) + FSte Z Z ﬂik ﬁleekl}
0

=0 k=01=0

8
Z {Flte
e=1 k

+ Puiqujrélt = 0: (4)
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where
0 (i 0 (
0 Y
tig =05 (=a)  wp={05 (G=n ow=9"0" 0
1 (i>q), L (jor),

05 (I1=0,)),
Oj = {1 (1 £0,)), Bix = ot/m, ﬂjl = ijl/”-

The solution X,,;; of the simultaneous equation (4) is obtained as follows:

i Jj

Z BixApe [ Xexo — Xerj(1 — 0] + Z BiBpe [ Xeor — Xeu(1 — 645)]
k=0 1=0

pij =

Q
N NgS
-

i
+ Z Z BBt Cpert X eri (1 — 04i 615) (5)
k=01=0

— AplPuiqujr,

where p=1,2,...,8,i=1,2,....,m, j=1,2,...,n, and A, B, Cpe are given in
Appendix B.

In equation (5), the quantity X,;; at the main point (i, j) of the area [i, j] is related
to the quantities X, and X, at the boundary-dependent points of the area and
the quantities X ;, X.; and X . at the inner-dependent points of the area. With the
spreading of the area [i,j] according to the regular order [1, 1], [1,2],...,[1, n],
[2,1], [2,2],...,[2,n],..., [m, 1], [m,2],...,[m,n], a main point of smaller area
becomes one of the inner-dependent points of the following larger areas. Whenever
the quantity X ,; at the main point (i,j) is obtained using equation (5) in the
above-mentioned order, the quantities X,;;, X.; and X, at the inner-dependent
points of the following larger areas are eliminated by substituting the results
obtained in the corresponding terms of the right-hand side of equation (5). By
repeating this process, the equation X ,; at the main point is related to only the
quantities X0, (v=1,3,4,6,7,8) and X, (s=2,3,5,6,7,8) which are six
independent quantities at each of the boundary-dependent points along the
horizontal axis and the vertical axis in Figure 1 respectively. The results are as
follows:

Zi {alpukl Oy)ko + A1 pija(M ko + a1 pinjz(M,, )ko}
k= + alpl]k4-(9 )kO + alpljk5(0 )kO + a1p11k6(w)k0

n i { 20111 (Qx)o1 + apijiz(My)or + azpij13(M )
+ azpijia(0y)or + Azpijis(0x)or + a2pijie(Wor

} + qpiiP, (6)

1=0
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where (Q,) = Xy, (@) =Xs, (My)=X; (M) =X, (MJ)=Xs (0,)=Xo,
(0y) = X7, (W) = Xg, and aypijk1, --- > d2pijic> pij are given in Appendix C. From
equation (6), the discrete Green function of a rectangular plate with variable
thickness is obtained from Xg;; = G(xi, yj, X Vi)- [Pa/Do(1 — v?)] which is the
displacement at a point (x;, y;) of a plate with a concentrated load P at a point
(Xgs Vr)-

3. INTEGRAL CONSTANT AND BOUNDARY CONDITION
OF RECTANGULAR PLATE

The integral constants (Q,)ko, (Mxy)kos ---> Who» (Ox)or, (Mot ---» (W)o; being
involved in the discrete solution (6) are to be evaluated by the boundary conditions
of a rectangular plate. The combinations of the integral constants and the
boundary conditions for three cases are shown in Figures 2-4, in which the integral
constants and the boundary conditions at the four corners are shown in the boxes.
The integral constants and the boundary conditions along the four edges are given
at the equally spaced discrete points. In this paper simply supported, fixed and free
edges are denoted by solid line , thick solid line and dotted line .......... and
each plate in Figure 2, Figure 3 and Figure 4 by ssss, cccc and fsfs plates
respectively.

M, M= =w=0 8,=6,=w=0
QX M _0

M, 6,=0

0, w=0

M, Q- M, 0, M,

Figure 2. Simply supported plate.

