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A principal component least-mean-square (PC-LMS) adaptive algorithm is
described that is applicable to large control systems used for feedforward control of
single-frequency disturbances. The algorithm is a transform domain version of the
multiple-error LMS algorithm. A transformation given by the principal
components (PCs) of the transfer function matrix between the sensors and
actuators in a control system at a single frequency is used to rotate the control-filter
coefficient axes to a more convenient co-ordinate system, where: (1) independent
convergence factors can be used on each co-ordinate to accelerate convergence; (2)
insignificant control co-ordinates can be eliminated from the controller; and (3)
co-ordinates that require excessive control effort can be eliminated. The PC-LMS
algorithm has lower computational requirements than the multiple-error LMS
algorithm. The two algorithms were compared in an experiment involving active
structural acoustic control of a tone inside a closed cylindrical shell using 12
control actuators and 48 error sensors. Both algorithms reduced the primary
response by more than 20 dB, averaged across the 48 microphones. The control
system was slightly ill-conditioned at the test frequency, but the PC-LMS
algorithm demonstrated stable convergence to the optimal control solution.

© 1999 Academic Press

1. INTRODUCTION

Active control of tonal and broadband disturbances has received considerable
attention in the past decade, partly due to the advances in the computational power
of microprocessors needed to implement the common control algorithms. The
literature on feedforward control of total disturbances, the subject of the current
paper, is rich and varied and includes early work on adaptive filtering [ 1-4], as well
as applications with relevance to acoustics [5-8]. Of particular interest for the
current paper is the active control of tonal disturbances in complex systems such as
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the interior of a passenger aircraft, where acceptable performance can require
a large number of control actuators and error sensors. While the theoretical
foundations of feedforward control are well-developed and are described in detail
elsewhere [9-12], there are practical issues that can limit the performance of
a feedforward control system. These include: ill-conditioning in the control system
due to the placement of the actuators and sensors on a continuous structure;
excessive computational requirements; and the spillover of control energy into
unobservable modes that may have implications unrelated to acoustics, such as
fatigue life [ 13, 14]. These secondary issues become especially important for large
control systems, and control systems that rely on force inputs to a structure in order
to reduce the radiated sound [15], also known as active structural acoustic control
(ASACQ).

Various methods have been proposed to address the specific limitations of large
feedforward control systems. These include decreasing the convergence sensitivity
to ill-conditioning by transforming the broadband input signal to the frequency
domain with a discrete Fourier or cosine transformation [16]. This approach was
first described in the context of a single-input/single-output adaptive filter [17-19]
to increase the convergence speed when the input signal was not spectrally white.
A recursive least-squares method has also been used in the context of
a multiple-error LMS controller [20], although the computational complexity of
the approach limits its application to small control systems. Reducing the
computational complexity of the multiple-error LMS algorithm has also been
studied [21]. Work has also been done to reduce the complexity of a large
feedforward control system by grouping the actuators together, thereby creating
a group of actuators driven by a single-control channel [22,23]. This reduces the
computational complexity since fewer control outputs must be calculated, and can
improve the conditioning of the control system by removing redundancy. An
additional benefit is an increase in the spatial extent over which a control force is
applied to the structure, which can sometimes reduce the spillover of control energy
into higher order modes.

The current work describes a method to deal with ill-conditioning, high
computational complexity, as well as issues of control effort and controller
performance, for feedforward control of single-frequency disturbances with high
channel count control systems. The proposed algorithm, called principal
components LMS, or PC-LMS, is applicable to situations where the multiple error
LMS algorithm would normally be used. The PC-LMS algorithm is based on
a signal-dependent transformation of the controller co-ordinates. The
transformation requires an estimate of the transfer function between control
actuators and error sensors at the frequency of interest. This is the same transfer
function matrix that is used to filter the reference signal in the multiple-error LMS
algorithm.

The most important aspect of the principal component transformation is that it
decouples the co-ordinates of the control system. Once decoupled, each co-ordinate
can be assigned its own step size and control effort penalty. Thus, the slow
convergence associated with ill-conditioning in the transfer function matrix can be
improved, and large control efforts can be limited as well. This single-frequency
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transformation is similar to a transformation of the controller co-ordinates to
modal space, as suggested elsewhere [24,25]. However, the principal component
transformation only requires knowledge of the transfer function matrix between the
actuators and sensors at the frequencies of interest, and does not require any
knowledge about the modal charactreristics of the system being controlled.
Although PC-LMS requires a transformation of co-ordinates, the decoupling
produced by the PC transformation lowers the net computational burden of the
algorithm relative to the multiple-error LMS algorithm. The computational
savings are most dramatic when there are more error sensors than control
actuators.

The PC-LMS algorithm is closely related to an algorithm described in a recent
US Patent [26,27]. The patent describes the implementation of feedforward
control using the principal components of the control system, and further notes
that only the well-conditioned PCs should be controlled. An equally valid criteria
not discussed in that patent is to control only those PCs that show substantial
correlation with the primary response [28], which is independent of the
conditioning of the PC [29, 30].

