
Journal of Sound and <ibration (1999) 227(1), 183}204
Article No. jsvi.1999.2341, available online at http://www.idealibrary.com on
ROBUST CONTROL OF CHAOTIC VIBRATIONS FOR
IMPACTING HEAT EXCHANGER TUBES IN CROSSFLOW

J. M. DE BEDOUT, M. A. FRANCHEK AND A. K. BAJAJ

School of Mechanical Engineering, Purdue ;niversity,=est ¸afayette,
IN 47907, ;.S.A.

(Received 10 August 1998 and in ,nal form 16 April 1999)

A robust feedback controller design to suppress #utter-type chaotic vibrations in
ba%ed heat exchanger tubes is presented. The vibrations are the result of the #uid
dynamic forces on the tube which behave as a negative damping element.
A consequence of these vibrations is that the heat exchanger tubes impact with the
ba%e plates thereby reducing the service life of the heat exchanger. To eliminate the
resulting tube impacts, a feedback control strategy is proposed. The heat exchanger
tube and the #uid dynamic forces acting on the tube are modeled with linear
delayed di!erential equations. Due to the presence of the delay, these equations do
not have a rational realization. The feedback controller is realized using
a frequency domain loop shaping approach which is well suited for systems with
transcendental transfer functions. The control e!ector is a magnetic force
transducer that acts on the heat exchanger tube. The design strategy is based upon
the premise that stabilizing the linear instability about the undeformed tube
position will preclude the formation of the nonlinear chaotic vibrations that arise
from impacting. The feedback controller is shown to provide robust stability and
performance over a large #ow velocity regime

( 1999 Academic Press
1. INTRODUCTION

Heat exchanger tube arrays in #uid cross#ows have demonstrated dynamic
instabilities for su$ciently large #ow velocities. Some of these instabilities have
been linked to a negative damping mechanism arising from the #uid dynamic forces
acting on the tubes, analogous to single-degree-of-freedom #utter [1]. As the
amplitude of tube vibration grows due to the #uid loading, the heat exchanger
tubes eventually impact with the oversized holes they are threaded through in the
heat-exchanger ba%e plates. The function of these ba%e plates is to direct the #uid
#ow and provide support for the heat exchanger tubes. Although the impacting of
the tubes and the ba%e plates bounds the magnitude of the tube vibration
amplitude, it also reduces the life expectancy of the heat exchanger. An approach
for designing stabilizing feedback controllers to eliminate these impacting
vibrations is presented in this paper.

The non-linear vibrations of heat exchanger tubes in #uid cross#ows arise from
a #uid-induced dynamic instability [1,2]. Paidoussis and Li [2] demonstrated that
chaotic oscillations for such systems are in fact possible for large enough #uid #ow
0022-460X/99/410183#22 $30.00/0 ( 1999 Academic Press
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velocities. In this work, the heat exchanger tube array dynamics are studied by
assuming all of the tubes in the array except one to be rigid. The dynamics of the
#exible tube are investigated and considered to be characteristic of the entire array.
Motion of the #exible tube is assumed to be in the cross#ow direction only. The
solid}#uid interaction problem of the tube dynamics is modelled by a linear
delayed di!erential equation. The delay term arises due to the #uid forces acting on
the tube which are induced by the motion of the tube itself with respect to the
viscous wake of neighboring tubes. This partial di!erential equation can be
discretized on a modal basis via a Galerkin expansion [2]. When expressed in
state-variable form, the resulting equations of motion have a delayed state vector
and therefore the realization of these state equations is an irrational transfer
function. The only non-linearity considered by Paidoussis and Li in reference [2] is
the impacting force between the ba%e plate hole and the heat exchanger tube,
which was modelled both a cubic spring and as a trilinear spring. The
non-linearities arising from #uid forces are assumed much smaller compared to the
structural non-linearity. A more comprehensive model of the system dynamics,
which includes the #uid force non-linearities and tube motion in the in#ow
direction is given in references [3, 4]. An in-depth analysis of the mechanisms
leading to chaos in this system is given in reference [5].