Mxy 9y=0x=w=0 0y=9x=w=0
Qx 9}’ =0

M, 6,=0

Mz w=0

Mxy Qy’ Mxy’ Mv Mx,v

Figure 3. Fixed plate.
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Figure 4. Plate with simple opposite edges and the other free edges.

4. EQUIVALENT RECTANGULAR PLATE OF PLATE WITH HOLE
OF DIFFERENT SHAPES

Rectangular plates with a different-shaped hole circular, semi-circular,
elliptic, square, rectangular, triangular or rhombic can be translated into their
equivalent rectangular plates with non-uniform thickness by considering the hole
to be an extremely thin part of the plate.

The thickness of the actual part of an original rectangular plate is expressed by
ho, and the thickness of an extremely thin part of the equivalent rectangular plate is
expressed by & in this paper. The thickness of the equivalent rectangular plate varies
discontinuously on the boundary line between the original actual part and the
translated extremely thin part. An example of translation from an original plate
with a hole to its equivalent rectangular plate with non-uniform thickness is shown
in Figure 5, and the thickness & at each intersection marked by m of the extremely
thin part of the equivalent rectangular plate which is inside the hole of the original
plate is taken as h < hy as shown in the numerical work.

//’ - \\\ o3
/ \\ % A\
/ \ kbl
|\ Hole: h=0 // — \ g h<<ho 4]
AY / :
N T
[
Thickness: ho | Thickness: ho
Original plate Equivalent plate

Figure 5. Example of equivalent plate.

5. CHARACTERISTIC EQUATION OF FREE VIBRATION OF PLATE
WITH HOLE OF DIFFERENT SHAPES

By applying the Green function w(xo, yo, X, y)/P which is the displacement at
a point (xq, yo) of a plate with a concentrated load P at a point (x,y), the
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displacement amplitude Ww(x,, yo) at a point (xo, yo) of the equivalent rectangular
plate during the free vibration is given as follows:

b pa
W(xo0r yo) = j j pha(x, y) [W(xor vou x, )/P] dx dy, )

0J0

where p is the mass density of the plate material.
Using the non-dimensional expressions

4 _ Pohow?a* p(x, y) h(x,y) W(x, y)
Dol — %) (, {) oo hy (n,0) T
Do(1 — 12 ,

G0, Cosn, () = whxo, );0’ %)) O(I_’a d ), po: standard mass density,

the integral equation (7) can be rewritten as follows:

1

W (10s Co) =j f WHH LG, Cov . OW (1, 0) dy 2. 8)

0

By applying the numerical integration method, by equation (8) is discretely
expressed as

kWi = Z Z Bi BujHi; Grai; Wi, K= 1/(.‘“14)- )

i=0j=0

From equation (9) homogeneous linear equations in (m + 1) x (n + 1) unknowns
Woo, W017 cees WOI’H WlOs Wll: ceey Wlna ~ Wmo, Wml’ ey Wmn are Obtained as
follows:

n

Z (ﬁmiﬁnjHiijlij — KOy 5jt) VVij =0 (k=0,1,...,m1[=0,1,...,n). (10)

i=0j=0

M=

The characteristic equation of the free vibration of the equivalent rectangular
plate is obtained from equation (10) as follows:

Koo Koi Koo -+ Kopu
Ko Kii Ki» Kinm
Ko Ky Ky o Ky, | =0, (11)
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where
_ﬁnonoGino - Kéij ﬁanleinl ﬂnijzGinz ﬁnnHjnGinn
ﬂnOHjOGile ﬁanleiljl - Kéij ﬁnZHjZGiljZ ﬁnnHjnGiljn
= ﬂmj ﬁnOHjOGiZjO ﬁanleiZjl ﬁnZHjZGiZjZ - Kdij ﬁnnHjnGiZjn
BuoH 10Ginjo B H 1 Gy B2l 15Gpj0 BunH G — 1045 |

6. NUMERICAL WORK

The convergency and accuracy of numerical solutions have been investigated for
the free vibration problem of some rectangular plates with a different-shaped hole
circular, semi-circular, elliptic, square, rectangular, triangular or rhombic —— as
shown in Figure 6 (a)-(h). The numerical solutions for the natural frequency
parameters of these plates have been obtained for the case of aspect ratio b/a = 1
and Poisson’s ratio v = 0-3 using Richardson’s extrapolation formula for the two
cases of divisional numbers m (= n).