We begin by introducing relevant terminology in the context of the
multiple-error LMS algorithm. The PC-LMS algorithm, and its roots in the
statistical technique known as Principal Component Analysis, are then described
within the notational framework used for the multiple-error LMS algorithm. The
paper ends with a description of an active noise control experiment on a closed
cylindrical shell, using 12 force actuators and 48 microphones to reduce tonal noise
inside the shell.

2. MULTIPLE-ERROR LMS ALGORITHM

A schematic of a single-frequency feedforward control system based on the
multiple-error LMS algorithm is shown in Figure 1. The quantities in the figure are
in the frequency domain, and for clarity matrices and vectors are represented by
boldface letters. The (m x 1) vector of error sensor responses, e(n), is given by
a summation of the primary and control fields. The control field consists of the
(rx 1) vector of control outputs, y(n), filtered by the (m x r) matrix of error path
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Figure 1. A multichannel LMS controller with transfer functions in the error path.
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transfer functions H(z). The control outputs are the product of the control filter
weights, w(z), and the reference signal. The matrix H(z) denotes a model of the error
path transfer functions [4].

The steady state sensor responses at a frequency w are given by [9,31]

e(w) = H(o)w(w) + d(w), (1)

where the reference input is assumed to have a unit amplitude and zero phase, and
the individual elements of each vector or matrix term are complex. The control
filter weights can be computed to minimize a cost function such as

J = efle + pwiw, )

where ()¥ denotes the complex conjugate transpose, 8 is a real scalar, and the
frequency dependence is implicit. The weight vector that minimizes this cost
function is [9]

Woo = — [HYH + 1]~ 'H"d. (3)
A steepest descent recursion for w is written (for example, see references [9, 10])
wn +1) = (1 — pp)w(n) — uH"e(n), 4)

where p is the step-size parameter. The multiple-error LMS algorithm is
a time-domain version of equation (4), using an instantaneous estimate of the
gradient of the cost function [4].

The convergence of the weight vector to its optimal value is usually analyzed in
terms of the principal components of the control system [9,31]. Summarizing this
analysis, a difference vector at iteration n is described as €(n) = w(n) — w,,,,, and
a recursion for £(n) is written as

g(n+ 1) =1 — u[HIH + pI])e(n). (3)
This expression can be simplified using the similarity transform
[HPH + BI] = VAVH, (6)
where the columns of V contain the eigenvectors of the bracketed matrix and the
diagonal of A contains the eigenvalues (44,...,4,). Defining a transformed
weight-error vector as §(n) = V¥ e (n) yields the relation
&n + 1) = (I — pA)y""1§(0), (7)

where £(0) is the transformed weight-error vector at time zero. Because A is
diagonal, equation (7) demonstrates that the convergence of w can be described in
terms of the convergence of a set of orthogonal co-ordinates, or principal
co-ordinates, of the control system [2,9, 32].

When the transfer function model, H(z), contain errors relative to the true error
path transfer functions, H(z), the weight vector does not converge to the optimum
in equation (3), but instead converges to [33]

w,, = — [H*H + pI]~'H"d. 8)
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In this case, the convergence behavior is given by [33]
g(n) = [1 — u(H"H + p1)]"2(0), ©)

where &(n) = w(n) — w,,. The difference converges to zero if the real parts of the
eigenvalues of [I — u(H"H + pI)] are positive [3,33].

For both the steepest descent and the multiple-error LMS algorithms, the
convergence behavior of the weight vector depends on the eigenvalue spread of
[H'H + fI] [2,9,32]. When this matrix is ill-conditioned, convergence can be
slow and the optimal control solution may require high control forces. The effort
penalty term in the cost function reduces this problem to some degree [32,33] but
will limit the reduction of the error norm. Other adaptive methods such as
Newton’s algorithm (for example, see references [9, 10]) or recursive least squares
[20] can be used to reduce the convergence sensitivity to eigenvalue spread.
However, these methods have very high computational requirements that make
them impractical for large control systems.

3. PC-LMS ALGORITHM

The previous section illustrated how the principal components have been used to
analyze the convergence behavior of an adaptive controller; PC-LMS takes this
one step further by actually implementing the control algorithm in terms of the
principal components. PC-LMS relies on a transformation of the controller
co-ordinates to improve the convergence behavior and performance of the
multiple-error LMS algorithm. This approach is similar to the co-ordinate
transformations of the LMS algorithm that have been described elsewhere
[17,18,34]. However, instead of a Fourier or cosine transformation, we use the
principal components (PCs) of the transfer function matrix between the control
actuators and error sensors at the frequency of interest. This decouples the control
system co-ordinates, and thus error reduction and control effort can be determined
independently for each co-ordinate. The statistical properties of the PCs also
indicate the sensitivity of each control co-ordinate to the measurement noise in the
error sensors. The decoupling transformation allows for the control of only a subset
of the controller degrees of freedom, which gives greater flexibility for tailoring
controller performance to meet the conflicting requirements of error reduction and
control effort minimization.