The #utter-type oscillations exhibited by the heat exchanger tubes could be
eliminated over a wide #ow velocity regime using robust stabilizing feedback
control. For the purpose of controller design, the impacting between the tube and
the ba%e plate can be ignored based upon the premise that it provides a restoring
force to the tube and serves to enhance the stability [6]. Removing the linear
instability via feedback control therefore becomes the primary controller design
objective. The controller design methodology must accomodate internally delayed
systems, which are those systems whose state equations also incorporate delayed
states. The process of selecting a design methodology from those available in the
literature begins with the selection of either a time or a frequency-domain strategy.
Among the time-domain techniques are several linear optimal methods and
a variable structure control methodology known as sliding mode control (SMC).
Several H= optimal control methods and classical frequency response loop shaping
are available for a frequency domain design.

Chyung and Lee [7], and Koivo and Lee [8] investigated the application of
linear optimal methods having quadratic and other convex cost functionals for
time-varying internally delayed systems. These are full-state feedback methods and
thus require state observers if all states are not measurable. This increases the
controller design's dependence on accurate system models and increases
implementation complexity. The issue of robustness with respect to model
uncertainty is another signi"cant problem facing this class of design methods. For
example, in Yau et al. [6] the application of an LQG controller to a discretized
distributed parameter system similar to the one considered in this paper had small
stability margins in the face of relatively small parameter uncertainty.

Another time-domain contoller design methodology recently applied to
internally delayed systems is SMC. Recent work by Luo et al. [9, 10] has shown the
application of SMCs to parametric uncertain internally delayed systems.
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Furthermore, both full-state feedback and output feedback implementations are
considered. However, due to the switching nature of SMC controllers, the
closed-loop systems exhibit chattering during system transients. In general,
switching type control laws have high controller bandwidths thereby making the
closed-loop systems susceptible to actuator rate saturation and senior noise.

In the frequency domain, several H= optimal control methods are capable of
synthesizing controllers for internally delayed systems. In references [11, 12],
robust H= full-state feedback controllers for state delayed systems with parametric
and structured uncertainty are developed. Both methods require the solution of
Riccati inequalities. The synthesized controllers are contingent upon the selection
of appropriate positive-de"nite matrices. In Toker and Ozbay [13], an output
feedback strategy for the mixed sensitivity problem in SISO systems which can
have transcendental transfer functions is developed. The method allows for the
direct computation of optimal and suboptimal controllers by solving a "nite set of
linear homogeneous equations. However, the solution requires a factorization of
the plant into inner and outer parts that can be di$cult for complicated systems.

A 1940s based classical controller design methodology can be extended to
internally delayed systems that are described by transcendental transfer functions.
This design methodology is the so-called loop-shaping approach. Closed-loop
stability can be guaranteed for linear systems using the Nyquist encirclement
condition [14]. A distinction between loop-shaping and the other controller design
methodologies discussed previously is the manner in which closed-loop
performance is addressed. Closed-loop frequency domain performance
speci"cations and system uncertainty can be transparently displayed on the
open-loop gain-phase plane. In addition, certain types of time-domain performance
speci"cations can be enforced via amplitude inequalities in the frequency domain
[15]. In contrast, the optimal control methodologies discussed previously make use
of weighting functions or matrices to address performance. Iteration of these
performance weights is usually required to converge to an acceptable performance.

To demonstrate the loop-shaping approach, a stabilizing controller that is robust
with respect to variations in the #uid #ow velocity is designed to suppress the
#utter-type behavior in heat exchanger tubes. To accomplish this design, a stability
analysis of the tube using the models developed by Paidoussis and Li in reference
[2] is "rst presented to identify the stable and unstable #ow velocity regimes.
A state variable model that includes the e!ect of a control actuator is then
developed. A constant coe$cient controller is designed based on these models to
suppress the non-linear vibrations over a wide #ow velocity range. The premise
behind the controller design is that removing the linear instability induced by the
#uid dynamic forces on the tube will eliminate the non-linear vibrations resulting
from tube and ba%e impacting. The e!ectiveness of the controller in suppressing
undesirable oscillations is demonstrated through numerical simulations.

