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The three-dimensional theory of orthotropic and isotropic plates (with and without
concentrated masses) vibrations is used to estimate a validity of the two-dimensional
theories application range. First, a general analytical approach is presented, and then
the algorithms for numerical calculations are developed. Many examples obtained in
the form of tables and drawings support the considerations and also some practically
valid conclusions applied to isotropic and transversal-isotropic plates are derived.
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1. INTRODUCTION

A great amount of literature has been devoted to the topic of the reduction of
three-dimensional problems to the two-dimensional ones. Kiltchevski [1] has
already pointed out that a general method for that reduction consists of
constructing analytical expressions characterizing a stress-strain state by
introduction of quantities defined in the x0y co-ordinate system.

In reference [2] it has been shown that because of the lack of universal
calculation models many different approximate methods have been applied.

An application range of the approximate theories is defined by a full
three-dimensional theory. Therefore, the next logical step will include a comparison
of the two-dimensional theory results with the three-dimensional ones. This
approach can be used for qualitative estimation of the results of different,
practically oriented theories. It allows for such a comparison because of the
different characteristics such as displacements, frequencies and modes or vibration
energy. It also seems that estimation of the errors which are introduced by the
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two-dimensional theories, in comparison with those of the three-dimensional
theory, is valid especially for a certain class of problems.

Now such a comparison will be outlined here on the basis of the following
considerations: (1) free vibrations of an unloaded orthotropic (isotropic) plate; (2)
free vibrations of an elastic system “orthotropic (isotropic) plate-concentrated
masses”.

2. DIFFERENTIAL EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

From the expressions governing the displacement variations du, dv, ow of the last
equation of Part 1 of this paper, the following differential equations governing
a stress-deformation dynamical state of the sloped shell are obtained:

60'11 6012 60'13_ azu —>
ax T dy az %o (1,2)
0013 60'23 8033 62w
- - — o2y, 1
ox + 3y + 2z kioyy —kyoz, 05 (1)

Equations (1) can be replaced by an equivalent system. First one can disconnect
the tension components. Then a vibration problem of a conical orthotropic shell
with added elements is reduced to determination of the displacements components
u, v, w satisfying the following equations:

0%u 0%u 0%u 0%
Ai111 2 + A12125—yz + Aq313 22 + (Aq122 + A1212)m
0*w ow ’u =
+(A1133 + 141313)@(1411111(1 + A1122k2)a = QW’ (1,2)
0*w 0*w 0*w 0*u

A3333 2 + Ay313 2 + Az323 a—y2 +(A1133 + A1313) x0z

0% ow

+ (Az323 + Azzss)@ —2(Aq133k1 + Azz33k:) — — (A1111ky

0z

ou ov o*w
+ Az211k2) % (A1122ky + Azzzzkz)a—y + w(ki + k3) = QW' ()

After introducing the dimensionless parameters
X =Xxa, y=yb, z=2hz, u=2hi, v="2hv, w=2hw,

Ay = aj2h, Jo = b)2h,
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A1111:A1111'A1111, A1122:A1122'A1111, A1133:A1111'A1133,
Azzrn = Az222" A11115 A2233 = A2233 “Ai111, A3333 = A3333'A1111,

A1212 = A1111'A1212a A1313 = A1111 “Aq313, A2323 = A1111-A2323,

ab _ 2h B _ ;
_ﬁ\/Q/Auu‘[, 602% Ai111/0 0, M'= M'/M,;
Ji.=ab? 2hQJxx, J’ = a3b2hQJyy, J,icy = a’h? 2hQny,

Je = a®b(2hyoJL.,  Ji. = ab*(2h)*0J}., Ji. = ab(2h)*oJL.,

yzo
ki = 2hja*ky, ky =2h/b*k,, I = alb, 3)

the following dimensionless equations are obtained from equations (2) (bars are
omitted):

0%u 0%u i 0%u 0%
A1111i§ 02 +A1212ﬁ a_yz + A1313/L%;~§ 272 +(A1122 +A1212) A1 42 m
0*w 1 8W Pu =
+(A1133 +A1313);~1/L2 o0z (A1111/12k1 +A1122;~1k2) =22 (1,2)
0*w 0*w 0*w 0*u
Az3334175 = 02 +A1313/1§ 2 + Az3230 = 2y —— +(A1133 T A1313) 44 /12a 3y

82

ow
2 8 P —2(A113345k; +A2233)vsz)a — (Ay11143k4

+(A2323 +Az233) A1 4

1 ou . ov k? 0%w
+A2211/L1k2) i x —(A1122/1§k1 +A2222/L%k2)a_y +w </1_; + k§)v2> =2
4
The stiffness coefficients are
A —
At111 = (222203333 — A223303322)/4, ( 1,2, 3)
A —
At122 = (113303322 — A112203333)/4, (1,2,3)
1 1 1
A1212=—» A1313= 5 A2323=—;
a1212 ai313 a2323

—

AN
Azzi1 = Ar122, (1,2,3)a A:det[aiijj]i,j=1,m,3: (5)



834 J. AWREJCEWICZ AND V. A. KRYSKO

and additionally the following relations are valid:

_ 1 V12 V13 V21
01111—E—a a1122———E ) 01133———E ) 02211———E >
1 2 3 1
a i 1 a V23 a V31 a V32
2222 = > 2233 = ——F—, d3311 = — 5, Q3322 = — >
2 E; E, E,
1 1 1 1
a3333 = B ai1313 = G 2323 = G Ai212 = G (6)
3 13 23 12

E., E,, E5 are Young’s moduli (E,v,; = E{vq5, E3v3, = E,v,3, E;vi3 = E3zvsq; for
the isotropic material E, = E, = E); v;; are the Poisson’s coefficients (for the isotropic
material v{, = v,; =V); Gy,, G3, G,3 are the shear moduli (for the isotropic
material G = G, is the shear modulus for the planes parallel to the isotropic plane,
and G’ = Gy3 = G,, is the shear modulus for the planes normal to the plane of
isotropy); x, y, z are the Cartesian co-ordinates; u, v, w are the displacements of the
mean surface in the x, y, z directions, respectively; a, b are the dimension of a plate;
ki, k, are the curvatures of the plate; and ¢ is the time.

A solution to the differential equations (4) will be constructed by using
a condition allowing for a slip on the plate’s edges and assuming the absence of
additional masses on its external surface.

This means that the following boundary conditions are used: 6;; =0, v =0,
w=0.

