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This paper studies the stability behaviour of a linear gyroscopic system
parametrically perturbed by a (multiplicative) real noise of small intensity. To this
end, its maximal Lyapunov exponent is calculated using the method of Sri
Namachchivaya et al. [1]. The results derived are suitable for cases where the
response frequencies u

1
, u

2
are non-commensurable and the in"nitesimal

generator associated with the noise process, m(t) has a simple zero eigenvalue. These
results are then employed to determine the almost-sure stability boundaries of
a rotating shaft subjected to random axial loading.

( 1999 Academic Press
1. INTRODUCTION

Operational e$ciency, reliability and safety are primary requirements of
engineering systems. Each of these is in#uenced by the system response, the stability
of this response and its rate of convergence toward a steady state. These, in turn, are
dependent on the type, intensity and duration of the excitation applied to the
system. Clearly, any instability of the response will lead to stress #uctuations,
reduced performance, noise and vibration resulting in fatigue problems and, in
extreme cases, catastrophic failure.

The behaviour of engineering systems often re#ect the in#uence of some random
component which may arise from several possible sources. These may include
coupling with high-dimensional or non-linear external systems or loadings which
are poorly de"ned spatially or temporally. The in#uence of these random
excitations will be most profound under operational conditions close to the onset of
deterministic instability; however it may not be clear a priori whether they will
expand or reduce the region of stable operation. Thus, it is evident that the
application of stochastic stability theory can yield results relevant to practical
engineering systems.

The strongest de"nition of stochastic stability, that of almost-sure stability,
guarantees that all sample functions, except for those of measure zero, converge
22-460X/99/410105#26 $30.00/0 ( 1999 Academic Press
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asymptotically to the trivial solution with probability one. Consider a d-
dimensional linear system subjected to a real noise m(t).

xR "A(m (t))x, x(0)"x
0
O0.

The exponential growth rate of its solution is given by the Lyapunov exponent

j (x)"lim
t?=

1
t

logEx(t; x
0
)E ,

with suitable norm E ) E. By Oseledec's multiplicative ergodic theorem this system
possesses at most d such Lyapunov exponents. The largest of these can be regarded
as being the stochastic analogue of the largest real part of the eigenvalue of
a deterministic system. Hence, a negative value of this quantity provides a necessary
and su$cient condition for asymptotic sample stability of the system; a positive
value indicates sample instability with probability one. The top Lyapunov
exponent, therefore, provides a means of delineating those regions of parameter
space corresponding to stable and unstable behaviour.

Although asymptotically stable, the rate of convergence of the system response
towards its steady state value may be undesirably low. By itself, the top Lyapunov
exponent provides no insight into either the rate of convergence of the system
response towards its steady state value or the stability of its moments. This
information is provided by the moment Lyapunov exponent, denoted by g (p),

g(p)"lim
t?=

1
t
logE[Ex(t; x

0
)Ep],

where E[ ) ] denotes the expectation operator. It is noted that g (p) is a convex
function with g (p)/p increasing and g(0)"0. It was found, "rst by Molcy anov [2] for
two-dimensional systems, and later generalized by Arnold [3] to include d-
dimensional systems, that the two are related by

j(x)"g@(0).

By using this result and the convexity properties of g (p) various researchers [1, 4]
have produced asymptotic expansions representing the moment Lyapunov
exponent of a linear stochastic system as a function of its maximal Lyapunov
exponent. The relationship between j(x) and g (p) is illustrated in Figure 1.

Gyroscopic systems "nd wide usage in engineering applications. They can be
major system components themselves or sub-components of larger, more
complicated systems. Common examples include rotating shafts when treated in
a rotating co-ordinate frame, pipes conveying #uid, and elastic strips moving in an
axial direction. When modelling their transverse vibrations, each of these simple
systems is formulated as a gyroscopic system. Such systems are widely known to
exhibit interesting stability properties whose analysis is non-trivial. Due to this and
their common usage in industrial applications, where there is a desire to increase
mechanical e$ciency and operational safety and to minimize noise and vibration,
further study of the stability of this class of systems would be bene"cial.

Currently available results pertaining to maximal Lyapunov exponents of linear
systems include those for real and white noise cases for systems of two and four



Figure 1. Moment and maximal Lyapunov exponent.
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dimensions. These have been obtained through a variety of methods including the
method of stochastic averaging [5, 6] and the forward perturbative method [7, 8].
In addition, Sri Namachchivaya et al. [1] used a backward perturbative method to
obtain analytic expressions for the top Lyapunov exponent and moment Lyapunov
exponent for a four-dimensional linear system.

For gyroscopic systems, mean-square stability results are available [9, 10]. These
results were based on the method of stochastic averaging, and were derived for
small intensity real noise processes. The general results of Doyle and Sri
Namachchivaya [8] are suitable for application to gyroscopic systems but are not
su$ciently transparent to be readily applicable. In this work, a gyroscopic system is
considered from the outset with a view towards providing simpler, but equivalent,
stability results to those available from above. The results presented in this paper
represent the "rst application of the concept of the top Lyapunov exponent to the
determination of almost-sure stability of gyroscopic systems.