2. SYSTEM DYNAMICS AND STABILITY

An analytical model for a two-span heat exchanger tube subject to a #uid
cross#ow was developed by Paidoussis and Li [2]. A synopsis of this model
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development is reviewed in this section. Following this development is a dynamic
analysis of the model. System simulations involving a wide #ow velocity range serve
to illuminate stable and unstable #ow velocity regimes.

2.1. MODEL DEVELOPMENT

Consider the two-span heat exchanger tube in cross#ow in Figure 1. The ends of
the tube are rigidly supported and the position on the ba%e plate relative to the
heat exchanger lower wall is denoted as x

b
. It is assumed that the heat exchanger

tube moves perpendicular to the #ow direction only. While in#ow motion of the
tube does occur in real systems, the tube response is usually dominant in the
cross#ow direction [1, 3]. The following derivation of the equation of motion for
the heat exchanger tube subjected to cross#ow is developed in Paidoussis and Li
[2] and outlined here.

The dynamics of the tube in #uid cross#ow are described by

EI
L4w
Lx4

#c
Lw
Lt

#m
L2w
Lt2

#d(x!x
b
) f (w)"F(w, wR , wK ), (1)

where w denotes the displacement of the tube perpendicular to the #ow direction,
EI is the #exural rigidity of the tube, c is the damping coe$cient, m is the tube mass
per unit length, x denotes the position along the tube relative to the lower wall, d is
the Dirac delta function, f is the force exerted by the ba%e on the tube, and F is the
Figure 1. Heat exchanger tube subjected to #uid cross #ow: (a) top view, (b) side view.



HEAT EXCHANGER TUBES 187
force induced by the cross#ow on the tube. The cross#ow-induced force F is
a function of the tube motion and may be written as [2]

F(w, wR , w( )"M
L2w
Lt2

(x, t)#B
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Lt

(x, t)#Cw(x, t!*t), (2)

where

M"!

n
4

oD2C
ma

, B"!

1
2
oUDC

D
, C"

1
2

o;2D
LC

L
Lw

, *t"k
D
;

.

The variable D is the tube diameter, o the #uid density, ; the velocity of the
cross#ow #uid, C

D
and C

L
the drag and lift coe$cients, respectively, C

ma
the added

mass coe$cient of the #uid around the cylinder, and *t the delay between tube
motion and the #uid dynamic forces generated from these motions.

Consider the following dimensionless quantities, where ¸ describes the length of
the heat exchanger tube and j

1
is the dimensionless eigenvalue of the "rst mode for

a beam rigidly supported at both ends:
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Substituting the dimensionless variables (3) and the #uid force (2) into the tube
equation (1) yields the dimensionless equation
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) fI (g)"0. (4)

In this equation, ¹ is the dimensionless delay time given by

¹"

2n
;I

(5)

for k"1.
To study the dynamics of the tube subject to cross#ow, it is convenient to reduce

the model to a "nite size via Galerkin approximation of the tube model. The basis
functions for the Galerkin expansion can be chosen to be the eigenfunctions of the
linear tube problem without the time delay. For this purpose, note that the
dimensionless modal eigenvalues j

i
for a tube rigidly supported at both ends are

given by the solutions of

cosh(j
i
)cos(j

i
)"1. (6)

The corresponding eigenfunctions for the tube with rigid supports are
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where C
1i

and C
2i

are found for each mode of the beam by using the boundary
conditions

/
i
(0)"

L/
i

Lm
(0)"/

i
(1)"

L/
i

Lm
(1)"0

and the normalization

P
1

0

/
i
(m)/

j
(m) dm"G

1, for i"j,
0, for iOj.

(8)

Using the above de"ned basis functions, the non-linear system (4) can now be
discretized via a standard Galerkin expansion [2]:

g(m, q)"
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(m)q

i
(q), (9)

where the q
i
(q) terms describe the time-dependent contribution from each mode to

the overall tube response g(m, q). The /
i
(m) are the normalized eigenfunctions

speci"ed by equation (7). Substituting equation (9) into equation (4), multiplying by
/
j
(m) and integrating over m3[0, 1] gives the discretized equations of motion,
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where l
i
"(j

i
/j

1
)2, g

b
is the displacement at m"m

b
, and the viscous damping term

has been replaced by the modal damping d
i
l
i
/n. The only variable parameter in this

work is the dimensionless #ow velocity;I . The "xed values for the other parameters
were chosen in accordance to those used in reference [2]:

b"0)24, d
i
"0)06, C

D
"0)26, mJ "3,

LC
L

Lg
"!8.1.

