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The steady state, geometrically non-linear, periodic vibration of rectangular
thin plates under harmonic external excitations, is analyzed using the hierarchical
"nite element and the harmonic balance methods. Modal coupling due to internal
resonance is detected and the consequent multi-modal and multi-frequency
response is demonstrated. The stability of the obtained solutions is investigated
by studying the evolution of perturbations to the solutions and using Floquet's
theory.
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1. INTRODUCTION

As the displacement amplitude of a fully clamped plate increases, the sti!nes
increases due to the e!ect of the membrane forces. Therefore, the non-linear normal
mode [1] is amplitude dependent [2}6] and the resonance frequency changes with
the vibration amplitude. Consequently, the natural frequencies may become
commensurable that is, a relation of the form m
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where m
i
are positive or negative integers, may exist.

In non-linear systems, the commensurability of natural frequencies results in
coupling of the normal modes and may cause their strong interaction. As a result
energy is interchanged between these modes, and multi-frequency, multi-modal
response occurs. This phenomenon is known as internal resonance [7, 8].

Modal interactions due to the non-linearity may cause large-amplitude response
of modes which linear analysis predicts to remain unexcited. In reference [9],
theoretical and experimental studies on the in#uence of modal interactions on the
non-linear response of harmonically excited structural systems are reviewed, and it
is concluded that di!erent experiments have shown the existence of internal
resonances. In reference [10] experimental evidence of energy transfer between
modes in a composite plate was presented.
sPresent address: DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua dos Baragas,
4050-123 Porto, Portugal

0022-460X/99/400985#26 $30.00/0 ( 1999 Academic Press



986 P. RIBEIRO AND M. PETYT
Lau et al. [11, 12] used the "nite element method and the harmonic balance
method (HBM) to study the free and steady state forced vibration of isotropic
plates. By using two harmonics, loops of the response curves due to 1 : 3 internal
resonances were found. The stability of the solutions was not investigated.

Abe et al. [13] analyzed internal resonances in laminated plates. The transverse
de#ection was assumed to be a function of two linear*therefore constant*modes
and the Galerkin's procedure was applied in conjunction with the method of
multiple scales. Hence, the method is only valid for displacements smaller than the
thickness of the plate. The middle plane in-plane displacement were neglected.

In references [14, 15] the free vibration of isotropic and laminated plates
was investigated by the hierarchical "nite element method (HFEM) and the
harmonic balance method. Internal resonances were detected. They resulted
either in a secondary branch of the backbone curve (curve that relates the
frequency with the amplitude of vibration) or in an increase in the curvature of
a main branch (a main branch originates from a linear solution). Because of
coupling between modes vibrating at di!erent frequencies, internal resonances also
resulted in a very signi"cant variation of the mode shape during the period of
vibration.

To study internal resonances by the HBM more than one harmonic must be
introduced in the time series, consequently increasing the number of degrees of
freedom of the system. Thus, it would be of great importance to possess an accurate
spatial model with a small number of d.o.f. It has been demonstrated, that an
accurate model for periodic vibration of plates can be constructed by the
hierarchical "nite element and the harmonic balance methods, with a reduced
number of degrees of freedom in both free [14, 15] and forced vibration [16].

In this paper, the occurrence and the e!ects of internal resonance on the
geometrical non-linear forced vibration of plates are investigated. The model used
is based on the HFEM and on the HBM and has been presented in reference [16].
The stability of the obtained solutions is studied and it is demonstrated that stable
multi-modal solutions indeed occur. The e!ect of changing the orientation of the
"bers in laminated plates is investigated.

2. STABILITY OF THE SOLUTIONS

An equilibrium solution is said to be locally unstable, if a small perturbation of
the solution leads to a departure from it. The converse occurs near a stable
equilibrium condition. In a non-linear system more than a single equilibrium
solution may appear, but not all the solutions are stable, and it is important to
carry out a stability study [7, 8].