The PCs are computed from the transfer function matrix at a single frequency,
hence this formulation of the PC-LMS algorithm can only be used for
single-frequency control problems. Control of multiple discrete frequencies could
be achieved using several independent PC-LMS controllers, each targeting
a different frequency. However, a causal broadband decoupling transformation is
unlikely to exist for a general multichannel control system on a continuous
structure, which will restrict the range of applications for this algorithm.
Nonetheless, the benefits of the PC-LMS algorithm merit its consideration for
controlling multiple discrete frequencies in complex systems, such as tones in an
aircraft cabin.
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The principal components may be familiar to engineers in the context of
a spectral decomposition or similarity transformation, as in equation (6), but the
statistical properties of the principal components are generally less well known. In
statistics, a principal component analysis (PCA) is often used to examine data sets
with many interrelated parameters [29, 30]. PCA is used to create new independent
variables from linear combinations of the original variables that are more useful for
describing the variation in the data set [30]. A graphical illustration of the PCs of
a data set characterized by x and y values is shown in Figure 2. The principal
co-ordinates of this data set are indicated in the figures by the dashed lines v; and
v,. These new co-ordinates are obtained by rotating the original x- and y-axis, such
that the first PC, v, captures the greatest portion of the variation in the data set.
The second PC, v,, describes less variation. By definition the PCs are mutually
orthogonal, and describe successively smaller amounts of variation in the original
data set going from the first to the last PC. As a result, the first few PCs can often be
used to efficiently represent the characteristics of a large data set.

In the context of a feedforward control problem, PCA is applied to the transfer
function matrix between the actuators and error sensors at a particular frequency.
It can be shown that each of the r eigenvectors of (H”H) specifies a linear
transformation from the actuator co-ordinates to the principal co-ordinates, and
each of the m eigenvectors of (HHY) specifies a transformation from the sensor
co-ordinates to principal co-ordinates [30,35]. The singular-value decomposition
provides a computationally convenient method to compute the eigenvectors, where
the SVD of H is written (for example, see reference [36]) as

H = USVZ. (10)

The (m x m) matrix U contains the eigenvectors of HH¥, and the (r x r) matrix
V contains the eigenvectors of H’H. The (m x r) matrix S contains the singular
values, which are the square roots of the eigenvalues of H”H. By definition, the
singular values are decreasing, such that s; > s, > --- > s,. Using the results of the
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Figure 2. The principal components of a two-dimensional data set: —, original axes; - - -, principal
axes.
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SVD, a vector of actuator inputs can be mapped into principal co-ordinates as
z = V%w, and conversely a vector of PC inputs can be mapped into actuator
co-ordinates as w = Vz. Similarly, a vector of sensor responses can be mapped to
PC co-ordinates as { = Ue. The individual elements of U and V are complex, and
therefore can be represented in the time domain by a two coefficient FIR filter at the
frequency of interest.

Substituting the SVD of H into equation (1) yields

e=USViw +d, Ufe=SViw+U"d, (=Sv+p, (11-13)

where { = U”e denotes the mapping of the sensor responses onto the PCs, v = Viw
gives the mapping of the actuator inputs onto the PCs, and p = U*d is the mapping
of the primary field onto the PCs. Expanding equation (13) term by term, and
assuming more sensors than actuators (m > r), produces

_Jsvi+p fori=1,...,r1,
Ci_{pi fori=r+1,...,m (14)

Each PC error terms {;, depends on the corresponding PC control input, v;, and the
mapping of the primary response onto the ith PC. The last (r + 1) through m PCs
are observable but not controllable, and constitute the residual field after the
control is applied.

A schematic diagram of the feedforward control problem reformulated in terms
of the PCs of the control system is shown in Figure 3. Relative to the multiple-error
LMS algorithm the error path model H(z) is absent, having been replaced by the
matrices V(z) and U”(z). The purpose of H(z) in the multiple-error LMS algorithm
is to ensure correct phasing between the weight updates and the error signal. In
PC-LMS, this is accomplished by the transformation to PC co-ordinates.
Examination of equation (14) shows that the ith PC input and output are related by
a real value, s;. This means there is no phase difference between the input and
output in PC co-ordinates and consequently no need to pre-filter the reference
signal by the plant model. However, this does not suggest that the physical delays in
the error path can be ignored. The transformation matrices U¥(z) and V(z) actually
increase the error path delay, even though their net effect is to bring the PC inputs
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Figure 3. A principal component LMS controller with transfer functions in the error path.
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TABLE 1

The number of multiply/accumulate operations (M ACs) for multiple-error LMS and
PC-LMS (m = # of sensors, r = # of actuators, ¢ = # of PCs)

Operation # of MACs Multiple-error LMS LC-LMS
Compute PC output N/A 2¢
Compute actuator output 2r 2cr
Filter-x 2rm N/A
Transform error inputs N/A 2cm
Update control weights 2rm 2¢
Total 2r(2m + 1) 2em + 1 +2)

and outputs in phase with one another. This increased delay means the maximum
allowable value of the step-size parameter is slightly lower for the PC-LMS
algorithm than for the multiple-error LMS algorithm.