These values correspond to a square heat exchanger tube array with center-to-
center pitch-to-diameter ratio p/D"1)5 [2].

The tube and ba%e impact force fI (g
b
) is modelled as a cubic spring (see Figure 2),

fI (g
b
)"ig3

b
, (11)

where i is the sti!ness of the cubic spring. In this work, i"1000 in accordance
with reference [2], and the location of the ba%e plate is at m

b
"0)5. This

approximation to the real constraint force, which behaves more as a trilinear
spring, is made for analysis purposes. The bifurcation diagrams that will be
generated for this system in the following section will be cleaner and easier to
interpret with the cubic model due to the smoothness of the force transition
through the impact point. Ultimately, however, simulations for the controlled
system will be provided with both the cubic and trilinear spring models. The
trilinear spring model is

fI (g
b
)"i[g

b
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b
!d D )], (12)



Figure 2. Spring models of the ba%e plate constraint force:**, cubic model;* .*, trilinear model.
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where 2d is the gap width between the ba%e plate hole and the tube, non-
dimensionalized by D [2]. For this work, i"1000 and d"0)15. The gap width d is
larger than the one used in reference [2], to allow larger amplitude oscillations.
This model is more accurate than the cubic spring model since the force exerted on
the tube while inside the gap is zero (Figure 2). In addition, the force exerted upon
impact of the tube and the ba%e is larger for the trilinear spring model.

Note that the ba%e has been located at the midpoint along the tube. This implies
that the even modes of the tube have a node at m"m

b
and may not contribute to the

tube displacement at m
b

depending on whether the response of the tube is
symmetrical or asymmetrical. Paidoussis and Li [2] have also studied the more
general case when m

b
O0)5. Also, note that equations (10) are a system of N second

order non-linear delayed di!erential equations. Interestingly, the only coupling
between the various modal amplitudes arises due to the constant force fI (g

b
) of the

ba%e support.

2.2. STABILITY ANALYSIS

Paidoussis and Li [2] proposed that the "rst "ve discrete modes of equation (10)
are su$cient to describe the heat exchanger tube dynamics. Equation (10) may be
expressed in stable variable form,

y5 "A
0 )

y#A
1 )

y (q!¹)#B
0 )

fI (g
b
), (13)
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where
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]T.

A linear stability analysis of the static equilibrium at y"0 has been conducted in
reference [2]. Their analysis shows that each of the modes of vibration for the tube
lose stability as the #ow rate ;I is quasi-statically increased. Recall that the modal
amplitudes q

i
are uncoupled in the absence of any non-linearity. It turned out that

the lowest beam mode becomes unstable at the lowest critical #ow rate. Each of the
successively higher modes becomes unstable at a higher #ow rate. The loss of
stability in each case is due to a pair of complex eigenvalues moving into the right
half-plane with non-zero imaginary parts. With this picture in mind, the non-linear
system described by equation (13) was simulated in MATLAB for the #ow-velocity
range ;I 3[0, 7] with various initial conditions. The integration step size was 0)01
dimensionless time units (dtu).

The "rst set of simulations investigated the stability of the non-linear system over
the previously described #ow velocity regime for small initial conditions.
Speci"cally, initial conditions of g

b
"0)0048 and gR

b
"0 for !¹)q)0 were

used. This is analogous to releasing the tube from a "xed position. For each #ow
velocity, simulations for 2000 dtu's were performed. The last 50 dtu's of these
simulations give the steady-state response. The bifurcation diagram generated
for this set of simulations for the steady-state behavior where gR

b
"0 is shown in

Figure 3.
Figure 3. Bifurcation diagram for small initial conditions.