To investigate the local stability of the solution a small disturbance is added to
the steady state solution

Mq8 N"Mq
w
N#Mdq

w
N (1)

and its evolution is studied. If Mdq
w
N dies out with time then Mq

w
N is stable, if it grows

then Mq
w
N is unstable.
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Inserting the disturbed solution (1) into equations of motion (14) of reference
[16], expanding the non-linear terms by means of Taylor series around Mq

w
N and

ignoring terms of order higher than Mdq
w
N, the following equations are obtained:
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The coe$cients L([Knl]Mq
w
N)/LMq

w
N depending quadratically on Mq

w
N, are

periodic functions of time and can be expanded in a Fourier series:
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where h.o.t. stands for higher order terms, which will be neglected. The Fourier
coe$cients of L([Knl]Mq
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Inserting equation (3) into the variational equation (2), results in
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which forms a system of Hill's equations [7].
The modal co-ordinates, MdnN, of the linear system are de"ned by

Mdq
w
N"[B]MdnN , (10)

where [B] represents the modal matrix. The modal co-ordinates are normalized so
that the matrix of modal masses is the identity matrix.
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Using modal co-ordinates, multiplying equation (9) by [B]T and introducing
a new vector of variables de"ned as

MdnN"e~(1@2)(b@u) *I+t Mdn1 N , (11)

one obtains the following system equations:
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The simpli"cation to equation (12) was possible only because, after
transformation into modal co-ordinates, the damping matrix is equal to a scalar
times the identity matrix.

To determine simple instabilities, the solution is assumed to have the form [17]
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where j are the characteristic exponents. With this expression, simple instabilities
of "rst and of third order will be detected.

Inserting equation (13) into equation (12) and applying the HBM one arrives at
the following system of equations:
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where the terms Const1 and Const2 are
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Equation (14) is equivalent to the following eigenvalue problem:
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where MCN"jMXN.
Because the interest is in the stability of the variable MdnN, equation (13) is

inserted in equation (11) to obtain
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for any j, then the solution is unstable, otherwise it is stable. Only the eigenvalue
with the major real part must be determined.

The stability study resulted in an eigenvalue problem of the form (19), which is of
order 4n and, for large n, takes a long computational time to be solved (n is equal to
2p2

0
k, where k is the number of harmonics used, in this paper k"2). Consequently,

simpli"cations of the stability study are desirable. The sign of the Jacobian's
determinant, DJ D, can be used with this purpose [19, 20].

The Floquet multipliers p are related to the characteristic or Floquet exponents
j [8] by

j"
1
¹

ln(p), (22)

where ¹ is the period of the periodic functions in equation (12). MdnN grows with
time when EpE crosses the unit circle, which can happen in three ways [21]:

p"1Nj"0 , (23a)

p"!1Nj is purely imaginary, (23b)

Im(p)O0Nj is a complex number. (23c)
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For simplicity, in the following paragraph only the mechanism (23a) of losing
stability is investigated. In some applications, a pair of complex conjugate
characteristic exponents occurred, associated with higher order instabilities.
Therefore, higher order instabilities will not be detected by investigating only the
mechanism (23a) of losing stability.

From (23a) and due to transformation (11), the stability limit of MdnN is de"ned by

j"
1
2

b
u

. (24)

Inserting expression (24) into (19), one arrives at a condition of the form
DJ#E D"0 [20], where E is an error matrix. In the numerical applications carried
out, this error matrix was not important, and was neglected. Therefore, a study of
the "rst order's stability of the two harmonics solution, using the sign of the
determinant of Jacobian matrix as an indicator of a change if stability status, can be
carried out. The process is similar to the one suggested in reference [19] for
harmonic solutions. However, one should bear in mind that when the model
includes the in-plane displacements, the Jacobian used in this work is an
approximated one [16].

3. APPLICATIONS

3.1. INTRODUCTION

Two plates are studied, one is isotropic (aluminium DTDSO 70 )*Plate 1*and
the other is a composite laminated plate (graphite/epoxy)*Plate 2, with "ve layers.
The layers of Plate 2 have the following orientation of principal axes (h, !h, h,
!h, h). Two values will be assumed for h: 153 and 453. The dimensions and the
material properties of Plates 1 and 2 are given in reference [16].