The displacement functions which fulfil the above-mentioned boundary
conditions are as follows:

s
Il
M8

¢(z) cos oy, x sin f, Y SIN Wy t,

g
=

o0
v =Y Y(z)sin o,x cos ,y sin 0,

m,

=

w =Y y(z)sino,xsin f,y sin w,,t, (7)

m,n

where o, =mn, f§, =nn, m, n are integers, and w,, are the free vibration
frequencies. Substituting equations (7) into equations (4) with k; = k, = 0 yields the
following uncoupled three ordinary differential equations for different m, n, which
must be satisfied by the functions ¢, ¥, and y:

2
fd¢

S11 7 2 =
dz?

d;
f12d—/{ +C13¢ + E1ath,

z
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dzzp

le ézzd + ¢339 + S,

d?y d¢

d
e TE =S v

+ 533 + Caal: (8)

Here &;; are functions of m, n and of the physical and geometrical characteristics of
plates of the form

éll = A1313/1%)'§’ 612 = - (A1133 + A1313)ilj'§ama
Eiz3 = A1111450m + A1212 41 B7 — 02, Cia=(A1122 + A1212) 212200,
&1 = Az3a3Aiis, a2 = — (Ar233 + A2323) 21 42 P,
Er3 =(A1122 + A1212) A1 4200 P> Era = A22nadifi + Ayp127502 — 03,
531 = A3333/’Lf/1§9 632 = (A1313 + A1133);Ll;{§cxm>
&3 =(Ara33 + A2323) A1 A2 B, Eaa = A13134500 + A232341 7 — Wpe (9)
The solutions of equations (8) are sought in the form
{¢. ¥, 1) ={A, B, C}e", (10)
where the parameter 7 is obtained from the equation
118+t 43t +r,=0. (11)

with each of the six roots of equation (11) is associated a particular solution is
denoted as #;. Therefore, the general solution has the form

6
1= 2. [ndd (12)

A procedure for solution of equation (12) has some difficulties because it is
impossible to find the solutions of equation (11) for each orthotropic material.
Therefore, at this stage one needs to assume the existence of different combinations
of roots (without the conjugated roots). Theoretically, the following roots
combinations are possible: (1) simple; (2) one simple and one multiple; (3) all
equal. One can now consider the solution construction for each of the mentioned
cases [3].
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1. Simple roots of equation (11). Substitute the solution (10) into the differential
equation system (8). Division by an exponential multiplier yields

LR =0, (13)
where
&3 —&nt? C1a €127 A
L= ¢23 &g — Epy7? €227 , R=|B]. (14)
€327 33T &3 — E3i7? C

The determinant with the unknown A4, B, C coefficients serves to find the roots. The
rank of the coefficients’ matrix has to be equal to two and then there exists at least
one minor of the second order. From the three linearly dependent equations one
can take those two which possess coefficients dependent on the minor. From the
two linear equations obtained one can define two constants as a function of the
third one. For instance, if the second order minor constructed by the coefficients
denoted by 4 and B in the last two equations of the system analyzed is different
from zero, then the following vector of the fundamental solutions is defined:

- 52253372 — (&34 — 5311'2)(531172 - 524)_
E23833T + E321(Ea1T7 — E34)

E23(E317% — E30) + E328001
E23833T + E321(Ex1T7 — E34)

[n1=C e”. (15)

1

2. Multiple roots of equation (11). When t =17* is a multiple root then the
corresponding solution (10) is substituted into equation (8). Transforming the
algebraic system (13) with the unknown A, B, C yields a rank which is equal to or
greater than 1. Suppose that the system coefficients matrix rank is equal to one. In
that case, the analyzed system is equivalent to an arbitrarily taken one from two
equations, in which at least one coefficient is different from zero. This leads to the
conclusion that to define three unknown constants one has one relationship.
Therefore, two constants can be chosen optionally and the fundamental system
possesses two vectors. For example, using the third equation of (14) yields

— A&3,t1 — B33t + C(&317° — &34) = 0. (16)
Thus, the eigenvector may be defined by

1 0
'] = 0 1 [Cl} e, (17)
(531T2 —&34) (5311’2 — C34)

Eaat E3at
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Suppose that t* is of second power. Then the vector components have the form

A1 + BIZ
[1/],] = A2 + Bzz etxz. (18)
A3 + B3Z

Substituting the relationship (18) into the differential equations and comparing the
coeflicients of the same powers yields six linear equations. The rank of the obtained
[6 x 6] matrix is equal to four and therefore one has four equations to define six
unknowns. Taking two unknowns arbitrarily and joining with them either row or
column values of an arbitrarily taken second order and non-zero determinant,
yields the fundamental solution system which consists of two vectors with six
components.

To conclude, it is possible in the case analyzed to construct the solutions to the
differential equations (8).

3. Triple root. One takes the solution (18) and substitutes it into the system (8).
Comparing the coefficients with the same “z” powers yields six linear equations.
The matrix rank is greater than or equal to three. Proceeding as in the above case,
one can also construct a general solution. We do not focus on a detailed analysis
here but we have to emphasize that this case is practically realized during the
analysis of a three-dimensional isotropic plate deflection subjected to an external
surface load action [4].

The detailed calculations have shown, that for an isotropic plate material one has
real and different roots of the characteristic equation (11). A matrix rank of the linear
system (13) is equal to two. The minors constructed of coefficients represented by the
unknowns in the last two algebraic equations are different from zero. Suppose that
equation (11) has the roots 74, 7,, 735. A general solution of equation (8) may be
obtained as a linear combination of the particular solutions (15)

¢(z) = Ad{) ch 1,z + Bd{}sht,z + Cd{ chr,z
+ Dd)sht,z + Ed) chtsz + Fd{)) shtsz,

Y(z) = Ad)ch 1,z + Bd\Ysht,z + Cd¥)ch1,z
+ DdY)shtyz + Ed)chtyz + Fd{)shtyz,

2(z) = Ad"sht,z + Bd{)chtyz + Cd{Q)sht,z
+ Dd( cht,z + Ed)sht3z + Fd{)ch sz, (19)
where
d(11)1 = (&34 + 12E21)(Esq + Ea1T) + EapCaati,
d(f)z = - éSZéZZTiZ - 523(534 - 6311'1'2),

d¥y = 1i[Er3833 — Eaa(Caa + 17E20)], i=1,...,3. (20)
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In the free vibration case, the external boundary conditions are formulated by
using the relations

613=0, 06,3=0, 033=0. (21)
They have the following form (with respect to ¢, ¥, y and for z = —0-5, 0-5):
— A11330m® — Az233Ba¥ + Azz33y =0,
WA B =0, ¢ + Gy =0, Gp= 0w/l Pu=Pulla. (22)
Substituting expressions for ¢, ¥, y from equations (19) into equations (22) one

obtains the following system of homogeneous algebraic equations for each pair of
(m, n):

A 0
B 0
L C 0
[L(—0,5)] D 0
E 0
LF] L0}
Here
ll(Tl) Ch T1Z 11(751) Sh T1Z ll(f3) Ch T3Z 11(73) Sh T3Z
L(z) =] LL(zry)shtyz Ly(ty)chtyz -+ Ly(ts)sht3z [h(t3)chtsz |,
l3(T1) sh T2 l3(T1) ch T1Z - 13('1'3) sh T3Z l3(T3) ch T3Z
li(t;) = A1133°~5md(1i)1(7i) + A2233Bnd(1i)2(ri) + A3333 d(li).’,(fi)fia
lr(z;) = d% (Tt + d(li)a(fi)&m,
d(11)1 = (&4 — Ti2521)(534 - 631Ti2) - fzzfssfiza
d(f)z = 5325221’;‘2 - 523(534 - 631751'2),
d(f)s = 1;[£23833 — &32(E24 — 1:1-2621)],
I3(t) = d(f)l (i)t + dYg(ri)&m, i=1,...,3). (24)

In order to obtain non-trivial solutions one assumes

[LO,5)] |
dm[ni_Qsj}—O. (25)
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As a result, one has a transcendental equation whose roots correspond to the
transversally isotropic plate vibration frequencies. For each pair (m, n), one obtains
an infinite set of eigenvalues.