To this end, the backward perturbative method developed by Sri
Namachchivaya et al. [1] is employed to obtain maximal Lyapunov exponents for
a general four-dimensional linear gyroscopic systems driven by a multiplicative real
noise. It is assumed that the response frequencies u

1
, u

2
are non-commensurable

and the generator describing the noise process has a simple zero eigenvalue. The
analytical results obtained are then applied to the example of an axially loaded
rotating shaft system in a rotating reference frame.

2. STATEMENT OF THE PROBLEM AND FORMULATION

A linear gyroscopic system has equations of motion of the form

MqK#2GqR #Kq"0, (1)

where M"MT'0, K"KT, GT"!G and the superscript T denotes the transpose
operator. The vector q denotes a generalized co-ordinate. Generally, the matrix K is
composed of potential terms and terms depending on the gyroscopic parameter X.



Figure 2. Trajectory of system eigenvalues.
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It is widely known that the gyroscopic parameter characterizes stability for this
class of system, and this will be described for the deterministic, conservative case. If
gyroscopic coupling is initially absent (i.e., X"0), the system will have two pairs of
pure imaginary eigenvalues. As shown in Figure 2, as X is increased, one pair of
eigenvalues (the pair closer to the origin) coalesces at the origin and splits along the
real axis resulting in divergence instability. However, due to gyroscopic e!ects, the
eigenvalues once again coalesce at the origin near the second critical value of X.
Beyond this critical value the system is then said to be restabilized.

Naturally, as dissipation is introduced into the system its behaviour is further
complicated. The relationship between stability, damping and gyroscopic forces is
described by the Kelvin}Tait}Chetaev theorem (for details see Chetaev [11]); from
this it follows that if a system is stable in the absence of gyroscopic and dissipative
forces, their addition to the system will lead to asymptotic stability. Conversely, if
an unstable equilibrium can be stabilized by the addition of purely gyroscopic
forces then, depending on whether or not it exhibits complete dissipation, the
addition of damping may enhance or destroy this stability. Depending on the
coe$cients of a particular gyroscopic system, internal damping forces may give rise
to complete dissipation. A fuller account of gyroscopic stability is widely available
(see, e.g., references [12, 13]).

In this work, explicit results are derived for the maximal Lyapunov exponent of
a four-dimensional linear gyroscopic system perturbed by a multiplicative real
noise of small intensity. This system is described with equations of motion

qK
1
!2XqR

2
#i

1
q
1
#ef (m(t) )

2
+
j/1

k
1j

q
j
#e2f

1
qR
1
"0,

qK
2
!2XqR

1
#i

2
q
2
#ef (m(t) )

2
+
j/1

k
2j

q
j
#e2f

2
qR
2
"0, (2)

where stochastic coupling of modes is represented by the terms k
ij
. Again,

X denotes the gyroscopic parameter and the q
i
's represent generalized co-ordinates.



STABILITY OF GYROSCOPIC SYSTEMS 109
Potential and internal damping forces are proportional to the i
i
and e2f

i
terms

respectively. Here the magnitudes of the stochastic perturbation and the dissipation
have been scaled appropriately in order to make dominant the e!ects of the
stochastic perturbation. The stochastic term em(t) is a small-intensity, real noise
process on a smooth, connected Riemannian manifold, M (with or without
boundary). This is assumed to admit representation by an in"nitesimal generator
G(m) with a simple zero eigenvalue. The function f (m (t)), f : MPR, is smooth and
time varying with zero mean.

Crucial to calculation of the top Lyapunov exponent is transformation of the
equations of motion into Khas'minskii's logarithmic-polar form in which the
equation for the angles is independent of the norm. In addition, the equation
governing the noise m(t) is written as a Stratonovich stochastic di!erential equation

o5 "q(m, s), sR"h (m, s), dm"km (m) dt#pm (m)
3
d=

t
, m3M.

This representation is obtained following a procedure employed by Sri
Namachchivaya and Tien [14]. The solutions of the unperturbed equations of
motion (equation (2), where e"0) are given by

q
1
(t)"Q

11
eiu

1
t
#Q

12
e!iu

1
t
#Q

13
eiu

2
t
#Q

14
e!iu

2
t,

q
2
(t)"aJ

1
Q

11
eiu

1
t
!aJ

1
Q

12
e!iu

1
t
#aJ

2
Q

13
eiu

2
t
!aJ

2
Q

14
e!iu

2
t,

aJ
i
"(u2

i
!i

1
)/2Xu

i
, i"1, 2,

where Q
ij

represents the contribution of the jth eigenmode to the ith degree of
freedom. The response frequencies u

1
, u

2
are given by

u
1,2

"

1

J2
[i

1
#i

2
#4X2$J(i

1
#i

2
#4X2)2!4i

1
i
2
]1@2, u

1
'u

2
.

Introducing polar co-ordinates (o"log EqE , h, /
1
, /

2
),

q
1
(t)"eo cos h cos/

1
#eo sin h cos/

2
,

q
2
(t)"!aJ

1
eo cos h sin/

1
!a8

2
eo sin h sin/

2
, /

i
"u

i
t#u

i
.