In reference [16], the HFEM and HBM model, as well as the continuation
method used to solve the equations of motion are presented. Convergence studies
were carried out and it was demonstrated that an accurate model of Plate 1 and of
2 with h"453, would include two harmonics, "ve out-of-plane shape functions and
eight in-plane shape functions. In this paper, two harmonics, "ve out-of-plane and
ten in-plane shape functions are utilized to derive the models of both Plate 1 (except
when indicated otherwise) and 2, with h"453. Convergence studies for steady state
forced vibration of Plate 2 with h"153 will not be carried out, but, based on the
free vibration analysis of this same plate [15], a model with two harmonics, six
out-of-plane and ten in-plane shape functions will be used (p

0
"6, p

i
"10).

3.2. PLATE 1

A harmonic excitation at normal incidence with the form shown in Figure 1 was
applied. The expression that gives the amplitude of this force is: P"2#5]104
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f
2
(m) f

2
(g)N/m2, where f

2
is the second out-of-plane shape function given by

f
2
"(1/8) m!(1/4) m3#(1/8) m5 . (25)

This excitation has a form very similar to that of the fourth mode of vibration of the
plate. The modes of vibration of Plate 1 are presented in reference [14].

Figure 2}4 show the FRF curves of the "rst and third harmonics calculated at
(m, g)"(0, 0) and of the "rst harmonic calculated at (m, g)"(0)5, 0)5). They have
just one peak, which is due to the "rst mode (mode (1, 1)*the mode numbers
(n

1
, n

2
) are related to the modal lines: n

1
and n

2
are one plus the number of nodal

lines crossing any line parallel to the x- and y-axis, respectively. The plate edges
are not counted). Figure 5 shows the FRF curve of the third harmonic at
(m, g)"(0)5, 0)5). There is a very prominent peak, which is due to excitation of mode
4 (or mode (2, 2)). In fact, the relation between the linear natural frequencies of the
fourth and "rst mode is u

l4
/u

l1
"3)006, and the fourth mode is excited by means of

a 1 : 3 internal resonance. After this peak, the in#uence of the fourth mode and the
amplitude of vibration decreases, and at =

3
/h:0)002, the FRF curve describes

almost a semi-circle. Each picture in Figure 6 represents the deformations of the
plate*divided by the plate's thickness*associated with each term of the time
series. These deformations are calculated by the following expressions:
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Figure 1. Non-symmetric excitation.



Figure 2. FRF of "rst harmonic at (m, g)"(0, 0) due to non-symmetric excitation:#stable;
s unstable. Plate 1.

Figure 3. FRF of third harmonic at (m, g)"(0, 0) due to non-symmetric excitation:#stable;
s unstable. Plate 1.
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Figure 4. FRF of "rst harmonic at (m, g)"(0)5, 0)5) due to non-symmetric excitation:#stable;
s unstable. Plate 1.

Figure 5. FRF of third harmonic at (m, g)"(0)5, 0)5) due to non-symmetric excitation:#stable;
s unstable. Plate 1.
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Figure 6. Deformation of Plate 1 at point u/u
l1
"1)0050. (a) cos (ut); (b) sin (ut); (c) cos (3ut);

(d) sin (3ut).
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It is visible that modes one and four de"ne the vibration of the plate. Note that,
although the internal resonance occurs at low amplitudes*around=

1
/h"0)25 at

Mm, g)"(0, 0) (area of greater point density in Figure 2), it would be disregarded by
a harmonic solution.

A normal incident harmonic excitation of large amplitude, 10 N/m2, was also
applied to Plate 1. At large amplitudes it was di$cult to achieve convergence when
the middle plane in-plane displacements were included in the model, because of the
approximated Jacobian used to solve the equations of motion. In order to facilitate
convergence, the middle plane in-plane displacements were neglected. The model is
therefore not so accurate, but the qualitative study on the e!ects of modal coupling
remains valid. Five out-of-plane shape functions were used.

