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1. INTRODUCTION

One basic problem of elastodynamics is the free vibration of an elastic spherical
shell [1]. For the purpose of analyzing the free vibration of a spherically isotropic
spherical shell, several separation methods have been proposed. For example,
Cohen and Shah [2] used two auxiliary variables to simplify the governing
equations; they found that the vibration was eventually divided into two
independent classes. Ding and Chen [3], on the other hand, introduced three
displacement functions; two independent classes of vibrations were also observed
for the coupled vibration of a submerged spherical shell. Chau [4] recently
extended Hu's formula [5] to consider the toroidal vibration of a spherically
isotropic solid sphere.

Recently, the mechanics of functionally graded materials (FGMs) has been of
great interest [6]. In FGM, the material properties always vary along one deep
direction continuously. In fact, FGM is a subset of inhomogeneous materials, the
study of which has been extensive. As regards the vibration of an inhomogeneous
(hollow) sphere, Huston [7] and Sur [8] have studied the radial vibration of
isotropic and anisotropic (hollow) spheres respectively. Shulga et al. [9]
investigated the non-axisymmetric vibrations of a non-homogeneous transversely
isotropic hollow sphere and presented a state equation by employing the
separation technique as well as the function expansion method. Numerical analysis
has also been used for obtaining the vibration frequency of non-homogeneous
spheres [10,11]. It is also noted here that Puro [12,13] initiated the separation
method for non-homogeneous isotropic and spherically isotropic elasticity to
consider some static problems. Earlier, Papport [14] used the separation method to
construct general solutions of transversely isotropic inhomogeneous elasticity
theory equations.

In this letter, we follow the method proposed in reference [3], using three
displacement functions to rewrite the components of displacement. The governing
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equations of motion of a spherically isotropic elastic body with radial
inhomogeneity are then turned into an uncoupled partial di!erential equation and
two coupled partial di!erential equations. For the general non-axisymmetric free
vibration problem, the resulting equations are further simpli"ed to the
corresponding ordinary di!erential ones. For the case in which all material
constants including the elastic constants and the mass density obey an identical
power law in the radial direction, solutions to these equations are given in the
paper. In particular, the matrix Frobenius power series method [15] is employed to
solve the coupled set. Exact frequency equations are then derived. Finally,
numerical results are given to show the e!ect of the radial inhomogeneity on the
natural frequencies.

2. THE SEPARATION TECHNIQUE

In analogy to the homogeneous spherically isotropic elasticity [3], by
introducing three displacement functions w, G and t to rewrite the displacements
as follows,
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are the elastic constants and o is the mass density. Here we assume that all these
material constants are functions of the radial co-ordinate r, i.e. the body is radially
inhomogeneous. It is seen that equation (2) is a second order, uncoupled partial
di!erential equation in t; equations (3) and (4) form a coupled partial di!erential
equation set in w and G.

For the general non-axisymmetric free vibration problem, it is assumed that
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where Sm
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(h,/) are spherical harmonics, u is the circular frequency and m"r/R is

the non-dimensional radial co-ordinate (R will be taken as the mean radius of
a spherical shell in the following). Substituting equation (6) into equations (2)}(4)
yields
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where a prime denotes di!erentiation with respect to m, and
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Here l
2
"JA

44
/o is the elastic wave velocity. So far, for the free vibration

problem, the governing equations have been turned into equations (7)}(9) in
a non-dimensional form: equation (7) is an independent, second order, ordinary
di!erential equation in unknown;

n
, while equations (8) and (9) are coupled by two
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n

and =
n
, and each equation involved is a second order ordinary

di!erential one.
Now we assume that all material constants have the same power function

distribution along the radial direction, i.e. A
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law distribution is very common in usual FGMs [6]. Then we have the
non-dimensional elastic constants as f
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The solution to equation (7) can thus be easily obtained as
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It should be pointed out that n"0 is a special case for which the function <
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contributes nothing to the elastic "eld. In fact, equations (8) and (9) will degenerate
into the following single equation for n"0:
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When n*1, it is seen that m"0 is a regular singular point for the coupled
system. To obtain the solution to this ordinary di!erential equation system, the
matrix Frobenius power series method developed in Ding et al. [15] is employed.
Details are, however, omitted here for the sake of simplicity. The general solution
can "nally be expressed as the linear combination of four independent solutions as
follows:
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are convergent, in"nite series in
variable m.