These are transformed to "rst order form by applying the method of variation of
constants to the variables (o, h, /

1
, /

2
). Thus, in Khas'minskii form, the dynamical

system is represented as

o5 "
2
+
j/0

ejqj(/
1
, /

2
, h, m)"q(m, s),

sR"C
hQ

/Q
1

/Q
2D"C

+2
j/0

ejsj (/
1
, /

2
, h, m)

u
1
#+2

j/0
ejhj

1
(/

1
, /

2
, h, m)

u
2
#+2

j/0
ejhj

2
(/

1
, /

2
, h, m)D"h(m, s),

dm"km (m)dt#pm(m)
3
d=

t
, m3M. (3)

These equations represent in explicit form the di!usion for log EqE, the angles /
1
,

/
2
, h and the input noise m(t). The coe$cients of each of these equations are
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contained in Appendix A. It is noted that the "rst order terms of the expansions for
each of q(m, s) and h(m, s) are identically zero. The processes (/

1
, /

2
, h) are

independent of o and they form a di!usive Markov process with unique probability
measure k and in"nitesimal generator, Le,

Le*k"0.

The generator, Le, assumed to be non-degenerate, is given by

Le"L0#eL1#e2L2, (4)

where

L0"G(m)#
2
+
i/1

u
i

L
L/

i

,

L1"s1(/
1
, /

2
, h, m)

L
Lh

#

2
+
i/1

h1
i
(/

1
, /

2
, h, m)

L
L/

i

,

L2"s2(/
1
, /

2
, h, m)

L
Lh

#

2
+
i/1

h2
i
(/

1
, /

2
, h, m)

L
L/

i

.

The superscript e has been introduced to indicate explicitly the presence of small
parameters which will facilitate the subsequent analysis. It was shown by Arnold
[3] that the quantity ¸(p)"L#pq (m, s) has a principal eigenvalue given by g(p)
with eigenfunction /(p) possessing the property E/(p)E"1. Additionally, the
adjoint operator ¸* (p) has a unique eigenfunction, l(p) with the property
S/(p), l(p)T"1. This may be expressed as

¸(p)/(p)"g(p)/(p), S/ (p), l (p)T"1, ∀p3R.

Di!erentiating both sides and making use of the properties of g (p) yields

Lt"j!q (m, s), (5)

where t"L//Lp D
p/0

. Taking appropriate scalar products with l (p) yields the
solvability condition for the top Lyapunov exponent,

j"Sk(m, s), q (m, s)T,

where S ) , )T represents the inner product operator. Since q(m, s) and L are given in
powers of e, as in equations (3) and (4) respectively, by following Sri
Namachchivaya et al. [1] it can be shown that the asymptotic representation for j,

je"
=
+
k/0

j
k
ek,

is valid. Upon substituting for L and q (m, s) and making the formal expansions to
order e2,

te"t
0
#et

1
#e2t

2
, je"j

0
#ej

1
#e2j

2
,

a series of Poisson equations is produced when equation (5) is expanded in orders
of e,

L0t
0
"j

0
!q0, (6)
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L0t
1
"j

1
!q1!L1t

0
, (7)

L0t
2
"j

2
!q2!L1t

1
!L2t

0
. (8)

These equations de"ne the unknown coe$cients j
k
from O(1) to O(e2). Coe$cients

above O(e2) are ignored in this work.

3. EVALUATION OF SOLUTIONS

The objective of this section is the development of an expression for the "rst
non-vanishing term in the expansion for je. Each order of the approximation for je
is extracted from the Poisson equations (6)}(8) which, in turn, involves solving for
each successive order of te. Each of the equations to be solved involves the use of
the di!erential operator L0. This raises the need for the solution of the
corresponding adjoint problemL0* t*

0
"0 with the periodic boundary conditions

t*
0
(/

1
, /

2
, h, m)"t*

0
(/

1
, /

2
#2nn, h, m)"t*

0
(/

1
#2mn, /

2
, h, m).

3.1. SOLUTION TO O(1)

Employing the solvability condition yields

j
0
"0 and L0t

0
"0.

From this it is clear that t
0
"t

0
(h). Additionally, from the forward equation,

L0*t*
0
"0. A solution to this partial di!erential equation was found by Sri

Namachchivaya and Van Roessel [7] and their result is given as a proposition.

Proposition. Suppose G has an isolated simple zero eigenvalue and the frequencies u
1
,

u
2

are non-commensurable, then the stationary solution of

L0*t*
0
"0 where L0*"G*!

2
+
i/1

u
i

L
L/

i

is given by

t*
0
(h, m)"

l(m)F(h)
4n2

,

where v(m) is the invariant density associated with G and F(h) is an arbitrary function.

3.2. SOLUTION TO O(e)

As t
0

is a function only of h, equation (7) reduces to

L0t
1
"j

1
!q1 (/

1
, /

2
, h, m)!s1 (/

1
, /

2
, h, m)t@

0
,j

1
!f (m)R(/

1
, /

2
, h).