6.1. CONVERGENCY AND ACCURACY OF NUMERICAL RESULTS FOR PLATES WITH HOLE

6.1.1. Thin ssss square plate with square hole

To examine the convergency of numerical values for the natural frequency
parameter A obtained from the proposed method, and determine the suitable values
of the thickness ratio h/h, of the extremely thin part thickness h and actual part
thickness ho and the divisional numbers m and n, the lowest 12 natural frequency

< . a_, < : a_, ; a a -
PRI <P H 7 s
[ ) : . . 4
i i
| A | R S | A i | RSN 2
T e o E :
@ ®) © @
«—i 2 «— 2 «— 3 a
i T 7 S
, £3b8 <,—>¢13>/32 < -
I"\ -..47.1-.\. 4 - //:\\_ - ..l:..:..:‘..-.
b Loy b/4 b \_;,'te b ""'\\';:/ 1{')/2' b \\\; ,‘
: E : ; 4bra
© ® & ()

Figure 6. Rectangular plates with holes of different shapes.
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parameters for the ssss square plates with a square hole of size ratio c¢/a = 0-5
shown in Figures 6(a) and (b) were analyzed. The thickness ho/a of these plates is
0-01. The results are shown in Figures 7 and 8. These show good convergency of the
numerical solutions by the proposed method. After studying the curves of Figures
7 and 8, it was decided to set the thickness ratio h/hy, = 01 and the combination of
the divisional number applying Richardson’s extrapolation formula, m( = n), at 12
and 16.

Numerical values for the lowest 12 natural frequency parameter A of the ssss
square plates with a square hole of size ratio ¢/a = 0-5 at the central or lower part
shown in Figures 6(a) and (b) are given in Table 1. Table 1 contains the other
theoretical value by Ali and Atwal [7], and it shows the sufficient accuracy of the
numerical solutions obtained by the present method. The nodal patterns of the 12
modes of the two plates are shown in Figure 9.

6.1.2. Moderately thick ssss square plate with square hole

Numerical solutions for the lowest 12 natural frequency parameters 4 of the ssss
square plate with a moderate thickness of hy/a = 0-2 and a square hole of size ratio
c¢/a =05 at the central part shown in Figure 6(a) are given in Table 2. Table
2 contains the other theoretical value of the fundamental frequency in Reddy [§],
and it shows the adequate accuracy of the numerical solutions obtained by the
present method. The nodal patterns of the 12 modes of the plate are shown in
Figure 10.

6.1.3. Cccc square plate with circular hole

Numerical solutions for the lowest 12 natural frequency parameters 4 of the cccc
square plate with a circular hole of size ratio d/a = 0-2 at the central part shown in
Figure 6(c) are given in Table 3. The thickness ho/a of the plate is 0-01. Table 3

20 [Convergence of natural frequency parameter (m=12)
simple square plate with central square hole
N\,,__’-n—__,_——l—-——l 12th
15 L b= 10th, 11th
Sth
Kol
8th
— - 1 6th, 7th
= "\.‘
or r*’_—“_\;“t\.___; o
4th
S—— 1 2nd, 3rd
S e ———t st
1 1 1 1 1 1
0 2 4 6 8 10 12
Thickness ratio hy/h

Figure 7. Convergency of natural frequency parameter (m = 12).
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Convergency of natural frequency
20 [~ ssss square plate with central square hole
wh 12th
15 10th
- Sth
>\t8th
= 10 F th, 7th
4th
2nd, 3rd
Sk 1st
] 1 ]
0 8 12 16
(@) Divisional number m(=n)
Convergency of natural frequency parameter
20 [~ ssss square plate with lower square hole

s
10thy

10 |

th
4th
_ — 3rd
2rd
S 1st
1 1 1
0 8 12 16

) Divisional number m(=n)

Figure 8. Convergency of natural frequency parameter (h/h, = 0-1).