The elimination of the filtered-x computations and more importantly the
simplification of the control problem from an (m x r) fully coupled system to a set of
r independent co-ordinates reduces the computational requirements of the
PC-LMS algorithm relative to the multiple-error LMS algorithm. Assuming
a standard time domain implementation of a single reference, single-frequency
multiple-error LMS controller such as that described in reference [4], the
computational requirements of the PC-LMS and multiple-error LMS algorithms
are compared in Table 1. The table lists the number of multiply-accumulate
operations (MACs) required to update the control filter weights for a single
iteration of the algorithm. The values in the table assume individual elements of the
PC transformation matrices U and V are implemented using two coefficient FIR
filters.

The computational savings of PC-LMS can be further increased if certain PCs
are not controlled, thereby reducing the number of PC weights that have to be
updated. The symbol ¢ in Table 1 is used to denote the number of controlled PCs,
where ¢ <r. Assuming the full set of PCs is controlled (¢ =r), the PC-LMS
algorithm requires 2r(m —r — 1) fewer computations per iteration than the
multiple-error LMS algorithm. Therefore, when m >(r + 1) the PC-LMS
algorithm offers a computational savings relative to the multiple-error LMS.

The optimal input to the ith PC corresponding to the cost function

J =efle = (MUP UL = CHC (15)
is given by [32]

Vi,opt =

P fori=1,.n (16)
Si
Therefore, in an ill-conditioned control system where the last few singular values
are nearly zero, the corresponding control inputs can be very high for non-trivial
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values of p;. This result is the motivation for a control effort penalty where
only those co-ordinates with s; values greater than some threshold are control-
led [26,37]. When the ith PC is completely controlled, the reduction in
the primary expressed as a percentage of the magnitude of the uncontrolled
primary is

P?Pi
did’

% reduction = 100 = (17)
This reduction is independent of the singular value, s;, and therefore is unrelated to
the conditioning of the control system.

A recursive relation for updating the ith PC weight is obtained by substituting
the SVD of H into equation (4) (and ignoring the effort penalty term), which yields

vi(n + 1) = vi(n) — ps; ((n) (18)

for the ith principal component. This equation represents the multiple-error LMS
algorithm expressed in the principal co-ordinates of the control system. Combining
the scalars p and s; yields the update relation

vi(n + 1) = vi(n) — o Gi(n), (19)

where o; will be referred to as the PC step size. It is important to note the distinction
between the PC step size «; and the step-size parameter u. Equation (18) indicates
that when the weights are adapted according to the multiple-error LMS algorithm,
each PC has a different PC step size given by o; = us;. If the control weights are
updated in PC co-ordinates, each PC can be assigned a different PC step size, «;,
within stability bounds. This provides greater flexibility for tailoring the
convergence behavior of the weight vector than is possible with multiple-error
LMS algorithm. Any PC step size can be set to zero, in which case the PC is not
controlled. This would be useful when the PC would require excessive control effort
or would produce only a slight reduction in the error norm.

At the nth time step, the difference between the ith PC weight and its optimal
value can be defined as ¢;(n) = v;(n) — v; ,,,. Convergence of ¢; is then given by the
difference equation

&i(n) = (1 — 0;5;)"&;(0), (20)

where ¢;(0) is the initial value of the weight difference vector. Neglecting physical
delays in the system, the PC step-size parameter must therefore be bounded as

0<o< Sg (21)
If the o;’s are defined to be proportional to the singular values, as in equation (18),
the overall convergence rate of the weight vector will be equal to the convergence
rate of the steepest descent algorithm. If the step sizes are defined to be inversely
proportional to the singular values, the overall rate of convergence will be equal to
that of Newton’s algorithm [27,35].
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Figure 4. Sensor response with measurement noise.

3.1. SIGNIFICANCE OF COEFFICIENT VARIABLES

Feedforward control can be analyzed in the context of a linear regression
problem [38,39]. In this context, the variance—covariance matrix of the control
filter weights [38,40] has significance, and can be used to understand the effect of
sensor noise. For this analysis we assume each sensor contains Gaussian
measurement noise, as pictured in Figure 4. This noise is assumed to be
independent from sensor to sensor with a common variance of ¢2.

The desired response vector now contains a stochastic component, and as
a result the least-squares solution to the filtering problem will also vary
stochastically. If d denotes a single sampling of the response vector d, the
least-squares solution to the optimal filtering problem is given by

wys = — (H'H)"'H"d, (22)

where the Wiener solution is the expected values of w;s [40]. From linear
regression theory, the variance—covariance matrix of the magnitude of the elements
of wyg is [29, 38,40]

V(lwsl) = [(HTH) ™ '|o. (23)

Only the variance of the magnitudes of the complex weights is considered here to
simplify this discussion and analysis [38]. The variance-covariance matrix of the
least-squares solution in PC co-ordinates is the diagonal matrix

V(lvisl) = (S'9)"'a? (24)
or, for the ith PC,
2
o
V(|ves.il) =s_~2' (25)

This expression indicates that the variability of the magnitude of a PC filter weight
due to the stochastic nature of the desired response vector can exceed the variance
of the random noise when s; is less than one. This means measurement noise can
produce large fluctuations in the values of certain v;. Whether or not these
fluctuations affect the performance of the adaptive solution depends on ¢ and s;,
but in cases of excessive variability the PC step size may have to be lowered to bring
the variations within acceptable limits.