Applying the solvability condition leads to

j
1
"

1
16n2D

S f (m)R(/
1
, /

2
, h), l(h)F(h)T, (9)
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where the inner product is de"ned as

S ( ) ), ( )) )T"P
2

0
P
M
P
2n

0
P
2n

0

( ) )( )) ) d/
1
d/

2
dmdh

and

R(/
1
, /

2
, h)"ts

1 sin 2/
1
!ts

2 sin 2/
2
!ts

` sin/`#ts
~ sin/~

#tc
1 cos 2/

1
!tc

2 cos 2/
2
!tc

` cos/`#tc
~ cos/~#tcs

0,

in which

tcs
0"

1
2D

a~
12

(!cos 2h#sin 2ht@
0
),

ts
1"

1
4D

c~
21

[1#cos 2h!sin 2ht@
0
], ts

2"
1
4D

c~
12

[1!cos 2h#sin 2ht@
0
],

ts
`"

1
4D

[(c~
11
!c~

22
) sin 2h#[c~

11
#c~

22
#(c~

11
!c~

22
) cos 2h]t@

0
],

ts
~"

1
4D

[(c`
11
#c`

22
) sin 2h#[c`

11
!c`

22
#(c`

11
#c`

22
) cos 2h]t@

0
],

tc
1"

1
4D

a`
12

[1#cos 2h!sin 2ht@
0
], tc

2"
1

4D
a`
21

[1!cos 2h#sin 2ht@
0
],

tc
`"

1
4D

[(a`
11
!a`

22
) sin 2h#[a`

11
#a`

22
#(a`

11
!a`

22
) cos 2h]t@

0
],

tc
~"

1
4D

[(a~
11
!a~

22
) sin 2h#[a~

11
#a~

22
#(a~

11
!a~

22
) cos 2h]t@

0
].

As each component of R (/
1
, /

2
, h) is periodic in (/

1
, /

2
), equation (9) is evaluated

to yield
j
1
"0. (10)

Consequently equation (7) further simpli"es to

L0t
1
"!q1 (/

1
, /

2
, h, m)!s1 (/

1
, /

2
, h, m)t@

0
,

which must be solved for t
1
. This is achieved by employing the Green's function,

g(m, t; g, 0) for the operator G. This is the solution of

A
L
Lt
!GB g"0, g (m, 0; g, 0)"d(m!g).

Thus, by appropriate rescaling of variables it is found that the O(e) term in the
asymptotic approximation for the stationary density, te, is given by

t
1
(/

1
, /

2
, h, m)"P

=

0

!K(m, q)R(q, /
1
, /

2
, h) dq, (11)
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where

K(m, q)"P
M

f (g)g(g, q; m, 0) dg.

3.3. SOLUTION TO O(e2)

In order to solve for j
2
, equation (8) is required, i.e.,

L0t
2
"j

2
!q2(/

1
, /

2
, h, m)!L1t

1
(/

1
, /

2
, h, m)!L2t

0
(h).

The solvability condition for this is

Sj
2
!q2!L1t

1
!L2t

0
, t*

0
T"0,

which, in turn, implies

P
n@2

0
Gj2!

1
4n2 P

M
P
2n

0
P
2n

0

l (m)q2d/
1
d/

2
dm

!

1
4n2 P

M
P
2n

0
P
2n

0

l(m)[!L1t
1
#L2t

0
] d/

1
d/

2
dmHF (h) dh"0.

After making use of the fact that t
0
"t

0
(h) and substituting for t

1
from equation

(11), this can be written more concisely as

P
n@2

0

Mj
2
!I

1
(h)!I

2
(h)NF(h) dh"0, (12)

I
1
(h)"

1
4n2 P

M
P
2n

0
P
2n

0

l(m)q2d/
1
d/

2
dm,

I
2
(h)"

1
4n2 P

M
P
2n

0
P
2n

0
CP

=

0

K(m, ¹) Gs1
LR
Lh

#

2
+
i/1

h1
i

LR
L/

i
Hd¹#s2

Lt
0

Lh Dd/
1
d/

2
dm.

At this point, the sine spectrum, C(u), and cosine spectrum S (u), are introduced
according to the usual relations,

C(u)"2 P
=

0

R(q) sinuqdq, S (u)"2 P
=

0

R (q) cosuqdq,

and the correlation function R(q) is de"ned as

R (q)"P
M

f (m)K(m, q) dq.

The solvability condition, equation (12), reduces to

P
n@2

0
Gj2

!Q(h)!k (h)t@
0
(h)!

1
2

p2(h)tA
0
(h)HF(h) dh"0, (13)
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with

p2(h)"A cos2 2h#B cos 2h#C, k(h)"p2 (h) cot 2h!
K
2

sin 2h,

Q(h)"J (h)#D"p2(h)#
K
2

cos 2h#D.

The functions A, B, C, D and K are given by

A"!c, B"

a~

2
"

1
2
(a

11
!a

22
),

C"c#
a`

2
"c#

1
2

(a
11
#a

22
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1
2

(K
1
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2
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1
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2
,

where
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a~2
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4D2
S(0)#

1
4
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#b
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1
4
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#a

22
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1
2
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a
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1
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b
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"

1
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]S (2u
i
),

k8 "
1

8D2
[(!c`

11
c`
22
#a~

11
a~
22

)S (u~)#(c~
11

c~
22
#a`

11
a`
22

)S (u`)],

K
1
"b

12
#(c

1
#c

2
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b1`
21
2D
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1
"

C(u`)
8D2

[c~
11

a`
22
!c~

22
a`
11

],

K
2
"b

21
!(c

1
#c

2
)#

b2`
12
2D

, c
2
"

C(u~)
8D2

[c`
11

a~
22
#c`

22
a~
11

].

Equation (13) must hold for arbitrary F(h); thus

j
2
!Q(h)"k(h)t@

0
(h)#1

2
p2 (h)tA

0
(h). (14)

In order to solve this, the corresponding adjoint equation for p
0
(h) is used.