The free vibrations analysis of a cuboid made from the isotropic material is of
specific importance. In that case general considerations are simplified and lead to
relatively simple characteristics equations. The particular solutions (modes) of
isotropic plates vibrations are to be investigated. They are needed for both the free
and excited vibrations as well as for non-stationary waves investigations. For this
reason, these solutions have attracted many researchers and they have been used
mainly for non-stationary processes analysis [5]. In the case of a harmonically
vibrated isotropic plate with the ‘w’, frequency the fundamental solutions are
simplified to the following:

2ot T Ty

1@ 1 0%u  0%*u 1 i@_i_ 1 0%
75 0x% " Ayl 0x0y

1 aZW 5 : <:)
+Zax52>+uw =0, (1,2), (x,p)

1 %w 1 0*w  *w 1 <1 0*u 1 0%v 0w

2
1w, Low, oW L 1 g _0. 2
ZodtRar it ao o\ axey Ty T af) +wo” =0. (26)

The fundamental functions (7) fulfilling the boundary conditions (22) are taken, and
by carrying out a procedure analogous to that described in reference [3], the
following characteristic equation is found:

{8g% rs(r* + g*)*(1 — chrchs) + [16g*r*s* + (r* + g*)*]shrshs)shr =0,

g=/B+ P2 r=9* -0 s=¢>—(1-200/2 2. (27

The solution of this transcendental equation attaches infinite eigenvalues series to
each pair (m, n). In reference [3] the authors conclude that equation (25) contains
the eigenvalues corresponding to symmetric and antisymmetric plate vibrations in
relation to a mean surface (in reference [6] it has been shown that such
a distribution is always possible).

Another challenging method has been presented in reference [ 7], where a general
solution is described for two classes, and their particular solutions correspond to
plane and antiplane vibrations.

Earlier, in reference [8], the free vibrations of a simply supported rectangular
plate using the three-dimensional theory, have been analyzed. It has been shown
that from the characteristic equation the roots, corresponding to the modified
(more accurate) differential equations governing a plate vibration, can be
found.
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3. THE 3-D PROBLEM (WITH THE ADDED MASSES)

In this section, the orthotropic plate vibrations with the added masses M’
(i=1,...,N) will be analyzed. It should be emphasized that when using the
three-dimensional theory for an orthotropic plate in a general case, one does not
have prior knowledge of the behaviour of the roots of equation (11), because
unknown frequency is included there. In addition, coefficients are defined by
complex expressions dependent on the physical and geometrical parameters, and
even an analytical description for the roots does not simplify the problem. The
classification of possible roots types of the characteristic equation as well as the
method of their corresponding solution should be outlined. One assumes here, the
following section 2, that physical and geometrical parameters of the plate allow one
to obtain three simple roots of equation (11), and a corresponding matrix of the
linear equations (13) has the rank equal to 2.

The following solution to the equations (4) is being sought (one also takes
ki = k, = 0 in equations (4)),

o0
u=sinwt Y ¢(z)cosa,xsinf,y,

m, n

[e¢]
v=sinwt Y y(z)sino,x cos f,y,

m, n

w=sinwt Y, y(z)sin o,x sin f, . (28)

m,n

Here ¢, ¥ and y are defined by equation (19).

In order to find A,,,, Buns Cons DyunsEmns Fms ONE substitutes equation (28) into the
boundary conditions on the surfaces z = — 0-5, 0-5, which for z = 0-5 have the
following non-dimensional form:

ou 1w\ L& 1 oW
A1313<E+Z§>—w j;lM [U—A—l(zi—OS)E}é(X—xi)xi
e A—
x @y —y) (1,2 (xy)
10U 10V ow

+ ——+ —
)»1 ax 2233 iy ay 3333 62

e i (zi— 052 0 [ oW (zi — 05)
—o? 3 furt | w BT i oty gy 4 B2

0 ;—05)2 0 [0
<L tvat—xo0 - -2 s
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LU xi)}} ) {J;xa—y[a—vfé(y—yi)}ax—xi)

i=1
N4
_Jyyg[—ax 5(X—Xi):|5(y—yl')},

(29)
and for z = — 0-5 one gets
ou 1w =
T hox =% (12 (ey)
10U 10V ow
A1133/1—Ig +A2233Za_y+A3333E=Oa (30)

where U, V, W are the amplitudes of the displacements:
u=Usinowt, v=Vsinwt, w= W sinwt.
Substituting equations (28) into equations (29) and (30) and developing the

right-hand sides of equation (29) with the singular coefficients of the o-type into
trigonometric series yields the following linear algebraic equations:

LA =0, (31
where

_Amn_ _61_

lii i ll6 By 3

) ) ) Coun

I - 21 la2z 26 A= 0= ¢s

D, 0

ler o2 les E,. 0
_an_ L O _

The L-matrix coefficients and the Q rows have the following forms
Lix = qu)l:—: lim = Pj¢m+, L = Vj‘PkJr, Lyw = ’”jQDr:;,
3 = Sj(/’;:, lam = Sj(;ol:—a lax =pjPx s lam=DiPm,
Isk = FiQr lsm = FiOm lok = S;Pm 5 lom = SiQk »

q)ki = Sh(i 05 STj): (non:L = Ch(i 05 STj),
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J) ( ) J) ( )

= A1313(1; d11 + dndys), 1= Azzaa(t;dys + ﬁ dis
sj=— A11330md¥) — Azz33Bud) + Az3337;d)
I 1133%md 7y 2233Pnd 7, 3333T;d 73,

Gm = O/ 2y Pu=Pu/ls, (k=2 —1,m=2j,j=1,...,3).

N . oW, N . - 0w,
= Z 911U + 94, , L=’ Z 951 Vi + 85, 5
- 0x - 0y
N ow; ; ow;
& =w? Z <g31U + 95, Vi+ 953 Wi 4+ gha —— o + 955 = By > (32)

The parameters gj; are defined by

) . ) ) 4M? .
gh1 =AM Cos o xisin Bois g = — (2 — 0:5) cOs 2, sin i,
1
. . . AM! )
g5, = 4M'sin o, X; oS f,Vi, g5, = — - (z; — 0-5) sin o, X; cOS S, Vi,
2
. 4M! .
g5, = — 7 (z; — 0-5) o, COS 00, x; 810 B3, Vi,
1
4M:

g5, = - (zi — 0-5) sin o, x; €OS Byis  gh3 = 4M' sin o, x; sin B, Y,
Y1

. 4M? . . .
G54 = -z Ol COS Oy X; SIN B, Vi + 4J Ol COS 0Ly X; SIN B, Y,
1

; aM' ; .
gl35 = }2 ﬁn S &, X; COS ﬁnyi + 4J)lcxﬁn §11 &, X; COS ﬁnyi» (l = 1, cee s N)
Y2
(33)

Finding the solutions of equations (31) one defines A,,,., Bun> Cons Dimn> Emns Fons
which implies a definition of the displacement component vector:

gl oW, Gl17
U=’} ZlA(m,n)(q“U + 4LV +disWi i —— o +q.s R >c0soc xsin f3,,

© N 1 - . . . oW, . OWL .
V=0 Z Z (qani + 45,V +45: Wi +qlz4g +d5s 3y >smocmxcosﬂny,

ow; ow;
<CI31U +432V +q33W +q34 x +q35 oy >smoc xsin f3,y.
(34)
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The plate’s first deflection derivatives are