It is worth noting that the variance of v; given in equation (25) is independent of
the reduction in the error norm obtained by controlling the ith PC. The variance is
inversely proportional to s?, whereas the error reduction depends only on the
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mapping of the primary field onto the ith PC, p;. This means PCs with low-variance
control inputs may or may not be useful for reducing the error norm.

3.2. ROBUSTNESS TO MODELLING ERRORS

We next consider the robustness of the PC-LMS algorithm to errors in the model
of the error path transfer functions, H, based on the method used to study the
convergence behavior of the steepest descent algorithm [9, 13]. The convergence of
the weight-difference vector when the model, H, of the error path transfer function
differs from the true path transfer functions, H, is given by the recursion [9]

wn) —w, =(1— uﬁHH)(w(n —1)—wy). (26)

If H = USV¥ denotes the SVD of H, the true transfer function matrix H can be
written as H = UKV#, where K is not necessarily a diagonal matrix. Substituting
these expressions into equation (26) yields

v(n) — vy, = (1 — pSK)(v(n — 1) — v,,) 27)

which describes the convergence behavior of the multiple-error LMS algorithm in
terms of the principal co-ordinates. The eigenvalues of (S'K) are equal to the
eigenvalues of (HH), so the criteria for stable convergence discussed with respect
to equation (9) have not changed. Equation (27) indicates that if the PC coefficients
are adapted using the step sizes given in equation (18), the PC-LMS algorithm has
the same robustness to modelling errors as the multiple-error LMS algorithm.
We next extend this result to the case where the PC step sizes are different from
those dictated by equation (18), and where certain PCs are not adapted at all.
Following the approach described in reference [41], the matrix K used in
equation (27) is rewritten as a perturbation of the singular-value matrix, such that

K =S + 45, (28)
where A4S is a general matrix. With this substitution, equation (27) becomes
v(in) — v, =0 — u(S'S+S4S))(vin — 1) — v,). (29)

An approximate condition for stable convergence in the presence of modelling
errors that was described in reference [41] and experimentally verified for a limited
number of cases in references [35], assumes that only the diagonal terms of
equation (29) are relevant. With this assumption, convergence is stable if

Re(siz + SiASii) > O, S; > — RG(AS,-,-), (30, 31)

where As;; is the ith diagonal element of 4S. The validity of this assumption will
naturally depend on the structure of A4S, although it is difficult to offer general
guidelines as to which kinds of uncertainty are tolerable. However, as long as the
assumption leading to equation (31) is valid, the stability of convergence of one PC
is independent of any other PC. It is therefore reasonable to use PC step sizes that
are different from those specified in equation (18) and still expect stable
convergence. If equation (31) is not satisfied for the ith PC, it should be possible to



170 R. H. CABELL AND C. R. FULLER

set the corresponding PC step size to zero and allow the remaining PCs to converge
to their respective optimal values.

Although the assumption leading to equation (31) is approximate, it does appear
to be valid for small perturbation matrices, A4S, such as those due to normal
experimental error. Several successful experiments, including those discussed later
in this paper, have been conducted in which the PC step sizes were different from
those specified in equation (18), and in which only a subset of the PCs were
controlled. In all cases the PC-LMS algorithm demonstrated the same robustness
to modelling error as the multiple-error LMS algorithm.

Because of this ability to set the PC step sizes independently, the PC-LMS
algorithm provides greater flexibility for stabilizing the convergence of
a multichannel controller than the multiple-error LMS algorithm. In multiple-error
LMS, a control effort penalty can be used to stabilize convergence by setting the
penalty parameter /5 larger than the negative real parts of the eigenvalues of (ﬁHH)
[33,34]. However, if the real part of one of the first few principal components were
negative, the effort penalty would have to be set to a relatively large value to offset
the negative eigenvalue. The large effort penalty would limit both the control effort
and the reduction of the error norm. In contrast, if control is implemented using
PC-LMS, the PC step-size parameter for the unstable principal component could
be set to zero and the remaining principal components allowed to converge to their
respective optimal values.