HEAT EXCHANGER TUBES 191
For;I )1)75, the undeformed position at m"m
b
is stable (Figure 3). At;I :1)8,

the undeformed position becomes an unstable equilibrium point via a Hopf
bifurcation, and stable limit cycles form for #ow velocities up to ;I :4)4. At
;I :3)25, a post-Hopf bifurcation occurs. For ;I *4)4, chaotic oscillations occur
with sporadic windows of periodic oscillations. This bifurcation diagram concurs
with the one generated in reference [2].

A second set of simulations with larger initial conditions investigated the
uniqueness of the bifurcation diagram in Figure 3. For initial conditions of
g
b
"0)159 and gR

b
"0 during !¹)q)0, simulations were repeated for each #ow

velocity over the considered regime. The last 50 dtu's were again considered the
steady-state response. However, two #ow velocity regions inside ;I 3[0)7, 2]
displayed steady-state amplitudes of vibration that are markedly di!erent from
those seen with smaller initial conditions. Simulations over this #ow velocity region
were repeated with a higher resolution in;I and over a time period of 5000 dtu's to
ensure that the behavior seen was not a transient event. The last 50 dtu's were
considered steady-state behavior. The bifurcation diagram formed by splicing the
appropriate sections of the large initial condition simulations together is shown in
Figure 4. The "rst additional branch arises for ;I 3[0)945, 1)165], whereas the
second branch arises for ;I 3[1)72, 1)92]. The appearance of these new branches
was not reported in reference [2], and they are not predicted by a stability analysis
of the linearized system disregarding the non-linear ba%e force. Price and Valerio
Figure 4. Bifurcation diagram for large initial conditions.
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[1] discuss how multiple solutions can exist for the limit cycle amplitude in
a non-linear system. The system considered in reference [1] is also a constrained
#exible pipe in #uid cross#ow, although the non-linearity considered is in the #uid
forces acting on the tube and not the result of ba%e impacting. The behavior of the
bifurcation diagram for ;I 3[2, 4)3] was identical to that displayed in Figure 3 for
smaller initial conditions. The onset of chaos for larger initial conditions occurs at
;I :4)35, which is slightly lower than that seen for smaller initial conditions.

The smaller initial condition bifurcation diagram allows for the identi"cation of
the #ow velocities that possess the #uid dynamic instability responsible for the tube
vibration. This is useful for controller design purposes, since it separates the #ow
velocities that need a stabilizing controller from those that only require
performance enhancement. The large initial condition bifurcation diagram
indicates that there may be two #ow velocity regimes where a linear controller
design might not provide stability or performance enhancement of the closed-loop
system.

3. MODEL AUGMENTATION

The model presented in section 2.1 is now augmented with actuator and sensor
dynamics for the purpose of feedback control. For the present work, it is assumed
that there is a displacement sensor located at m"m

b
, the location of the ba%e. The

control e!ector is a magnetic force actuator located at m"m
c
. For generality, it is

assumed that m
c
Om

b
. The control problem is thus non-collocated, meaning that the

position of m
b

is being regulated with an actuator at a di!erent location.
The Laplace transform of the actuator dynamics are assumed to be of the form

u(s)
u
c
(s)

"

1
(s/c#1)

, (14)

where u (s) denotes the dimensionless actuator force, u
c
(s) is the control signal sent

to the actuator and c imposes a bandwidth limitation on actuation. The value of c is
chosen as 60 rad/dtu, which is higher than the resonant peaks of the plant dynamics
being considered (see Figure 5 for a Bode plot of the family of plants for;I 3[0, 7]).
This ensures adequate control bandwidth and reduces the risk of actuator rate
saturation.

Modifying equation (4) to include the e!ects of the actuator force at m"m
c
yields

the discretized equations of motion

1
1!b

q(
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d
i
l
i

n
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;I C
D

4nmJ BqR i(q)#l2
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(q)!
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b
)/

i
(m

b
)

"u (q)/
i
(m

c
), i3I

`@(N`1)
. (15)

The dimensionless actuator force u (q) is

u (q)"
C(q)

mX2
1
D

, (16)
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where C(q) is the dimensional force exerted by the actuator at m"m
c
. Equation (15)

may be expressed in state variable form as

y5 "A0 ) y#A1 ) y(q!¹)#B0 ) fI (gb)#B1 ) u (q), g(m
b
)"C ) y, (17)

where C is of dimension (1]2N).
Selecting the location of m

c
in#uences the controller design. For example,

mounting the actuator at the location of a modal node would preclude the use of
that mode in controlling the vibration at m

b
. For this study, the actuator is located

at m
c
"0)45 which is close to the desired control location m

b
and does not lie on any

of the modal nodes for the "rst "ve modes.