8W © N oW, . oW,
= o’ Z Z <q31U +d5, Vi + 45 Wi +ds - o +455 3y >
mnl=1
X 0y, COS 0y, X 8iN f3, Y,
ow ) < 1 . . . . oW, . oW,
I — 1 U 13 V 13 W. 1 _° 13 _°
dy w ”;n iglA(ma n) <q31 i Td3,Vi T d33Wi 434 ox t435 6y>

x B, sin o, x cos f3, ), (35)

qy = pidt) ch 051, + phd{) sh0-5ty + - + pLd{’) ch0-5t; + pi,diY sh0-5,,
(j=L2 k=1,...9),

q;k = Pikdgls) sh0-5ty + pékdgl:s) ch0-5ty + -+ + ngd(fa) sh0-5t3 + pi6kd(133) ch0-5t3,
Py =914+ 951455, Ph=gh1As;+ gh3dsy Ply = 435955,

pj‘4 = gizAlj + 9214‘31‘7 pj‘s = gizzAZj + gissASja (j=1,....,6,i=1,...,N).
(36)

4 1s the determinant of equation (31), whereas 4;; is the co-factor of a term standing
on the cross-point of ith row and jth column.

After the fulfilment of the continuous conditions of the jointed masses, one
obtains the algebraic linear equations with the unknowns being the displacement
vector components and the first deflection derivatives in the point of the joined
masses,

Uia I/ia m;aWi/axa aI/I/l/ay (37)
A non-trivial solution exists if
de‘[[aij]mst = 0 (38)

The determinant elements are given in Table 1. The solution of equation (38)
does not exist in a closed form. It is a transcendental equation, because the
frequency sought is the hyperbolic function argument. Limiting the considerations
to the first term yields an approximate equation defining the frequency of the
vibration “plate-mass” system. This equation has infinitely many solutions which
are the approximate frequency values of the free vibrations. Taking into account
two terms in equation (38) yields more accurate results for the frequency
determination and one can define a new frequency series corresponding to the
second vibration mode, and so on. Limiting oneself to “s” terms in equation (38)
one can achieve the required accuracy in a frequency determination.
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(u)py = (Y (uwyy (uwyy '
N, mmw - <@ e M <@ z<mmw M Nyzep MNS
T itz by
(uw)y " (Y (U wyy ' (u w)p '
|>H~,mew (¢ . ZJ\:w M @ |>~:<\mmw M o) |\M®Nﬁw MNS
Lyt eyt apt o ety
mwmmw = ,wﬁmw - 4 ,wmmw - M,)wmmw = 4
(uwp (uwy ' (uwyy (u w)y '
‘W)Wme M e ﬂﬂﬂﬁw M NS N) mﬁw M \M‘) NWW M NS
(u w)y (Y (u u)y " (uwyy
wmmw M ,xﬁmw M (4 = mdmm M memw Mm
(wyy (Y (uwyy (U wyy "=
CEy S0 Ty S0 Nmuw M e S
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4. ALGORITHMS

Here a certain aspect of the problem related to the numerical solutions to the
characteristic equations (25) and (27) corresponding to the free unloaded isotropic
plates vibrations is considered.

In reference [6] it has been shown that the solutions set of equation (27) can be
divided into two groups. The corresponding vibration modes are related to the
symmetric and antisymmetric states of stress.

The antisymmetric vibration modes correspond to the roots of the equations

_ Tens Senl2 2 _ r_
4sh2ch2prs+shzch2(r +p)° =0, ch2 0, (39, 40)
where
p=dm+PBr. r=1p— 0 (41)

and o is the frequency sought.
Either symmetric or plane vibration modes correspond to the second group of
equation (25) solutions. They are represented by the equations

_4shicn! T ehSg2 4 p)2 = I _
4sh20h2prs+sh2ch2(r +p)F =0, sh2 0. (42, 43)

Therefore, the procedure of the free frequencies vibration determination is
simplified and instead of using equations (25) they are found from equation
(39)-(43).

Equations (40) and (43) have the explicit solutions

y=p+(n+2mn)? y=p+4n*n’ (44)

It should be mentioned that the procedure of finding the roots of transcendental
equations (39) and (42) is extremely difficult without any additional information. In
the latter case, one can sometimes find a satisfactory first approximation for a root
sought.

Solutions of equations (39) and (42) are sought in the form

Y= a,p"

n=0

It can be proved (see reference [ 7]) that there are approximate relationships for the
unknown frequencies (with the accuracy related to small “p”):

L.y = plp/[6(1 — V)] + o(p?)],
2. y=p.
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3.y =p[2/0 =v)+o(p)],
4.y =pl2n—1)>n*/p +1],
5.y =p[2n-1)?n%/p + K,],
K, =1+[(1 —2v)/[2(1 — v]]"* 16 ctg(s/2)/[(2n — )] + o(p),
6. 7y = p[4n*n?/p +1],
7.y =2p(1 —=v)/(1 = 2v)[2n —1)*z?/p + K, ],
K,=1+[(1—2v)/[2(1 — v]1"* 16 ctg(r/2)/[(2n — )] + o(p),
8. y=pl4n’n*/p + K,].
K,=1—[(1—2v)/[2(1 = v]]'?8 tg(s/2)/(n7) + o(p),
9. y=p[4n’*n?/p + K, ]2(1 —v)/(1 — 2v),

K, =1—[(1 —2v)/[2(1 —v)]1**8 tg(r/2)/(nm), (45)
and so on. The above expressions are ordered in the sequence of increasing
frequencies.

The importance of the decomposition obtained is mainly expressed during the
asymptotic estimation of the frequencies obtained by different applied theories [8].

From a practical point of view, those relationships may be used for small p (for
relatively thin plates and low vibration modes) as the approximate expressions for
the free vibration isotropic plate frequencies determination. If a higher accuracy is
needed, then the values obtained may serve in accuracy improvement by using (for
example) Newton’s method. However, for large values, Newton’s method may be
divergent and other numerical methods are recommended.

The relationships (45) analysis shows that equations (39) and (42) have only
isolated roots. This means that for each root there exists a neighbourhood which
does not include other roots. Therefore, the first step in the determination of the
roots is focused on finding intervals consisting of only one root of either equation
(39) or (42). The numerical investigation has shown that if one takes p =0 in
relationships (45), then the obtained set {@;(0)}i_, defines the boundaries of the
sought intervals with the isolated roots. To conclude, the problem of finding
isolated roots has been solved. The second step includes a direct calculation of the
root. The subroutine realizing the calculation algorithm is a part of a developed
program for vibration analysis of isotropic plates with the attached masses.

The algorithm of finding the analytic solutions leading to the characteristic
equation (25) has been also established. A key part of that investigation lies in
analysis of equation (11).

The characteristic equation (25) is given for the case when polynomial (11) roots
are simple because of w? and the matrix size, leading to the determination of A, B,
C is equal to two.

The free vibration frequency determination of the transversally isotropic plates
consists of the following steps.