The "rst harmonic attained a maximum vibration amplitude of around 1)2 times
the thickness of the plate*Figure 7*and the third harmonic 0)23*Figure 8. The
shape of the FRF curve at large amplitudes of vibration is di!erent from the typical
shape of harmonic solutions, because of the internal resonance. In fact, Figure 9
shows that, at large amplitudes, the vibration of the plate is de"ned by two
non-linear modes: the "rst*(1, 1)-mode, linked with the "rst harmonic, and the
"fth*(1, 3)*mode, linked with the third harmonic. The linear natural frequencies



Figure 7. FRF of "rst harmonic at (m, g)"(0, 0): !and #stable; s and e third order instabilities;
h "rst order instability. Plate 1.

Figure 8. FRF of third harmonic at (m, g)"(0, 0): !and #stable; s and e third order instabili-
ties; h "rst order instability.
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Figure 9. Deformation of Plate 1 at point u/u
l1
"1)34. (a) cos (ut); (b) sin (ut); (c) cos (3ut); (d) sin

(3ut).
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of these modes are related by u
ls
/u

11
"3)4712. Due to the geometrical

non-linearity, the "rst resonance frequency increases with the vibration amplitude,
the "fth and the "rst resonance frequencies become related by u

nl5
/u

nl1
:3, and

there is modal coupling between the "rst and "fth modes, due to a 1 : 3 internal
resonance.

Figures 10}13 show projections of the plate in the plane de"ned by x"0 at
several instants during a period of vibration, ¹. The amplitude of vibration
displacement was divided by the thickness of the plate. The great importance of the
third harmonic in the de"nition of the deformation of the plate is obvious.

The stability of the solutions was studied by solving the eigenvalue problem (19).
Three separated instability area were detected by calculating the characteristic
exponents: Figure 7. The unstable solutions denoted by a circle are of the third
order type: they occur in the vicinity of u

l5
/3. In this area the stability was lost by

process (23c), that is, a pair of complex conjugate Floquet multipliers crossed the
unit cycle. The instability of the solutions denoted by a diamond is probably also of
the third order type, as these solutions occur close to u

l6
/3. The solutions denoted

by a square are unstable, with an instability of the "rst order, associated with the
"rst resonance frequency. In this last case, the stability was lost with purely real
characteristic eigenvalues. Note that several solutions where modal coupling is
present are stable.



Figure 10. Section of Plate 1 at x"0, frequency u/u
l1
"1)34: !t"0; s t"(1/24)¹;

- - - t"(2/24)¹;#t"(3/24)¹; e t"(4/24)¹; h t"(5/24)¹.

Figure 11. Section of Plate 1 at x"0, frequency u/u
l1
"1)34: !t"(6/24)¹; s t"(7/24)¹;

- - - t"(8/24)¹;#t"(9/24)¹; e t"(10/24)¹; h t"(11/24)¹.
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Figure 12. Section of Plate 1 at x"0, frequency u/u
l1
"1)34: !t"(12/24)¹; s t"(13/24)¹;

- - - t"(14/12)¹;#t"(15/24)¹; e t"(16/24)¹; h t"(17/24)¹.

Figure 13. Section of Plate 1 at x"0, frequency u/u
l1
"1)34: !t"(18/24)¹; s t"(19/24)¹;

- - - t"(20/24)¹;#t"(21/24)¹; e t"(22/24)¹; h t"(23/24)¹.

998 P. RIBEIRO AND M. PETYT



NON-LINEAR PERIODIC VIBRATION OF PLATES*II 999
A stability study in which only the "rst order instability was investigated*using
the sign of DJ D*seems to con"rm the previous analysis: only the points represented
by a square in Figure 7 were detected as unstable. The Jacobian's determinant, DJ D,
did not change sign between stable and higher order unstable regions. Because of
the approximations followed, more research should be conducted in order to
con"rm the use of DJ D as an indicator of loss of stability of the "rst type, when the
solution is multi-harmonic.

Super-harmonic resonance of mode 1 was detected, when the excitation
frequency is close to u

l1
/3. The amplitudes of vibration displacement were

extremely low at this resonance.