TABLE 1

Natural frequency parameter A for ssss square plates with square hole

Mode Central hole Lower hole
m Extraplation m Extrapolation
References
12 16 [7] 12 16
1 4731 4779 4-839 4936 4713 4-663 4-600
2 6595 6525 6-435 6-502 6377 6:591 6867
3 6595 6527 6-440 6-502 7234 7-078 6-878
4 8-818 8676 8492 8525 8751 8745 8738
5 9-531 9-244 8-875 8-813 10-080 9-668 9-138
6 11-552 11-225 10-805 — 11-526 10-952 10-213
7 11-552 11-237 10-831 — 12-387 11-682 10-776
8 12-757 12-553 12-:291 — 11-781 11-519 11-182
9 15-112 14-422 13-534 — 14-181 13-555 12-749
10 16-136 15-249 14-108 — 14-875 14-020 12920
11 15-174 14-763 14-234 — 15-268 14-494 13-499
12 15-174 14-769 14-247 — 16-113 15-559 14-848
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(b) Plate with lower hole

Figure 9. Nodal patterns for ssss square plate with square hole.

TABLE 2

Natural frequency parameter J. for ssss moderately thick square plate with central
square hole (hy/a = 0-2)

Mode m Extrapolation Reference
(8]
12 16
1 4-:533 4-574 4-628 4-753
2 5775 5792 5-814 —
3 5775 5792 5-814 —
4 7731 7-486 7-329 —
5 7-579 7-501 7-401 —
6 9-065 8:964 8-833 —
7 9-065 8964 8-833 —
8 10-032 9-884 9-694 —
9 10-886 10-601 10-235 —
10 11-341 11-105 10-802 —
11 11-341 11-105 10-802 —
12 12-249 11-691 11-333 —

contains the other theoretical value in Kumai [1], and it shows the sufficient
accuracy of the numerical solutions obtained by the present method. The nodal
patterns of the 12 modes of the plate are shown in Figure 11.
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Figure 10. Nodal patterns for ssss moderately thick square plate with square hole.

TABLE 3
Natural frequency parameter A for cccc square plate with central circular hole
(d/a =02)
Mode m Extrapolation Reference
(1]
12 16
1 6-188 6:211 6-240 6099
2 8943 8731 8-457 8-:396
3 8:940 8731 8-462 —
4 11-033 10-683 10-233 —
5 12-157 11-965 11-719 —
6 12-747 12-551 12-299 12-008
7 13-718 13-420 13-037 —
8 13-715 13-420 13-041 —
9 16-459 16-:007 15-426 —
10 16:505 15215 13-556 —
11 16-503 15-215 13-:560 —
12 17-626 16-802 15741 —
O e, Y] ;l[) ._Jr:_
1st 2nd 3rd 4th
X o] HH =
s
Sth 6th Tth 8th
> = i) P&

9th 10th 11th 12th

Figure 11. Nodal patterns for cccc square plate with central circular hole (d/a = 0-2).

6.2. NUMERICAL RESULTS FOR PLATES WITH HOLE

6.2.1. Ssss square plate with semi-circular hole

Numerical solutions for the lowest 12 natural frequency parameters A of the ssss
square plates with a semi-circular hole of size ratio d/a = 1/2 at the central part
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Figure 12. Nodal patterns for ssss square plate with semi-circular hole.

TABLE 4

Natural frequency parameter A for ssss square plate with semi-circular hole

Mode m Extrapolation
12 16
1 4:522 4:532 4-545
2 6-666 6-568 6416
3 7-027 7-005 6:977
4 8988 8-947 8-893
5 10-194 9-927 9-584
6 11-568 11-083 10-459
7 11-904 11-578 11-160
8 11-630 11-559 11-466
9 13-188 13-048 12-868
10 14-159 13719 13154
11 14924 14-481 13910
12 15480 14-844 14-027

shown in Figure 6(d) are given in Table 4. The thickness hy/a of the plate is 0-01. The
nodal patterns of the 12 modes of the plate as shown in Figure 12.