1. First, the free vibration frequency of plates and shells is calculated with the

geometrical parameters, using equations (40) and (43).
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2. The interval (G, G) is divided into k subintervals where LGi}f: . . G is the relative
stiffness parameter G = G/E of an isotropic plate, and G’ is the relative stiffness
parameter of the transversally isotropic plate.

3. On each step of Newton’s method for a fixed G; value the free vibration
transversal isotropic plate frequencies have been found. At the beginning, the
frequencies of a free vibration isotropic plate serve as the approximate values
and then in each next step the G values are taken from the previous step.

4. After achieving the required G = G’ values, the procedure is completed.

It should be emphasized that in spite of simplicity and clarity of the described
procedure, its practical realization involves many problems. Among others, they
are related to an optimal choice of the optimal (G’, G) partition, analysis of the
obtained results and investigation of convergence rate.

The numerical experiment has shown that the algorithm works stably if the
interval [0-01; 0-384] has been divided into more than 20 parts. In order to ensure
the required calculation accuracy (¢ = 10~°) because of G, the number of iterations
reaches 10-12.

The described programme of numerical calculations may be successfully used in
case of other materials whose physical and geometrical properties lead to equations
structurally analogous to equation (25).

5. FREQUENCY SPECTRA: 3-D VERSUS APPROXIMATE THEORIES

The three-dimensional theory is used to solve special problems and to estimate
the validity intervals of the two-dimensional theories. This estimation may be made
only when the results of two- and three-dimensional theories are compared.

One of the fundamental questions is as follows: which possibilities are used to
find approximate solutions to detect free vibration frequencies? The aim of this
section is the comparison of the theories for free vibration frequencies detection of
an isotropic and transversally isotropic plate with the solution obtained by using
the three-dimensional theory. The comparison between two- and three-
dimensional theories because of the free vibration frequencies, is carried out on the
basis of the following considerations. To each frequency from a spectrum
corresponds a vibration mode. The mode analysis possesses an additional positive
aspect. The modes may be considered as the characteristics used for the comparison
of exact and approximate theories. However, three-dimensional body vibration
modes (infinitely many degrees of freedom in the normal direction) and
two-dimensional body modes (finite number of degrees of freedom) differ
essentially. In reference [7] it is recommended to compare “these plane pictures”
obtained by using the two-dimensional theory with the ones obtained by using the
three-dimensional theory. In reference [9] it has been shown that for the described
technique the parameters of two- and three-dimensional theories are related by

h 2h3 h
2h(a+w,)=f i* dz; —fzﬁf i*z dz, (46)

_h 3 L

where @ = ui + vj, W = wii, 7 = i + Vyf'
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Parameters related to the three-dimensional theory are marked by a star. It
appears that such an averaging of the three-dimensional characteristics is very
suitable for a qualitative accuracy asymptotic estimation of the different
approximate theories applied to plates analysis. For instance, if the following
criterion is used,

limh™"

(R, R* are the compared characteristics obtained by using two- and
three-dimensional theories, respectively and m is the two-dimensional theory order
of accuracy in comparison with the three-dimensional theory), then m will be equal
to 2 for all compared quantities.

Exact analysis realized during the isotropic plate vibrations is much
more difficult and practically useless in the case of orthotropic cuboid free
vibrations. If one assumes that displacement distribution along the plate’s thickness
can be predicted on the basis of two-dimensional theory then it is possible to
compare normal and tangential distribution obtained for certain characteristic
modes.

On the other hand, in reference [ 10] it is pointed out that if there is a qualitative
difference between the vibration modes of the two- and three-dimensional theories
used then the two-dimensional theory gives a good approximation of the
frequencies spectrum. This information is most practically needed.

Consider now the influence of the geometric parameter 44, 4, (relative thickness)
on a free vibration frequencies spectrum of an isotropic plate.

In Table 2, some calculation results of the vibration frequencies using the
classical theory, Timoshenko’s type theory (two variants-with and without
rotational inertia) for 1, 4, equal to 5, 10, 50, 100 are given. The frequencies are
ordered in an increasing manner (m, n are the integers characterizing the half-wave
numbers in the x and y directions, respectively).

The improved theory (with the rotational inertia effects) allows one to pull out
three frequency spectra. By using either Kirchhoff’s or Timoshenko’s theories only
one spectrum, related to bending, can be found.

In Table 3, the first 10 frequency spectra by means of three-dimensional theory,
are given. In the first row the mode numbers are given, which characterize a wave
occurring process in the x and y directions. For the defined m, n the free vibration
frequencies are also ordered in an increasing manner.

The dimensionless vibration frequency has been found from the expression valid
for both two- and three-dimensional theories:

w* =2h/2p(1 + v)/E .

When comparing the results given in the tables, focused attention is on the
corrections introduced to Kirchhoff’s and improved theories (more accurate) for
a spectrum related to bending with the different errors for each theory.
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It is remarkable that the approximation nearness of the frequency values
obtained for all theories are applied for A; = 50, 100. In the case of 4, the error is
smaller than 2%, whereas in the case of the Timoshenko model it is 0-5%. The
general Timoshenko model gives most accurate results. In the latter case the results
were the same (the difference can be noticed in the fourth decimal place). The results
obtained show that there exists no essential influence of a transversal displacement
on the frequencies of the modes considered related to bending.

With an increase in a plate’s thickness( A; decreases) Kirchhoff’s theory is less
accurate when finding the frequencies related to bending. For 1, = 10 the
fundamental bending vibration frequency, found by using the classical model, does
not reach the threshold of 5%, whereas for 4, it is equal to 5-12%.

During calculations of higher frequencies the application area of the classical
theory is defined on the basis of comparison of the corresponding modes with the
three-dimensional theory results. With an increase of m, n, an increase in the error is
obtained: from 12% (m = n = 2) to 34% (m = 3,n = 4). For A, = Sanerror of 10%
is admitted only during the fundamental frequency estimation, whereas for m = 3,
n = 4 (ninth mode) an error is equal to 100%.

The accuracy increase of Timoshenko’s type theory allows one to get practically
exact values of the isotropic plate vibration frequencies.

In the considered intervals of the 4;, 4, parameters changes of an error
introduced by Timoshenko’s theory reached 0-5%. As lightly larger error
characterizes vibration frequencies related to bending (without rotary inertial
effects): for ; = 5 one has 3% (m = n = 1) and 8% (m = 3, n = 4). If the governing
equations introduce the rotary inertial effects then the frequencies are obtained
with the error 4%.

It should be emphasized that the classical and the improved Timoshenko’s
theories give frequencies with higher values than the exact results. The
general Timoshenko model gives lower values than the exact results. There-
fore, with increasing plate thickness, the difference between frequencies obtained
by using classical theory and the improved Timoshenko theory is also increased.
In the case of the general Timoshenko theory, the error decreases with thick-
ness and then slightly increases. However, the error oscillations are of about
0-3%.