3.3. RESIDUAL ERROR

Errors in the estimated transfer function matrix affect the minimum value of the
cost function. The residual error response in untransformed controller co-ordinates
is written [9] as

e, = [I — H[H®H] 'HZ]d. (32)

Substituting the SVD of H and H into equation (32), the residual error in terms of
PCs is given by

o =[I—SST][I + 4SS™] 'p, (33)

where ST is the pseudo-inverse of S. For small perturbation 4S this can be further
simplified as [41]

£ =[I—SST][I — 4SS*]p. (34)
The residual error response in PC co-ordinates is thus

0, i = [indices of controlled PCs],

Ci,ocz o—A
Di + Z
j=1 j

(35)

S Sij p;,» 1= [indices of uncontrolled PCs],
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where the list of uncontrolled PCs includes those that are not controllable,
i=r+1,...,m. Therefore, when the transfer function matrix contains errors and
the ith PC is is left uncontrolled, the residual error term will consist of the primary
response component, p;, plus contributions from all the controllable PCs as
indicated by equation (33). When the model errors are small such that the 4s;; are
small, the additional residual errors will also be small. In this case the benefits of
eliminating a PC, such as limiting control effort or stabilizing convergence, may be
worth the slight increase in residual error.

4. EXPERIMENTAL RESULTS

The performance of the PC-LMS algorithm was compared with the
multiple-error LMS algorithm in a single-frequency noise control experiment. The
algorithms were used to actively control a tone inside a closed cylindrical shell
created by loudspeakers outside the shell. Control inputs were provided by inertial
force shakers mounted on the ring frames of the shell, and microphones inside the
shell were used as error sensors. The overall noise reduction, control input
magnitudes, and incorporation of control effort penalties were studied using both
the control architectures at a single test frequency. A more thorough discussion of
the experiment can be found in reference [35].

4.1. APPARATUS

The tests were conducted on a closed cylindrical shell in NASA Langley’s
Acoustic and Dynamics Laboratory. This facility has been used to evaluate control
strategies for aircraft interior noise reduction [42,43]. The shell is pictured in
Figure 5, and has an overall length of 3:66 m, a diameter of 1:68 m, and a wall
thickness of 1-7mm. The structure is constructed from wound carbon fiber
filaments in an epoxy resin, and contains 10 J-section ring frames and 22
hat-section stringers. A plywood floor is located 0-54 m above the bottom of the
shell and the shell-floor joint is sealed to acoustically isolate the spaces above and
below the floor. The ends of the cylinder are closed with rigid baffles made from
3-18 m thick particle board with an access hatch cut into one baffle. The entire
structure is located in a semi-anechoic environment to reduce reverberation and
minimize the background noise.

Two 100 W electrodynamic loudspeakers were positioned on either side of the
cylinder exterior and used to create an external pressure disturbance on the shell.
This disturbance created an internal acoustic response which constituted the
primary field to be actively controlled. The loudspeakers were positioned at the
midpoint of the cylinder in both the vertical and horizontal directions, and were
located 0-5 m away from the exterior surface of the cylinder.

Forty-eight electret condenser microphones were uniformly arranged in the
interior of the cylinder to provide error feedback to the control system. The
microphones were mounted on six metal hoops that were attached to the plywood
floor, with eight microphones per hoop. A schematic of the microphone locations is
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Figure 5. Exterior view of cylindrical shell.

0°

12°

8

Cylinder floor

Figure 6. Microphone mounting locations: @, microphone.

shown in Figure 6. All 48 microphones were used as error sensors in the control
system, and there were no secondary microphones used to measure the noise
reduction at points away from the error sensors.

Control inputs were provided by 12 inertial force actuators clamped onto the
ring frames of the cylinder. The actuators produced radial force inputs that induced
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Figure 7. Actuator mounted on ring frame.
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Figure 8. Actuator mounting locations: @, control actuator; x , location of external loudspeaker.

an interior acoustic response, similar to other implementations of active structural
acoustic control [ 7]. The shakers had a nominal force constant of 22 N per Ampere
and a natural frequency of =60 Hz. Each one was clamped onto a ring frame
midway between two stringers, as shown in Figure 7. The foam damping material
between the ring frames in the photo was not present during the experiments
discussed here. The actuator locations were selected from a group of candidate
locations using a combinatorial search routine [43] to maximize noise reduction at
the test frequency. A schematic diagram of the actuator locations is shown in
Figure 8, which is an unwrapped view of the portion of the cylinder above the
plywood floor. Stringers are denoted by horizontal lines and ring frames by vertical
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lines. The two X’s in the figure designate the approximate locations of the external
loudspeakers. The selected actuator locations are indicated by black circles. Most
of the actuators were placed at approximately the same circumferential location as
the external speakers.

The control algorithms were executed on a floating point digital signal processor
residing in a desktop computer. The control system was originally designed for
controlling a tone and its first five harmonics, hence the controller operated at
a high sample rate relative to the fundamental frequency being controlled. Early
testing indicated that the single DSP could not compute the weight updates fast
enough when running the multiple-error LMS algorithm, although it was fast
enough for PC-LMS due to its lower computational requirements. To avoid the
complexity of adding a second DSP, the multiple-error LMS algorithm was
modified slightly such that the weight updates were computed one actuator at
a time in a round-robin fashion. This decreased the computational burden at each
sample instant but increased the overall convergence time of the multiple-error
LMS algorithm.