A solution to this is provided using the concepts of scale and speed measures,
p
0
(h)"Nm(h); thus

1
2

d2

dh2
[p2(h)m (h)]!

d
dh

[k(h)m(h)]"0, (15)

where p
0

is normalized by the condition

N P
M

m (h) dh"1.
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The solution of equation (15) is given by

m (h)"b@(h) e!Kb(h),

where

b(h)"P
h

0

sin 2z
p2 (z)

dz"
1
2 P

1

#042h

dx
Ax2#Bx#C

.

The solvability condition for equation (14) can be written as

P
n@2

0

(j
2
!Q(h))m (h) dh"0.

From this,

j
2
"SQ(h), p

0
(h)T"SJ(h)#D, Nm(h)T"D#jI

2
, jI

2
"NSJ(h), m(h)T. (16)

Equation (16) provides a general expression for j
2
, which is the"rst non-vanishing

term in the asymptotic expansion for the top Lyapunov exponent. Recalling that
higher order terms are ignored the maximal Lyapunov exponent is given by

je"e2j
2
. (17)

4. CLASSIFICATION OF SINGULARITIES

From equation (16), j
2

is a function of the probability density function of the
h-process. As singularities in the h-process de"ne its probability distribution in
phase space, their in#uence upon the expression for j

2
is next investigated. In

general, a singularity will occur when either of the following conditions is satis"ed,

k(h)"R, p2(h)"0.

As the drift and di!usion terms are de"ned by

k (h)"p2 (h) cot 2h!K

2
sin 2h, p2(h)"A cos2 2h#B cos 2h#C,

the h-process has entrance boundaries at h"0, n/2 for all possible values of A,
B and C. The direction of traverse of the process across a singular point, h

s
is

indicated by the drift coe$cient, i.e.,

k (h
s
)'0, h

s
a forward shunt;

k(h
s
)(0, h

s
a backward shunt;

k(h
s
)"0, h

s
a trap point.

Employing the concepts of Feller [15], the boundary can be further classi"ed (see
references [16] or [17]). It is necessary to consider individually the singularities in
each of the six possible singular cases distinguished by A, B and C as follows:

1. A, B, CO0;

2. (a) B"0; A, CO0,
(b) A, B"0; CO0,
(c) B, C"0; AO0;
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3. C"0; A, BO0;

4. A"0; B, CO0;

5. A, C"0, BO0;

6. A, B, C"0.

Which of these parameter combinations that occurs depends on the excitation
applied to the system and the operational parameters of the system itself. It is noted
that singular case 1, A, B, CO0 is most germane to engineering applications. Also,
if no additional singularities exist in the interval h3 (0, n/2) then the top Lyapunov
exponent is given simply by

je"e2AD!

K
2 C

M(n/2)#M(0)
M(n/2)!M(0)DB, M(h)"!

1
K

e!Kb(h). (18)

4.1. CASE 1: A, B, CO0

In this singular case, probability mass enters the region h3(0, n/2) as shown in
Figure 3. The boundaries at h"(0, n/2) are both entrances; consequently an
invariant measure exists over the interval h3 (0, n/2). From equation (18), the O(e2)
approximation to the maximal Lyapunov exponent is given by

j
2
"D!

K
2 K

M (n/2)#M(0)
M (n/2)!M(0) K . (19)

De"ning 4AC!B2"d, the expressions for the speed function, M(h)
corresponding to possible values of d are given explicitly below:

d"0, M(h)"!

1
K

expG
!K

2A cos 2h#BH ,
Figure 3. Boundary behaviour for Cases 1, 2(b) and 4.



STABILITY OF GYROSCOPIC SYSTEMS 117
d(0, M(h)"!

1
K K

2A cos 2h#B!J!d

2A cos 2h#B#J!d K
K/(2J!d)

,

d'0, M(h)"!

1
K

expG
K

Jd
tan~1A

2A cos 2h#B)

Jd BH.
For each discriminant, the corresponding maximal Lyapunov exponent is
evaluated using equation (18),

d"0, je"e2 GD!

K
2 C

expA
!4AK

B2!4A2B#1

expA
!4AK

B2!4A2B!1D H ,
d(0, je"e2 GD!

K
2 C K

B!2A!J!d

B!2A#J!d K
K/(2J!d )

#K
B#2A!J!d

B#2A#J!d K
K/(2J!d)

K
B!2A!J!d

B!2A#J!d K
K/(2J!d )

!K
B#2A!J!d

B#2A#J!d K
K/(2J!d) H ,

d'0, je"e2 GD!

K
2 C

expA
K

Jd
tan~1

B!2A

Jd B#expA
K

Jd
tan~1

B#2A

Jd B
expA

K

Jd
tan~1

B!2A

Jd B!expA
K

Jd
tan~1

B#2A

Jd BDH .

4.2. CASE 2: B"0

In addition to the condition that B"0, the analysis of this singular case admits
the possibilities of A and C taking zero and non-zero values, i.e.,

(a) AO0, B"0, CO0; (b) A"0, B"0, CO0; (c) AO0, B"0, C"0.

Again the classi"cation of each of these sub-cases must be performed individually
as follows.

4.2.1. Case 2(a): AO0, CO0

When AC*0, no singularities occur in h3 (0, n/2) and the resulting boundary
behaviour is similar to that of Case 1. The speed density is found to be

m(h)"
sin 2h

A cos2 2h#C
expG

K

2JAC
tan~1A

JA cos 2h

JC BH .