Next an analysis of the successive frequency spectra obtained by the improved
two-dimensional theories is presented. The frequencies related to
thickness-rotational modes (IIA) and thickness-displacements modes (IIIA) of
a freely vibrating isotropic plate belong to them. Here more evident error
divergence is observed, in comparision with the exact three-dimensional theory
results as well as in relation to the “improved” two-dimensional theories described
in this work. The calculation error does not depend practically on the magnitude of
the relative thickness parameter 4; and oscillates in the interval from 4 to 10% for
both vibration modes. In reference [11] during the formulation of the
two-dimensional improved theory a displacement coefficient was equal to ?/12.
This value secures overlap of the low frequency spectra. The corresponding modes
are thickness-rotary type with w = 0. Therefore, the displacement coefficient 72/12
gives the best approximation for the stress deformation state, where the transversal



854 J. AWREJCEWICZ AND V. A. KRYSKO

displacements play a key role. There exists also another criterion for choosing the
displacement coefficient [2].

When using “improved” theories in this work the displacement coefficient was
equal to 1 (Timoshenko’s model) and 2/3 (general Timoshenko’s model). Therefore,
following inequalities hold for the “improved” frequencies “w;” and “wqr” and the
exact one w:

Wor < 0 < WF. 47)

This means that the improved theories allow one to find intervals where “real”
vibration frequencies occur. A comparison between exact and approximate frequency
values, corresponding to thickness-rotary and thickness-displacement modes, found
by two- and three-dimensional theories indicates validity of the relationship

o = (" + wor)/2, (48)

where a frequency value close to the exact one is obtained.

The frequencies obtained from equation (48) differ from the exact values by less
than 2:5%.

As has been mentioned earlier, the essential difference between two- and
three-dimensional theories consists of qualitative difference in their spectra. The
three-dimensional theory allows for an infinite set of spectra definition, whereas the
two-dimensional theory possesses a finite number of spectra, which are equal to the
degrees of freedom of a two-dimensional model of a continuous medium. The free
vibration frequencies corresponding to the modes with the numbers IIIS, IVS, VS,
VA are not “caught” by the two-dimensional theory. In order to find them,
applicable theories, characterized by less requirements with regard to the kinematic
hypotheses and having more degrees of freedom (they are sometimes called higher
order theories), should be formulated.

Consider the fundamental results of comparing the vibration frequency
distributions obtained by using three-dimensional theories (see Table 3). For
A1 < 10 and for higher vibration modes the frequency distribution is more uniform.
With the decreasing of a plate’s thickness (increasing 4; and /,) the distribution
picture becomes principally changed. For p—0 (p = (¢4u/21)* + (Bu/A2)?) fre-
quencies approaching, for instance IIA and IITA, IVS and VS, and so on are
observed. The frequencies related to bending and frequency spectra of the symmetric
modes tend to approach the zero limit, and a convergence is characterized by the first
terms of the asymptotic series. The convergence effect can be foreseen by using the
modified Timoshenko’s theories for frequency spectra ITA and IITA.

The material properties influence on the free vibration frequencies will be
analyzed by using an isotropic-transversal body, whose isotropic plane coincides
with x0y plane. This limitation of the considerations leads to the reduction of the
parameters’ number and only the specific parameters are left.

Consider the influence of G'/E on the vibration frequency spectrum of
a transversally isotropic plate for different values of 4, 4, characterizing the
relative thickness.

In Table 4 the frequencies obtained by using two-dimensional classical theory,
Timoshenko type theory (with and without inertia rotary effects) are given (in the
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first row the mode numbers are presented). The parameters used are 4, = 1, =5,
10, 50, 100. For the parameters and the modes given in Table 5 the frequency values
obtained by using the three-dimensional theory have been given (the first 10 spectra
arranged in the increasing manner for each pair of the wave numbers).

An essential influence on the frequency spectrum of the transversally isotropic
free vibrations (thick or thin) involves a transversal displacement. It increases with
the increase of mode number and relative plate thickness. Rotary inertia effects
slightly decrease the frequencies (to 0-1%) for different vibrations and different
modes of thin (1; = 50, 100), average (1; = 10) and thick (4; = 5) plates. This leads
to the conclusion that the rotary inertia influence is smaller than that in the case of
an isotropic plate material.

Consider now the drawbacks and the advantages of the classical and improved
Timoshenko’s theories.

In the case considered, the classical theory possesses a narrower application area
than for the calculation of an isotropic plate frequency. For 4; = 100 an error less
than 5% can be obtained only during the calculations of the first three frequencies
corresponding to the numbers m=n=1, m=1, n=2; m=n=2. For s> 8§
(where “s” is the ordinal frequencies number in the bending spectrum) the error is
greater than 10%. For 4; = 50 the error is smaller than 5% when using the classical
methods, whereas for 1, = 5, 10 the Kirchhoff theory leads to incorrect results. For
instance, for A; = 5, the fundamental frequency determination error is equal to
200%, and during the ninth mode determination it exceeds 900%!

The results obtained by using the Timoshenko kinematic model differ slightly
from the exact results obtained by using three-dimensional theory. The error does
not exceed 6% for a fundamental frequency (4, = 5), and even decreases to 3% with
an increase of mode number. Also, the results obtained by using the general
Timoshenko model are close to exact. For A; = 100 the latter theory gives
practically the exact free vibration frequency values. With the increase of thickness
and the mode numbers error increases, but for the changes considered in parameter
intervals error does not exceed 6%.

Another important and interesting problem is related to the possibility of the
application of modified theories to the free vibration frequencies determination of
the successive spectra. It is obvious that between frequencies defined by using the
modified theories and the three-dimensional theories is the same relationship as for
a material isotropy. If one takes equation (48), then one gets frequency values close
to the real values, but the interval (wo 7, wr) includes the frequencies corresponding
to different vibration modes.

The frequency calculation results analysis when using the three-dimensional
theory show that the frequency spectra of a free vibration transversally isotropic
plate are more continuous and more uniform than those of an isotropic plate
spectra. For instance, the frequency values of the first 10 spectra of
a three-dimensional plate lie in the interval (0, 5) for a transversally isotropic
material; for an isotropic plate that interval corresponds to (0, 10) and the
frequencies are shifted to the left.

In the transversally isotropic plate frequency interval there are also frequencies of
the isotropic plate vibrations. It seems to be strange at first glance, however,
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Figure 1. 3-D theory versus 2-D approximate theory for free orthotropic (isotropic) plate
vibrations; Dependence on G'/E.

because according to the physical and geometrical choice of the parameters of the
transversal-isotropic material, low transversal stiffness does not influence the
frequencies related to the tension-compression vibrations.

In Figure 1 the frequency against G'/E relation for A, = A, = 5 is presented.
Curve 1 corresponds to the fundamental frequency found by using the
three-dimensional theory. The curves obtained by using the improved Timoshenko
theory are not practically distinguishable from curve 2.

The presented curves clearly characterize the G'/E influence on the free vibration
fundamental frequency. For G'/E close to 0-384 values (isotropic material), the
results obtained indicate a slight influence of transversal stiffness on the
fundamental frequency. With the decrease of G'/E the fundamental frequency is
reduced.

6. NUMERICAL INVESTIGATION OF THE ADDED MASSES INFLUENCE

In the previous sections, a comparison between the results obtained by using
modified and three-dimensional theories of the free isotropic and transversally
isotropic plates vibrations has been conducted. A similar approach is highly
required for plates with attached masses.