The step-size parameter u for the multiple-error LMS algorithm was set
to one-fourth of its maximum theoretical value, or 1/24,,., where A,,. is
the maximum eigenvalue of (H”H). This value turned out to be too high for
the PC-LMS algorithm, probably because of the increased error path delay due to
the PC transformation matrices. The convergence of PC-LMS was stable when all
of the PC step sizes set to 1/84,,... From the discussion of equation (18), by setting
all of the PC step sizes to 1/84,,.. the overall convergence rate of the weights was
faster than if the multiple-error LMS algorithm had been used with a step size
of 1/8 4 max-

The signal conditioning applied to the microphone responses and actuator
inputs is shown in Figure 9. Anti-aliasing and reconstruction filters were set at
723 Hz, and an additional low-pass filter with a cutoff frequency of 1000 Hz was
applied to the microphone inputs. The digital to analog (D/A) converters had an
output range of +10 V, and the control results given later are expressed in terms of
the D/A output voltage. The reference signal, which is not shown in Figure 9, was
generated on the DSP and sent to the loudspeakers. This ensured very high
coherence between the primary disturbance and the reference signal.

grjic
@11z b @723 Hz 12-bit A/D
100 X gain

DSP

Shaker

L

amp. lp@723Hz 12-bitD/A

Figure 9. Signal conditioning.
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Figure 10. Primary response at 147 Hz: (a) amplitude; (b) phase.

4.2. MEASURED DATA

The noise-control experiments were conducted at 147 Hz, which was close to the
natural frequency of the (2, 1, 0) cavity mode at 150 Hz [44]. The sampling rate for
the control system was set to 2500 Hz, which was much higher than the ideal
sampling rate of 4 times 147 Hz, or ~590 Hz. As mentioned previously, the high
sample rate was used so the control system could control the higher harmonics of
the 147 Hz tone, although those frequencies were not studied during this test.

The microphone responses due to excitation by the external loudspeakers at
147 Hz are shown in Figure 10. The data were measured as complex valued transfer
functions from the internal reference signal on the DSP, which was used to drive the
loudspeakers, to each microphone response. The amplitude and phase of the
transfer functions are plotted on an unwrapped view of the microphone grid, where
the axial array number corresponds to the longitudinal cylinder dimension and the
microphone number corresponds to the circumferential dimension. The amplitude
and phase of the response correspond roughly to the second order variation along
the circumference of the cylinder and first order variation along the length of the
shell.

The transfer functions between the actuators and microphones at the test
frequency were then measured and used to compute the optimal control solution.
The singular values of the transfer function matrix and the properties of the optimal
control solution are listed in Table 2, in terms of the principal components of the
control system. Note that these values were computed offline from the transfer
function and primary response measurements. The ratio of the largest to smallest
singular value is 60, which means the control system was slightly ill-conditioned at
the test frequency. The noise control corresponding to the optimal solution is given
for each PC as a percent reduction of the primary response. The values indicate that
only the first three PCs produce appreciable noise reduction, and of these the third
produces the largest reduction of 58:6%. The optimal control inputs in Volts
output of the D/A converters illustrate how the last few PCs can require
extraordinarily high efforts but produce very little reduction in the primary, as
noted elsewhere [32].
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TABLE 2

Performance of optimal controller at 147 Hz

Singular Reduction of Control effort
PC # value primary (%) (V3
1 5-35 21-0 63
2 4-64 16:1 60-5
3 3-62 586 388
4 1-88 0-4 1-1
5 1-47 1-0 13-0
6 0-80 1-0 13-0
7 0-65 0-0 0-5
8 0-42 0-6 30-1
9 0-32 03 265
10 0-24 0-0 0-7
11 0-18 05 126:0
12 0-09 0-0 14-2
0 300
| @ O R
3 | 250 t esTTTITITTIIIIIIIITITTITTT
e ol )
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Time (min) Time (min)

Figure 11. Control results at 147 Hz: (a) reduction of microphone responses; (b) control effort; —,
multiple error LMS; ---, PC-LMS, ----- , optimal controller.

Experimentally measured noise reduction for the controllers are shown in
Figure 11(a) as time histories of reduction in the primary response averaged across
all 48 microphones. The values in the plot were obtained by applying a low-pass
filter to instantaneous measurements during convergence. The optimal solution of
23-2 dBis indicated in the figure by the dashed line. This dramatic reduction across
the error microphones is possible, in part, because of the high coherence between
the reference and the primary response. Both controllers showed stable
convergence towards the optimal solution. The PC-LMS controller converged very
quickly, while the multiple-error LMS controller had not fully converged after
Smin. The different step sizes and the slower weight adaptation for the
multiple-error LMS algorithm make it difficult to draw any conclusions from the
different convergence speeds.
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The corresponding total control effort for the two controllers is plotted in Volts?
(of output of the D/A converters) versus time in Figure 11(b). The PC-LMS
controller converged to the expected total effort of 268 V2 after 2 min, whereas the
multiple-error LMS controller was well below the predicted value but still
increasing after 5 min. The control efforts for the two controllers after 5 min of
convergence are compared with the optimal solution, in terms of the inputs to
individual actuators, in Figure 12. The PC-LMS algorithm, which appeared to
have fully converged after 5min, showed good agreement with the optimal input
voltage for all 12 actuators, although the inputs were slightly low for actuators
eight and nine. In contrast, the multiple-error LMS algorithm, which had not fully
converged after 5 min, showed large discrepancies with the optimal input on several
actuators.