Employing this in equation (18) yields the Lyapunov exponent

je"e2 GD!

K
2

cothC
K

2JAC
tan~1

!A

JACDH.
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If AC(0 singularities exist in h3 (0, n/2) at

h
s1
"1

2
cos~1J!C/A, h

s2
"1

2
cos~1(!J!C/A).

As shown in Figure 4, the direction of traverse of the process across these points
depends on the sign of K. Thus, separate probability density functions, p

0
(h), exist

accordingly:

m (h)"
sin 2h

A cos2 2h#C K
A cos 2h#J!AC

A cos 2h!J!AC K
K/4J!AC,

N
1
"[M(hs

1
)!M(0)]~1, N

2
"[M(n/2)!M (hs

2
)]~1,

p
0
(h)"G

N
1
m(h),

N
2
m(h),

K'0,
K(0.

However, the resulting expression for the Lyapunov exponent is quite simple,

je"e2GD#

DK D
2 H .

4.2.2. Case 2(b): A"0, CO0

In this case, no additional singularities occur within the interval h3 (0, n/2). The
behaviour of the process is similar to Case 1 and the speed density is given by

m (h)"
sin 2h

C
expG

K cos 2h
2 H .

The top Lyapunov exponent is thus

je"e2GD!

K
2

cothA
!K
2C BH .
Figure 4. Boundary behaviour for Case 2(a) where (a) K'0, (b) K(0.
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4.2.3 Case 2(c): AO0, C"0

In this case an additional singular point occurs at h"n/4. As in Case 2(a), the
direction of traverse across this point depends on K. The corresponding boundary
behaviour is illustrated in Figure 5. The associated invariant measures are given
below:

m (h)"
sin 2h

a cos2 2h
expG!

K
2a cos 2hH, N

1
"DK D expG!

K
2aH, N

2
"DK D expG

K
2aH ,

p
0
(h)"G

N
1
m(h),

N
2
m(h),

K'0,
K(0.

Using these the Lyapunov exponent is found to be

je"e2 GD#

DK D
2 H.

4.3. CASE 3: AO0, BO0, C"0

In this case the speed density is given by

m (h)"
sin 2h
p2 (h)

(a`#a~ sec 2h)!K/a~.

Singularities occur at h
f
"n/4 and h

s
"1

2
cos~1 (!a~/a`). The characteristics of

each of these points, and the resulting distribution of probability over the interval
h3 (0, n/2), are in#uenced by a~ and K which are functions of the geometric
and operational parameters of the system. The corresponding behaviour of the
h-process is illustrated in Figure 6. The associated stationary densities and maximal
Lyapunov exponents are presented below.

K'0, a~'0:

p
0
(h)"N

1G
m (h),
d (h!h

s
),

h3(0, n
4
),

h3(n
4
, n
2
),
Figure 5. Boundary behaviour for Case 2(c) where (a) K(0, (b) K'0.



Figure 6. Boundary behaviour for Case 3 where (a) K'0, a~'0; (b) K(0, a~'0; (c) K(0,
a~(0; (d) K'0, a~(0.
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where

N
1
"

K
K#(2a

11
)!K/a~

,

je"e2GD#

K
2a`C

a`(2a
11

)!K/a~
!a~K

(2a
11

)!K/a~
#K DH .

K(0, a~'0:

p
0
(h)"N

2G
d (h!n

4
),

m(h),
h3(0, h

s
),

h3(h
s
, n
2
),

where

N
2
"

K
K!(2a

22
)!K/a~

,

je"e2GD#

K
2 C

(2a
22

)!K/a~

K!(2a
22

)!K/a~DH.
K(0, a~(0:

p
0
(h)"N

2G
d (h!h

s
),

m (h),
h3 (0, n

4
),

h3 (n
4
, n
2
),

je"e2GD#

K
2a`C

a~K!a`(2a
22

)!K/a~

(2a
22

)!K/a~
!K DH .
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K'0, a~(0:

p
0
(h)"N

1 G
m(h),
d (h!n

4
),

h3 (0, h
s
),

h3 (h
s
, n
2
),

je"e2GD#

K
2 C

(2a
11

)!K/a~

K#(2a
11

)!K/a~DH.

4.4. CASE 4: A"0, BO0, CO0

In this case, as no additional singularities occur in the interval h3 (0, n/2), the
boundary behaviour is again similar to Case 1, where the speed density is given by

m (h)"
sin 2h
p2(h)

(a~ cos 2h#a`)K/a~.

Employing equation (18), the top Lyapunov exponent is given by

je"e2GD!

K
2 C

(a
22

)K/a~
#(a

11
)K/a~

(a
22

)K/a~
!(a

11
)K/a~DH.

4.5. CASE 5: A"0, BO0, C"0

The conditions that A"0, BO0 and C"0 reduce to

a
1
#a

2
O0, a

1
!a

2
"0,

which cannot be satis"ed simultaneously. Therefore, this singular case does not
occur in practice and is excluded from subsequent analysis.

4.6. CASE 6: A"0, B"0, C"0

This singular case occurs only under very restrictive circumstances; in addition to
restrictions upon the noise spectrum, it requires particular stochastic coupling
coe$cients. Some suitable conditions are presented below:

(a) i
1
"i

2
, k

12
"!k

21
O0, k

11
"k

22
, S (0)"S(u~)"S (u`)"0,

(b) i
1
"i

2
, k

12
"k

21
"0, k

11
"k

22
, S(u`)"0,

(c) i
1
"i

2
, k

12
"k

21
, k

11
"!k

22
, S (2u

1
)"S (2u

2
)"S(u~)"0.