6.2.2. Ssss square plate with triangular hole

Numerical solutions for the lowest 12 natural frequency parameters 4 of the ssss
square plate with a triangular hole at the central part shown in Figure 6(e) are given
in Table 5. The thickness hy/a of the plate is 0-01. The nodal patterns of the 12
modes of the plates are shown in Figure 13.

6.2.3. Ssss square plate with elliptic hole

Numerical solutions for the lowest 12 natural frequency parameters 4 of the ssss
square plate with an elliptic hole of size ratio d/a = 3/8 and d/e = 2 at the central
part shown in Figure 6(f) are given in Table 6. The thickness hy/a of these plates is
0-01. The nodal patterns of the 12 modes of the three plates are shown in Figure 14.
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TABLE 5

Natural frequency parameter J for ssss square plate with triangular hole

Mode m Extrapolation
12 16
1 4-455 4-482 4:517
2 7-311 7-265 7-207
3 7-254 7-241 7-225
4 9-191 9-161 9-122
5 10-684 10-367 9959
6 10462 10-298 10-088
7 12:061 11-850 11-579
8 12:031 11-860 11-640
9 14-478 13-888 13129
10 14212 13-770 13-202
11 14434 14-024 13497
12 15-527 14-860 14-002
D
\ P ; i
Ist 2nd 3rd 4th
— )( Ll =
- - ) TL-‘. _’r_
Sth 6th 7th 8th
M B= B 8S
1 = o \/
oth 10th 11th 12th
Figure 13. Nodal patterns for ssss square plate with triangular hole.
TABLE 6
Natural frequency parameter J for ssss square plate with elliptic hole
Mode m Extrapolation
12 16
1 4-510 4-482 4-447
2 6-980 6912 6-824
3 7-086 7-103 7-125
4 9-053 8721 8-295
5 10-233 10-200 10-159
6 11-451 10-889 10-167
7 11-754 11-457 11-074
8 13-698 12777 11-593
9 11-823 11780 11-724
10 14-095 13-720 13-238
11 14942 14-381 13659
12 15-404 14794 14010
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Figure 14. Nodal patterns for ssss square plate with elliptic hole.

TABLE 7

Natural frequency parameter A for ssss square plate with rhombic hole

Mode m Extrapolation
12 16
1 4-628 4-547 4-442
2 7-332 7-138 6-889
3 7-442 7-276 7-062
4 9-176 9-145 9-106
5 10-467 10-239 9-947
6 11-565 10996 10-264
7 11-982 11-651 11-225
8 12-232 11-888 11-446
9 14-778 13-502 11-862
10 14-925 14-076 12-983
11 15-195 14-456 13-505
12 15-496 14-950 14-249
& * —— —J‘—
1st 2nd 3rd 4th
v’ V. A
>< [0] B9 FF
Sth 6th 7th 8th
A ( Lo [~
% — [ —
) v - Dr‘ﬁc ~-
9th 10th 11th 12th

Figure 15. Nodal patterns for ssss square plate with rhombic hole.

6.2.4. Ssss square plate with rhombic hole

Numerical solutions for the lowest 12 natural frequency parameters 4 of the ssss
square plate with a rhombic hole at the central part shown in Figure 6(g) are given
in Table 7. The thickness hq/a of the plate is 0-01. The nodal patterns of the 12
modes of the plate are shown in Figure 15.
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TABLE 8

Natural frequency parameter J. for fsfs square plate with circular hole

Mode m Extrapolation
12 16
1 3299 3036 2699
2 4308 4233 4137
3 6231 5-880 5428
4 6975 6865 6724
5 7263 7096 6881
6 9257 8-849 8324
7 9124 8793 8367
8 10-523 9745 8745
9 10728 10-358 9-877
10 11936 11:301 10485
11 12274 11713 10992
12 14675 13612 12:246
gy [ iy R e oy [ e
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Figure 16. Nodal patterns for fsfs square plate with square hole.