These results demonstrate stable, predictable performance from the PC-LMS
algorithm even when the PC step sizes were different from those given by
equation (18).

An additional test was conducted to compare the implementation of control
effort penalties with the two control algorithms. For the multiple-error LMS
algorithm the effort penalty was of the form given in equation 2, with f = 0-1. For
PC-LMS, an effort penalty was implemented by controlling only the first five out of
the 12 PCs. Noise reduction results and the associated control effort for the two
controllers are shown in Figure 13. The multiple-error LMS algorithm reduced the
primary by 15-4 dB, whereas the PC-LMS algorithm reduced it by 15-1 dB. The
associated control efforts reveal that the PC-LMS algorithm was more efficient,
requiring only 55 V2 of effort compared to 72 V? for multiple-error LMS.

Previous work [32] has illustrated how a uniform effort penalty, such as that
used here with the multiple-error LMS algorithm, constrains all PCs of the control
system. The degree of constraint depends on the ratio of the penalty parameter f3 to
the eigenvalue of each PC. Likewise, the uniform effort penalty allows the weights
to converge along every principal co-ordinate of control system, although only
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Figure 13. Comparison of control effort penalties: (a) reduction of microphone responses; (b)
control effort; —, multiple error LMS; --- , PC-LMS

very slightly in the direction of ill-conditioned co-ordinates. These two
considerations taken together provide an explanation for the relative inefficiency of
the multiple-error LMS algorithm in Figure 13. Well-conditioned principal
co-ordinates that were capable of producing significant noise reduction were not
completely controlled due to the slight constraint of the effort penalty. Similarly,
a small amount of control effort was spent on the ill-conditioned co-ordinates that
produced very little noise reduction.

In contrast, the effort penalty implemented in the PC-LMS algorithm controlled
only the first few well-conditioned PCs and did not spend any control energy on the
higher PCs which were slightly ill-conditioned. Because the first few PCs produced
substantial noise reduction at the test frequency, the controller produced good
noise reduction with an efficient use of control effort. The degree to which these
conclusions hold in general will depend on the conditioning of the control system,
and the noise-reduction potential of the first few PCs of the control system.

5. CONCLUSIONS

The principal component LMS algorithm was described and experimentally
shown to be a useful alternative to the multiple-error LMS algorithm for the active
control of tones using large control systems. The PC-LMS algorithm is a transform
domain version of multiple-error LMS, where the transform is based on the
principal components of the control system at a specific frequency, thereby
decoupling the control system at that frequency. This decoupling reduces the
computational burden of adaptively updating the control filter weights: if r denotes
the number of control actuators and m the number of error sensors, PC-LMS
requries 2r(m —r — 1) fewer computations per sample iteration than the
multiple-error LMS algorithm.

Problems associated with ill-conditioning in the control system, such as slow
convergence and excessive control effort, can be addressed easily when control is
implemented using PC-LMS. The decoupled nature of the PC-LMS means each
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control co-ordinate can be converged independently of every other co-ordinate.
Thus the convergence of slow co-ordinates can be accelerated by increasing the
corresponding PC step sizes in the adaptive weight update equation. Likewise, the
control effort spent on the co-ordinate can be constrained independently of every
other co-ordinate. Ill-conditioned principal components that produce little
reduction in the primary disturbance can thus be fully constrained without affecting
the well-conditioned co-ordinates that reduce the primary response.

An experimental study of the PC-LMS algorithm demonstrated the stable,
predictable convergence behavior of the algorithm in the presence of slight
ill-conditioning in the control system. The PC-LMS and multiple-error LMS
algorithms were studied in an active structural acoustic control experiment on an
aircraft fuselage model. Twelve inertial force actuators were mounted on the ring
frames of a closed cylindrical shell, and 48 microphones were used as error sensors
inside the shell. Both controllers reduced the mean-square microphone response
due to the excitation by external loudspeakers by over 20 dB. The PC-LMS
controller converged to the optimal control solution, in terms of both the error
reduction and the inputs to the control actuators.

The ease of limiting the control effort with the PC-LMS algorithm relative to the
multiple-error LMS algorithm also was demonstrated experimentally. The control
effort was constrained in the multiple-error LMS algorithm using a uniform effort
penalty in the controller cost function. For PC-LMS, the effort was constrained by
controlling only the first five PCs of the controller. Noise reductions of 154 and
15-1 dB were obtained using multiple-error and PC-LMS, respectively. However,
the PC-LMS algorithm appeared to be more efficient in obtaining that noise
reduction, requiring only 55 V2 of the effort compared to 72 V2 for multiple-error
LMS.
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