When any of these combinations is satis"ed, the di!usion term is made identically
zero for all values of h. Therefore, the h-process is governed by

dh"k(h) dt.
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Clearly, the h-process is deterministic with "xed points h"0, n/2. For K'0, h"0
is stable; for K(0, h"n/2 is stable. Thus, there are d-measures at each "xed point.
For K'0 every initial condition, except that at h"n/2, will reach h"0, and the
d-measure at h"0 will yield the maximal Lyapunov exponent. Conversely for
K(0, the d-measure at h"n/2 should be utilized in equation (16). For this
singular case the top Lyapunov exponent is given by

je"e2max(K
1
, K

2
).

5. APPLICATION TO ROTATING SHAFT SYSTEM

The results developed in the preceding section are next applied to a typical
gyroscopic system; a rotating shaft system studied in a rotating co-ordinate
frame. This is subjected to a random axial loading of small intensity as shown in
Figure 7.

Stability results are developed for case of symmetric and non-symmetric shafts
under white and real noise excitation. The axial loading appears as a multiplicative
forcing term in the equations of motion which are presented below:

qK
1
!2XqR

2
#(u2n

1
!X2)q

1
#ef (m(t))

2
+
j/1

k
1j

q
j
#e2 2oun

1
qR
1
"0,

qK
2
#2XqR

1
#(u2n

2
!X2)q

2
#ef (m(t))

2
+
j/1

k
2j

q
j
#e2 2oun

2
qR
2
"0,

where the co-ordinates q
1
, q

2
rotate with the shaft at rate X. The term un

i
, i"1, 2,

represent the transverse natural frequencies of a beam which arise due to potential
forces. Clearly, under the condition that X"0 the equations of motion reduce to
those of two stochastically coupled oscillators, studied by Sri Namachchivaya and
Van Roessel [7]. As every mechanical system contains some symmetry-breaking
imperfection, a perfectly symmetrical shaft is a mathematical idealization. Thus, it is
natural to express the natural frequencies of the shaft in terms of an asymmetry
imposed on a perfectly symmetrical shaft with natural frequency u6 , i.e.,

un
1
"uN !l, un

2
"uN #l.
Figure 7. Axially loaded rotating shaft system.
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5.1. WHITE NOISE

The "rst example studied here is that of a symmetric shaft system (i.e., l"0)
subjected to white noise excitation with constant cosine spectrum, S

0
. This shaft

system is considered symmetric in the sense that un
1
"un

2
,u6 with a diagonal

stochastic coupling matrix, i.e., k
11
"k

22
,k and k

12
"k

21
"0. For such a system

the response frequencies u
1

and u
2

are given simply by

u
1
"u6 #X, u

2
"u6 !X,

where u6 is the natural frequency of lateral oscillation of the shaft in a non-rotating
state. The quantities A, B and C, which characterize the Fokker}Planck equation
describing the h-process, then reduce to

A"

S
0
k2

8uN 2
, B"0, C"0.

Clearly, the behaviour of the h-process corresponds to that of singular case 2(c). The
necessary and su$cient condition for almost-sure sample stability is provided by
the corresponding Lyapunov exponent,

je"e2 Mo(X!u6 )#AN.

In this case, white noise clearly has a destabilizing in#uence on the shaft system.
The Lyapunov exponent provides the criterion for almost-sure sample stability,

o*
S
0
k2

8uN 2u
2

. (20)

This reproduces the result obtained by Sri Namachchivaya and Talwar [18] using
stochastic averaging.

Examined next is the sample stability of a non-symmetric shaft with natural
frequencies un

1
"uN !l, un

2
"uN #l and small internal dissipation given by o,

where the stochastic coupling terms are as before. Here, the functions A, B and C,
which are coe$cients of the di!usion term, are given by

A"

S
0
k2

32i
1
i
2
(u2

1
!u2

2
)2

M48X2i
1
i
2
#(i

1
!i

2
)2 (i

1
#i

2
)#4X2(i

1
#i

2
)2N,

B"

S
0
k2

8i
1
i
2
(u2

1
!u2

2
)
(i

1
#i

2
), i

i
"u2n

i
!X2,

C"

3S
0
k2

32i
1
i
2
(u2

1
!u2

2
)2

M!16X2i
1
i
2
#(i

1
!i

2
)2 (i

1
#i

2
)#4X2(i

1
#i

2
)2N,

and each of the above are, in general, non-zero. Stability boundaries are established
through a numerical example using the following geometric and operational
parameters:

u6 "
1
2
#

1

J2
, l"

1

J2
!

1
2
, S

0
"0)02, C

0
"0, k"1, e"0)1.



Figure 8. Stability boundaries for symmetric (} } }) and non-symmetric (*) rotating shafts excited
by multiplicative white noise.
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A stability boundary is obtained by solving numerically for those values of the
damping parameter, o, at which the top Lyapunov exponent becomes identically
zero. This is presented in Figure 8 as a function of the rotational speed, X where
parameter space to the left of the curves represents stable behaviour.