3.3. PLATE 2

In Figures 20 and 21 of Part I of this paper, which represent the amplitude of the
third harmonic of Plate 2, (when not stated otherwise, the orientation of Plate 2's
"bers is given by h"453), two peaks are visible. The "rst one, at u/u

l1
"0)9738, is

due to the excitation of mode number 4. The excitation of this mode was not
accounted for by the one harmonic approximation and that is the reason why it
gave such poor result (Figure 7 of reference [16]). The second peak of the third
harmonic has a round shape, which is due to an additional excitation, namely of
mode six, and to a coupling between mode 1 and 6. The natural modes of Plate
2 are presented in reference [15], here it can be seen that the linear natural
frequencies of modes one, four and six are related by u

l4
/u

l1
"2)9081 and

u
l6
/u

l1
"3)7546. Due to the variation of the resonance frequencies with the

vibration amplitude, 1 : 3 internal resonances occur between these modes.
To make the e!ect of internal resonance more evident. Plate 2 was excited with

a harmonic plane wave also at normal incidence, but with a large amplitude:
5 N/m2. The frequency response function curves obtained are represented in
Figures 14}17. Figures 18}20 represent the non-linear modes involved in the
vibration of the plate at three di!erent frequencies, in the following order:
u/u

l1
"0)97175, the "rst peak of the third harmonic; u/u

l1
"1)0882, the

maximum amplitude of vibration of the third harmonic at (m, g)"(0, 0); and
u/u

l1
"1)1382, the maximum amplitude of vibration of the third harmonic at

(m, g)"(0)5, 0)5), and of the "rst harmonic at both (m, g)"(0)0) and
(m, g)"(0)5, 0)5).

There are two 1 : 3 successive internal resonances and respective modal couplings
due to geometrical non-linearity. The "rst internal resonance occurs between the
"rst mode and the fourth, and results in the excitation of the fourth mode and in the
"rst peak of both Figures 15 and 17. In fact, the modes associated with the "rst and
third harmonics in Figure 18 are, respectively, the "rst and the fourth.

The second internal resonance, occurs between the "rst mode and the sixth.t
The increasing importance of modes four and six*which de"ne the vibration of
the third harmonic*in the de"nition of the vibration of the plate is responsible for the
tOne can argue that there exists also a 1 : 1 internal resonance between the fourth and the sixth
modes of vibration.



Figure 14. FRF of the "rst harmonic at (m, g)"(0, 0): #stable; s unstable. Plate 2.

Figure 15. FRF of the third harmonic at (m, g)"(0, 0): #stable; s unstable. Plate 2.
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Figure 16. FRF of the "rst harmonic at (m, g)"(0)5, 0)5): #stable; s unstable. Plate 2.

Figure 17. FRF of the third harmonic at (m, g)"(0)5, 0)5): #stable; s unstable. Plate 2.
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Figure 18. Deformation of Plate 2 at point u/u
l1
"0)97175. (a) cos (ut); (b) sin (ut); (c) cos (3ut);

(d) sin (3ut).
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softening spring e!ect in the third harmonic, which is visible in Figure 15. In fact, by
combining the fourth and sixth linear modes, Figure 21 was created. The
similarities between Figure 21 and Figures 19(d) and 20(c), and between Figure 21
and the symmetric with relation to the x}y plane of Figures 19(c) and 20(d) are
evident. The modal coupling does not die away with increasing frequencies,
therefore, the vibration of the plate at frequencies slightly larger than the "rst linear
resonance frequency involves the "rst, fourth and sixth modes. The "fth mode of
vibration is not visibly excited.

The instabilities which occur in the upper part of the "rst harmonic's FRF curve
in Figures 14 and 16, before the largest amplitude of vibration is achieved, are of the
third order type: they occur around u

l6
/3.

Figures 22 and 23 display the response of Plate 2 to a harmonic plane wave of
4 N/m2 of amplitude, at normal incidence, for a wide range of frequencies. These
curves were easily and automatically constructed by the continuation method.
Only modes which are symmetric with relation to the planes x

1
}z and y

1
}z, where

x
1

and y
1

are axes obtained by rotating the x- and y-axis 453 around the z-axis, are
excited and the larger peaks occur near the resonance frequencies of the linear
modes. Super-harmonic resonances occur when the frequencies of excitation are



Figure 19. Deformation of Plate 2 at point u/u
l1
"1)0882. (a) cos (ut); (b) sin (ut); (c) cos (3ut);

(d) sin (3ut).
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close to u
lk
/3. Their vibration amplitudes are so small, that they are not visible in

the "gures.
In Figures 24}27, the FRF curves of Plate 2 with h"453 and 153 are compared.