6.2.5 Fsfs square plate with circular hole

Numerical solutions for the lowest 12 natural frequency parameters A of fsfs
square plate with a circular hole at the central part shown in Figure 6(h) are given in
Table 8. The thickness ratio ho/a of these plates is 0-01. The nodal patterns of the 12
modes of the plate are shown in Figure 16.

7. CONCLUSIONS

By adopting the view that plates with a hole can be considered ultimately as
a kind of rectangular plates with non-uniform thickness, an approximate method
was proposed for analyzing the free-vibration problem of rectangular plates with
variously-shaped and arbitrary-located hole using the Green function of the
equivalent rectangular plate with non-uniform thickness.

As a result of numerical work, it was shown that the numerical solutions
obtained by the proposed method had good convergency and sufficient accuracy



RECTANGULAR PLATES WITH HOLES 785

for some examples of plates with a hole, and a lot of numerical data have been
obtained.
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APPENDIX A

Fi11=Fi23 =Fi34 = Fiu6 = F167 = F175 = Figs = 1,
Fy12 = Fy35 = Fy33 = Fy57 = Fa66 = 1,
Fise =v, Faug=vi, Fizo=Fs31 = —, Faua=F355 = — 1,
Fyes=—J, F375 = — K, F377, =1, Fig; = — ux,
Figs = other Fi,, Farey F31e =0,

I'=p( —v?)(ho/h)>, J =2u(1 +v)(ho/h)*, & = (1/10)(E/G)(ho/a)*(ho/h).

APPENDIX B
Apl ="Vp1> ApZ :O, Ap3 =7Vp2, Ap4 ="Vp3> ApS :05 Ap6 =7Vpa + U)Ypss

Ap7="Ypes
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Aps=7p7, Bp1 =0, Bo=uy,, Bpz=uy,s, Bpa=0, B,s=uy,, Bps=Uypes
Byr = u(vypa + Vps)s Bps = Vs Cptin = M3 + KitVp7)s  Coot = Wyp2 + Kia)pss
Cp3kl = Jlep6, Cp4kl = Ilep4, CpSkl = Ileps, Cp6kl = — Wp Cp7kl = — Vps>
Cp8kl =0, [Vpk] = [?pk]711 711 =P, Vi2= Hﬁjja V22 =— Hﬁij,
723 =P, V25= ,Uﬁjj,
Y31 = — Hﬁija V33 = Mﬁjj, V34 = Pits Vaa = — Iijﬂij, Va6 = Piy Ya7 = Mvﬁjja
7755 = - Iijﬁij,
Ts6 =VPi, Ts7= #ﬁjja Vo3 = — Jijﬁija Vo6 = #ﬁjja Y67 = Bis»
Y71 = — HKijﬁij, Y76 = Hﬁij,
V78 = Biy  Vs2 = — Kijfij,  Vs7 = Bijy  Vss = Py other 7, =0, Bi; = Buf;-
APPENDIX C
di1ioin = d13ioi2 = d14i0i3 = d16i0ia = d17i0i5 = d1gioic = 1,  d15i0i3 =V,

A220jj1 = A230jj2 = (2503 = G260jj4 = A270jj5 = d280jj6 = 1, 240j3 =V, 0230002 =0,
8

ahpijuu = Z

e=1

i J

Z ﬁikApe [ahekOuv - ahekjuv(l - 5ki):| + Z ﬁlepe [aheOluv - aheiluv(l - 5lj)]
k=0 1=0

j
+ Y BBt Coert et (1 — 61:61)
=0

k=01
where h=1,2, p=12,...,8 i=12,....m j=12,....,n, v=1,2,...,6,
u=0,1,...,i(h=1),01,....j (h=2),

i J
8 Z ﬂikApe [q_ekO - q_ekj(l - 5ki):| + Z ﬂlepe [q_EOI - ('jell(l - 5lj):|
k=0 1=0

i J
+ Z Z BixBiC peki Gt (1 — 016y5)
K=01=0

— Vp1UiqUjp-

1)
Il
JuN
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