While searching for the solution to the problems related to plates and shells,
there are principally two possibilities: exact problem formulation in the frame of the
three-dimensional elasticity theory and definition of the possible steps of solutions
or definition of the approximated calculation models for the different problems.
The second approach is of more interest in technical applications.

The fundamental results relating to the free plates and shells vibrations with the
attached masses have been achieved by using the second approach realized by the
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following model: a plate (Kirchhoff-Love model) being absolutely hard mass
(concentrated or distributed) and vertically vibrating. A tendency towards the
application of this model is observed in the case of forced vibrations [12-14],
parametric vibrations [15, 16], stochastic vibrations [17], non-linear vibrations
[18, 19] as well as during the dynamic stability analysis [20, 21] and optimization
[22, 23] of plates and shells with the added masses. On the other hand, the first
approach gives a better possibility of the physical interpretation of a problem and
seems to be a strong tool for building new models as well as calculation algorithms.
It allows for the analysis of existing models and development of approximate
methods applied directly by engineers. It also allows for the development of
investigated objects. However, it requires a high development of computer
techniques.

If one takes into account that the numerical investigation of the dynamical
characteristics with the attached masses is not a simple task, then one can imagine
how difficult it is to solve similar problems in the frame of three-dimensional
theories.

Problems related to the analytical results, the lack of optimal numerical
investigations and high consuming time of numerical as well as symbolic
computations do not allow for receiving the general formulas. It does not give any
optimistic prognosis for the dynamic characteristic definition of the analyzed
systems.

Therefore, a compromise solution should change the complex analytic formulas
using the numerical calculations.

A traditional analysis causes many calculation difficulties in finding solutions to
the frequency equations of the “shell-mass” systems. As has been shown in
reference [24], the free vibration frequencies of elastic systems with discrete added
elements may be found as the eigenvalues of a certain class of matrix with
trigonometric series as its elements. In our case we obtain the transcendental
equation

40 M > wlsin® o, x; sin® B,y + 1 =0, (49)

m,n

where

A A A
w? = j d\) sh 0-5t, + jz d\) ch 0-5t, + f d¥ ch 0-51,

A A 4
+ZHAQ sh 05t + 22 A ch 05ty + LAY sh 05ty (50)

A is the determinant of the linear equations (24), and 4; is the minors obtained from
A by cancellation of the Ith row and ith column.

In the case of the isotropic plate one finds the following explicit formula for w?:

w? = [w?s(shrchs(r? + p)* — 4 prschrchs)]/A. (51)
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Figure 2. As Figure 1 but dependence on M/Mj,.

Here
A =8(r* + p)? prs(1 — chrchs) + shrshs[16p%r2s? + (2 + p)*],

P=0~Cm+ﬁﬁ> &m=06m/},1, Bn=ﬁn/j~2:

r=Jp— 0% s=./p—1—-2vw*2—2).

and o is the frequency sought.

The received assumptions allow one to retain only the component of the essential
influence. The obtained equations are more simplified.

The equations obtained finally are solved by using the algorithm described in
reference [25]. The only difference is that in the subroutine realizing the numerical
calculations of the roots of equation (49), there is no second step included and the
frequencies of the orthotropic plate free vibrations are taken as the initial values.
The suitability of writing two independent programs is substantiated by lower time
for the free vibration frequencies computation for an isotropic plate with the
discrete added masses.

Consider the influence of the geometric and physical parameters as well as the
added masses value on the frequency spectra of the free vibrations of an isotropic
plate and compare the results obtained by using the classical and the
three-dimensional theories.

In Figure 2 a frequency & dependence

@D = wy/wo, (52)
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TABLE 6

Frequencies of the isotropic plate with attached mass: TK - Kirchhoff’s theory;
M T-Timoshenko’s model (a) including inertia of rotation (b) without inertia of
rotation; GT - generalized Timoshenko’s model, TT - three dimensional theory

MT
M/M, TK a b GT TT
G/E =0384; ), =5, /5 =5, v =03
001 0-37785 0-34666 0-33908 0-33464 0-33602
01 0-32538 029955 029316 0-28906 029164
05 0-22052 020314 0-19897 0-19575 0-19822
1-0 0-17005 0-15709 015331 0-15069 015262
20 012631 011627 011378 011177 011318
G/E = 0384; ), = 10, 1, = 10; v = 0-3
001 0-094463 0092318 0091658 0-091270 0-091404
01 0-081344 0079457 0-079037 0-078690 0-078942
05 0-055130 0053733 0-053605 0-053443 0-053664
1-0 0042512 0-041389 0-041332 0-041120 0-041407
20 0031577 0030719 0-030696 0-030534 0-030766
G/E = 0384; ), = 50, /., = 50; v = 0-3
001 00037785  0-0037750 00037739 00037731 00037735
01 00032538 0-0032502 00032499 00032493 00032501
05 00022052 0-0022013 00022026 00022022 00022034
1-0 00017005  0-0016969 00016985 00016981 00017004
20 00012631 0-0012602 00012616 00012613 00012661
G/E = 0:384; 1, = 100, 2, = 100; v = 03
001 000094463 0-00094441 000094434 000094429  0-00094431
01 000081344  0-00081323 000081320  0-00081316  0-00081320
05 000055130  0-00055107 000055114 000055111 000055113
1-0 000042512 0-00042491 000042499 000042497  0-00042501
20 000031577 0-00031560 000031568  0-00031566  0-00031572

against M /M, for a lower isotropic plate vibration frequency is given. Here w, is
the free vibration frequency of the isotropic plate (without any additional mass) w,,
is the frequency (corresponding to a plate with an added mass) with the values given
in Table 6 for the different geometric parameters A;, 4,. The additional mass
position has the following co-ordinates: x; = 0-476; y,; = 0-476.

The results, given in Figure 2, define a change of the parameter & corresponding
to the fundamental plate vibration frequency versus the added mass M for relative
thickness parameter 4, = 5. The results obtained by using Kirchhoff’s theory
(curve 1), the improved Timoshenko theory (curve 2) defined by & = &(M/M,) are
practically indistinguishable in Figure 2. From the data of Figure 2, it can be
concluded that both approximate and three-dimensional theories give similar
results. This conclusions is also true for 4; > 5.
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Figure 3. As Figure 2, but see text for different meanings of the curves /, 2 in the two figures.

Upon carrying out the analysis of the parameter related to frequency (Figure 2)
against the added mass the following conclusions are derived.

1. @& decreases with increase of the relative thickness parameter. Therefore, the
fundamental free vibration frequency of a plate with and without the attached
masses for a given A; decreases.

2. In the case of the attached masses the frequencies @ decrease with the increase
of M/M, for a given 4,. With the change of M/M, in the interval 0-01-2-0 the
frequencies @ decrease correspondingly: 1-02 times for M/M, = 0-01; 1-18 times for
M /My = 0-1; 1-74 times for M /M, = 0-5; 2-25 times for M /M, = 1-0; 3-03 times for
M/M, = 2-0. From the given data one can conclude that during the change of the
physical and geometrical plate parameters the attached mass influence on free
vibration fundamental frequency of an isotropic plate is essential.

One can now focus on a composite plate made from a transversal isotropic
material with each point having an isotropic plane parallel to the x0y plane. In
order to decrease the number of control parameters only the specific properties
characterizing the material with a low transversal stiffness are left.