The excitation is an harmonic plane wave at normal incidence with 5 N/m2 of
amplitude and the loss factor is a"0)01 (which gives a damping factor slightly
larger when h"453 than when h"153, because u

l1
"763)10 rad/s in the "rst case

and u
l1
"799)65 rad/s in the second case).

The slope of the curves is di!erent, showing that the sti!ness of Plate 2 increases
more with amplitude if h"153 than if h"453. Therefore, for the same excitation
amplitude, larger total amplitudes of vibration are attained if h"453. However,
due to the internal resonance already reported for Plate 2, h"453, the amplitude of
the third harmonic at (m, g)"(0, 0) is, after frequency u/u

l1
:1)11, greater if

h"153 than if h"453.
In Figure 28, the shapes of Plate 2, h"153, associated with each of the terms of

the time series, at frequency u/u
l1
:0)9666, "rst peak of the third harmonic at

(m, g)"(0)5, 0)5), are shown. This small peak is due to the excitation of the sixth
mode.

In Figure 29 the shapes of Plate 2, h"153, connected with each term of the time
series, at frequency u/u

l1
:1)1331, higher peak of all harmonics, are shown. The



Figure 20. Deformation of Plate 2 at point u/u
l1
"1)1382. (a) cos (ut); (b) sin (ut); (c) cos (3ut);

(d) sin (3ut).

Figure 21. Combination of modes 4 and 6 of Plate 2 (h"453).
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Figure 22. First harmonic FRF at (m, g)"(0, 0). Plate 2 (h"453).

Figure 23. Third harmonic FRF at (m, g)"(0, 0). Plate 2 (h"453).
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Figure 24. First harmonic FRF at (m, g)"(0, 0). Plate 2: s h"153; #h"453.

Figure 25. Third harmonic FRF at (m, g)"(0, 0). Plate 2: s h"153; #h"453.
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Figure 26. First harmonic FRF at (m, g)"(0)5, 0)5). Plate 2: s h"153; #h"453.

Figure 27. Third harmonic FRF at (m, g)"(0)5, 0)5). Plate 2: s h"153; #h"453.
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Figure 28. Deformation of Plate 2 (h"153) at point u/u
l1
"0)9666. (a) cos (ut); (b) sin (ut); (c) cos

(3ut); (d) sin (3ut).
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third harmonic is now associated with the sixth and the seventh modes and is very
lightly excited.

4. CONCLUSIONS

In this paper, the steady state multi-harmonic response of isotropic and
laminated plates was analyzed. Internal resonances of the type 1 : 3 were found.
These occurred due to the excitation of modes with frequencies around three times
the "rst resonance frequency and resulted in multi-modal, multi-frequency
response. The stability of the solutions was analyzed, and it was shown that stable
multi-modal solutions occur.

Super-harmonic resonances were detected, but, in the absence of internal
resonances, their amplitudes of vibration displacement are small.

Due to modal coupling, high order modes are excited and more harmonics must
be included in the solution. In fact, the reason why it is necessary to include the
third harmonic in the analysis of Plates 1 and 2 [16], is the existence of internal
resonance between the "rst and higher order modes.

By varying the "bre orientation within the layers of a laminated plate, the plate's
characteristics are changed. Not surprisingly, this is a way of avoiding internal
resonances between some modes and in a certain frequency region.



Figure 29. Deformation of Plate 2 (h"153) at point u/u
l1
"1)1331. (a) cos (ut); (b) sin (ut); (c) cos

(3ut); (d) sin (3ut).
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The "bre orientation also a!ects the hardening spring e!ect of the plate. For the
same amplitude and non-dimensional frequency of excitation, Plate 2 attained
lower vibration amplitudes if h"153 than if h"453.
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