Using the condition of equation (20), a stability boundary is obtained for the
corresponding symmetric shaft with natural frequency u6 . It is clear that the stable
region for the non-symmetric shaft is smaller than that for the symmetric shaft.

5.2. REAL NOISE

Next, conditions for sample stability are investigated where the excitation to the
system is a real noise process generated by passing a white noise, = (t) through
a second order "lter, i.e.,

mG#2am0#b2m"=(t).

The height of the power spectral density of= (t) is denoted by S
0
. The parameter

b represents the carrying frequency of the m-process, the spectral pro"le of which is
given by

Sm (u)"
S
0

(b2!u2)2#4a2u2
.

It would be expected that changes to the carrying frequency of the noise process
should a!ect system stability; their e!ect would be particularly pronounced at
values b"2u

i
, i"1, 2, and b"Du

1
$u

2
D. The system is initially considered to be

symmetric where un
1
"un

2
,uN and k

11
"k

22
,k and k

12
"k

21
"0. In this case

the functions A, B and C reduce respectively to

A"

S (u`)k2

8(uN 2#X2)2
, B"0, C"0, u$

"u
1
$u

2
.
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Thus, the behaviour of the h-process, whose probability density function is de"ned
by equation (15), corresponds to that treated in singular case 2(c). The associated
top Lyapunov exponent is then given by

je"e2GD#

DK D
2 H"e2 G

k2S (u`)
8uN 2

!o (uN !X)H . (21)

From this expression a number of comments can be made. As positive values of je
indicate sample instability w.p. 1, it is clear that, for all values of a and b, the noise
process has a destabilizing in#uence on the symmetric rotating shaft system. It is
interesting to note that, in this example, centering the carrying frequency around
2u

1
, 2u

2
or Du

1
!u

2
D does not a!ect sample stability.

Similar to the preceding example, consider the non-symmetric gyroscopic system
with the following geometric and operational parameters:

u6 "
1
2
#

1

J2
, l"

1

J2
!

1
2
, X"0)4, C

0
"0, o"0)005, e"0)1, k"1.

For values of X(un
1
, Figure 9 illustrates the height of the spectrum of the white

noise process driving the "lter equation required to overcome the stabilizing e!ects
of internal damping. In this case, the response frequencies u

1
, u

2
are u

1
"1)6613,

u
2
"0)7483. The in#uence of centering the noise process around 2u

1
, 2u

2
or

u
1
#u

2
greatly reduces the spectral height of the noise process required to cause

instability. For comparison, the stability boundary for the symmetric shaft is also
illustrated. In the symmetric case the response frequencies u

1
, u

2
are u

1
"1)6071,

u
2
"0)8071.
The stability boundaries in Figure 9 are for shaft systems featuring diagonal

stochastic coupling matrices. Results obtained by altering these coupling matrices
are presented next. Figures 10 and 11 show stability boundaries for symmetric and
non-symmetric shafts obtained where, other than altering k

ij
, the geometric and
Figure 9. Stability boundaries for rotating shafts of symmetric (} } }) and non-symmetric (*)
cross-section. k

11
"1, k

12
"0, k

21
"0, k

22
"1, X"0)4.



Figure 10. Stability boundaries for rotating shafts of symmetric (} } }) and non-symmetric (*)
cross-section. k

11
"1, k

12
"0)5, k

21
"0)5, k

22
"1, X"0)4.

Figure 11. Stability boundaries for rotating shafts of symmetric (} } }) and non-symmetric (*)
cross-section. k

11
"1, k

12
"0)5, k

21
"!0)5, k

22
"1, X"0)4.
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operational parameters used are identical to those of the case studied above. Figure
10 contains the stability boundaries for shaft systems with stochastic coupling
terms given by k

11
"1, k

12
"0)5, k

21
"0)5, k

22
"1. Unlike the previous case, the

stability boundary of the symmetric shaft system is qualitatively similar to that of
the non-symmetric shaft system.

For completeness, the case of a stochastic coupling matrix which is skew-
symmetric will be admitted. Using the parameters k

11
"1, k

12
"0)5, k

21
"!0)5,

k
22
"1 yields the stability boundaries shown in Figure 11. In this case, the sample

stability of the non-symmetric shaft system is also in#uenced by centering the
excitation process around the di!erence Du !u D .
1 2
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6. CONCLUSIONS

In this work, the procedure established by Sri Namachchivaya et al. [1] for the
computation of moment and maximal Lyapunov exponents for coupled oscillators,
has been employed to create an asymptotic expansion for the maximal Lyapunov
exponent of a four-dimensional gyroscopic system subjected to a small-intensity
real noise.

The results derived were then applied to a rotating shaft system subjected to real
and white noise excitation where the shaft itself was treated individually as being
alternately symmetric and non-symmetric. Necessary and su$cient conditions for
sample stability and corresponding stability boundaries were established for
various operating conditions.
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APPENDIX A: LOGARITHMIC-POLAR EQUATIONS OF MOTION
OF A STOCHASTICALLY PERTURBED GYROSCOPIC SYSTEM

From section 2, the equations of motion of a four-dimensional gyroscopic
system, transformed into logarithmic-polar co-ordinates, are written,
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+
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2
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dm"km (m)dt#pm(m)
3
d=

t
, m3M.

The coe$cients of each of these equations are presented explicitly here, where the
following rotation has been used:
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