3. EXACT FREQUENCY EQUATIONS

Suppose that the inner and outer radii of the spherical shell are a and b,
respectively, and both surfaces are free from tractions, i.e. p

r
"q

rh"q
r(
"0,

(r"a, b). Using the results obtained above, one can "nd that the vibration of an
inhomogeneous spherically isotropic elastic spherical shell is also separated into
two independent classes. The "rst class, which corresponds to an equivoluminal
motion of the shell, is characterized by the absence of radial component of
displacement while for the second class, the displacement has, in general, both
transverse and radial components, but the rotation has no radial component. One
can then derive two sets of linear homogeneous algebriac equations of
undetermined constants B

ni
and C

ni
respectively. For non-trivial solutions to exist,
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the coe$cient determinants of the two systems should vanish so that the
corresponding frequency equations are obtained.

3.1. FREQUENCY EQUATION OF THE FIRST CLASS (n*1)
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is the thickness-to-mean radius ratio of the shell. Note that when n"1, frequency
equation (15) corresponds to a torsional or rotary mode of the shell. It is interesting
to consider the case when Xm

i
(i"1, 2) are large (high frequency) and the spherical

shell is thin, for which the asymptotic expansions of Bessel functions can be used.
We can thus derive the following frequency equation:
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Equation (17) is identical to that obtained by Cohen and Shah [2] if the
inhomogeneity is not considered, i.e., when a"0.

3.2. FREQUENCY EQUATION OF THE SECOND CLASS (n*0)
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Obviously, frequency equation (18) corresponds to the purely radial vibration,
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It is seen that the integer m, included in the spherical harmonics and representing
the non-axisymmetric motion (mO0) of the sphere, does not appear in the
frequency equations. The reason, explained by Silbiger [16] for the same
phenomenon for an empty, thin isotropic spherical shell, is also valid here. In fact,
since both the spherical isotropy and the radial inhomogeneity do not violate the
spherical symmetry of the shell, the non-axisymmetric modes of vibrations can be
obtained by the superposition of axisymmetric ones of identical natural frequency.

4. NUMERICAL EXAMPLES

Since the frequency equations are three dimensional, there is an in"nite number
of frequencies. In what follows, only the smallest natural frequency that is of
practical signi"cance is given in the calculation. The material is taken to be
a hypothetical one exhibiting substantial anisotropy [2,3], whose non-dimensional
elastic constants are f

1
"20, f

2
"12 and f

3
"f

4
"2. For the convenience of future

comparison, all results are given in tabular forms.
Table 1 gives the lowest natural frequencies of the "rst class for two values of the

thickness-to-mean radius ratio t*. From Table 1, we can "nd that the lowest non-
dimensional frequency X"uRJo

0
/A0

44
for the torsional mode (n"1) increases

with the increase of the inhomogeneity parameter a, while it decreases for other
higher modes (n'1). It is also noted here that for the torsional mode, there is no
di!erence for the non-dimensional frequency between di!erent materials if the
homogeneity parameter a is the same. It is obvious since the parameter g is only
related to a for this case.

Table 2 gives the lowest natural frequencies of the second class also for two
values of t*. Note that there is a zero natural frequency for mode n"1 of the
second class that corresponds to the rigid-body translation and hence results are
not given for n"1. From the results, it is seen that the lowest natural frequency
decreases with the increase of the inhomogeneity parameter a for all modes except
for n"1.

For all cases, it is shown that the inhomogeneity has a greater e!ect for the thick
shell than for the thin shell.
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