For a plate made of a transversally isotropic material the following physical and
geometrical parameters are taken: G'/E =001; 1, = 4, =5; 10; 50; 100. The
attached mass has the co-ordinates: x; = y; = 0-476.

In Figure 3 the change of the control parameter @ = wys/w,, where wy is the free
vibration frequency of a transversally isotropic plate (without an added mass), w,,
is a frequency of a loaded plate (they are given in Table 7 for the different geometric
parameters A;, A,) for different values of a ratio M/M, for the fundamental
vibration frequency of a transversal isotropic plate with a concentrated mass. The
following notations are used: 1—the @& the curve obtained by using a classical
theory; 2—the curve built by using Timoshenko type theory, the generalized
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TABLE 7

Frequencies of transversally isotropic plate with a concentrated mass: TK

— Kirchhoff’s theory; M T-Timoshenko’s model including (a) inertia of rotation (b)

without inertia of rotation, GT - generalized Timoshenko’s model; TT - three
dimensional theory

MT
M/M, TK a b GT TT
G'JE=001;4,=5,4,="57v=03
001 0-37785 013168 0-13159 0-12147 0-12446
01 0-32538 011212 0-11209 0-10341 0-10615
05 022052 0072811 0072802 0-067081 0-068994
1-0 0-17005 0055128 0055124 0-050771 0-052242
20 012631 0040445 0040443 0-037240 0-038444
G'/E = 001; 4, = 10, 1, = 10; v = 03
001 0-094463 0056368 0056311 0-053036 0-053399
01 0-081344 0048155 0048120 0-045288 0-045770
05 0-055130 0031628 0031619 0029691 0-030092
1-0 0-042512 0024049 0024045 0-022560 0022789
20 0031577 0017692 0017690 0-016588 0016810
G'/E = 0-01; 4y, = 50, 1, = 50; v = 03
001 0-0037785 00036489 00036479 00036235  0-0036225
01 0-0032538 00031397 00031391 00031177  0-0031183
05 0-0022052 00021209 00021207 00021050  0-0020995
1-0 0-0017005 00016328 00016327 00016201  0-0016184
20 0-0012631 00012114 00012114 00012018  0-0012023
G'/E = 001; J, = 100, 7, = 100; v = 0-3
001 0-00094463 000093621 000093613 000093414  0-00093415
01 0-00081344 0-00080603  0-00080598 000080452  0-00080459
05 0-00055130 000054580 000054578 000054470  0-00054478
1-0 0-00042512 000042069 000042069 000041982  0-00041988
20 0-00031577 000031239 000031239 000031172  0-00031176

Timoshenko model and the three-dimensional theory (practically in the figure’s
scale they are not distinguished). The calculation results given in Figure 3 allows one
to draw conclusions about the frequency spectra of the transversally isotropic plate
with the attached mass as well as some conclusions about the relative dependencies
obtained using three-dimensional and approximate theories for certain values of
the physical and geometrical parameters and the attached mass values.

The free vibration frequencies of the transversally isotropic plate with and
without attached mass are lower than for a similar but isotropic plate. Such results
are given by the three-dimensional theory and the improved theories.

The occurrence of the additional mass decreases a fundamental frequency value
of the transversally isotropic plate. If as a control parameter one takes wi;/wd; then
for the plates with small thickness (1; = 50, 100) the dependence & = & (M /M,)
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(transversally isotropic material) will be practically indistinguishable from a similar
dependence for the isotropic plate with the attached mass (for both two and
three-dimensional theories applied). With an increase of the attached mass value,
an error introduced by classical and improved theories (for A; < 50) slightly
increases in comparison with the corresponding case without the mass. However, in
the analyzed ratio M/M, change it does not exceed the following values:
5%—classical theory: 1% —Timoshenko-like theory; 0-05%—generalized
Timoshenko theory. From the given examples it can be concluded that for a low
stiffness transversal material the difference between results obtained using
three-dimensional and classical theories increases with the increase of M and it
practically does not change using the improved theories. Thus, the results obtained
by using the improved Timoshenko type theories may be applied in all cases of the
parameters A;, 4, M/M, changes as well as for plates made from different
composite materials with more stiff properties.

One can now analyze how the attached masses influence higher frequencies of the
isotropic plate. In Table 8 the frequencies (2 < s < 9, where s denotes a frequency
sequence in a corresponding spectrum) obtained by using the classical theory,
Timoshenko type theory (with and without rotary inertia effects) and a generalized
Timoshenko model (with a rotary inertia effect) are given. For each s number two
corresponding frequencies are given: higher values are obtained for M = 0-1 M,,
lower for M = 0-2M,. For the attached masses’ values in the Table 9 higher
frequencies for the first 10 spectra are given, in the increasing sequence obtained
using the three-dimensional theory.

The results given in the tables allow some conclusions about higher free isotropic
plate vibration frequencies with the concentrated mass attached at the point
xy =y, =0476. It seems that the attached mass does not influence
a higher-frequency spectrum corresponding to bending (for approximate and
three-dimensional theories). That influence is even smaller in the case related to
thickness jump. For instance, with a change of a ratio M /M, in the interval 0-1-2-0
the higher frequencies related to bending decrease by less than 0-4%. The added
mass does not influence free vibration frequencies, the frequencies of the spectrum
related to the rotation (IIA), because for that case w = 0. The three-dimensional
theory shows no influence on the other spectra (not outlined by the
two-dimensional theories) and (for example) corresponding to the symmetric
vibration modes of an unloaded plate.

An influence of the attached mass on the higher vibration frequencies of the
transversally isotropic plate (G'/E = 0-01) with one concentrated mass are shown in
Tables 10 (two-dimensional theories) and Table 11 (three-dimensional theory). The
changes intervals of the geometric parameters 4,, 4, and M /M, are the same as in
the previously considered cases.

The analysis of the results given in the tables leads to a conclusion that an
occurrence of the concentrated mass causes a frequency decrease (to 14%) for
different modes related to bending (for improved theories and the
three-dimensional theory). The results prove the lack of influence of the attached
mass on higher frequencies of the spectra IIA and IIIA (using Timoshenko type
theory and the generalized Timoshenko model with rotary inertia effects).
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TABLE 11

Influence of the attached mass of the higher frequencies of the transversely isotropic
plate obtained by using three-dimensional theory (frequencies spectrum related to
bending) (G'/E =0-01; 41 =5, 1, =5; v=103)

2 3 4 5 6 7 8 9

020977  0-26613 027083  0-34883  0-38294  0-40357 043739  0-48858
020640  0-22827 027074 034822 037122 040334 043738 048771

7. GENERAL CONCLUSIONS

1. The generalized Timoshenko type model and Timoshenko’s model with the
inertia rotary effects allow one to obtain practically exact results of frequency
spectrum calculations related to bending in the considered geometrical (5 < 44,
A, < 100) and physical (0-01 < G'/E < 0-38) parameters ranges of isotropic and
transversally isotropic plates.

2. Presence of a concentrated mass decreases the vibration frequencies
corresponding to the analyses of unloaded plates by using the improved and
three-dimensional theories as well as the Timoshenko type theory.

3. For high-frequency spectra of the isotropic and transversally isotropic plates
the attached mass influence may be omitted (except for the bending process).
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