4. FEEDBACK CONTROLLER DESIGN

The design of a stabilizing feedback controller for heat exchanger tubes subject to
a #uid cross#ow with an unknown but bounded #ow velocity is presented in this
section. Two key issues complicate the design process. The presence of a delayed
state vector in equation (17) causes the system transfer function to be
transcendental with the consequence that identifying open-loop unstable
singularities becomes more di$cult. Also, the two additional limit cycle branches in
Figure 4 that were not predicted by a linearized stability analysis of the system
make it necessary to verify closed-loop stability over these #ow regimes via
simulation.

4.1. FREQUENCY RESPONSE GENERATION

The transfer function between g
b
(s) and the actuator force u(s) is obtained by

taking the Laplace transform of equation (17):

P(s)"
g
b
(s)

u (s)
"C[sI!A

0
!A

1
e~qs]~1B

1
. (18)

Similarly, the transfer function between g
b
(s) and the ba%e force fI (s) is

P
d
(s)"

g
b
(s)

fI (s)
"C[sI!A

0
!A

1
e~qs]~1B

0
. (19)

The frequency responses of equations (18) and (19) are obtained by substituting
s"ju, where j"J!1 and u is in rad/dtu.

The Bode plot of the family of transfer functions P( ju) described by equation (18)
for ;I 3[0, 7] is shown in Figure 5. Two major trends, delineated by phase, can be
observed. The phase curves with the greatest lag correspond to ;I 3[0, 1)75]. The
magnitude versus phase characteristics for this family of plants indicates that the
system is stable over this #ow regime. This result is veri"ed by the stability analysis
of the previous section. The remaining phase curves correspond to;I 3(1)75, 7]. The
phase characteristics associated with the underdamped resonant peak at
u:0)8 rad/dtu indicate that the complex poles associated with this resonant peak
are either marginally stable or unstable. This also is in agreement with the results



Figure 5. Bode plots of the transfer function between g
b
(s) and u(s).
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from the previous section. No additional unstable singularities occur for equations
(18) and (19) over the;I range considered, including the #ow velocity ranges where
the two additional bifurcation branches were discovered.

4.2. LOOP SHAPING THE CONTROLLER

Using unity feedback, the relationship between the the actuator force u(s) and the
dimensionless displacement g

b
(s) is

u(s)"!G (s) ) g
b
(s). (20)

Note that equation (20) includes the actuator dynamics (14) in the controller G (s).
The block diagram for this regulating system is shown in Figure 6. Note that the
ba%e plate constraint force acts as an output disturbance to the controlled loop.
However, the e!ect of the ba%e force is to restore g

b
to the equilibrium point,

enhancing regulation. Therefore, the controller design will be limited to achieving
stabilization of the uncertain linear system P(s) disregarding the e!ect of the ba%e
force. A similar approach is advanced in Yau et al. [6].

The transmission of the ba%e impact force to the system output g
b

can be
identi"ed from the block diagram in Figure 6. The open-loop transfer function of



Figure 6. Block diagram of the proposed regulating system.
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the regulating system is given by

¸(s)"G(s) )P (s). (21)

The transfer function relating g
b
(s) to the ba%e impact force fI (s) is

g
b
(s)

fI (s)
"P

d
(s) ) S(s), (22)

where S (s) is the closed-loop sensitivity transfer function, de"ned by

S (s)"
1

1#¸(s)
. (23)

The closed-loop sensitivity transfer function therefore provides a a measure of how
the closed-loop system will react to the ba%e plate impact disturbance. It would be
desirable to reduce the magnitude of the the sensitivity transfer function as much as
possible to minimize the e!ect of fI (s) on g

b
(s). However, from the Bode sensitivity

integral [16], reducing the closed-loop sensitivity over all frequencies is not
possible with a strictly proper controller.

The design of a stabilizing constant coe$cient linear controller G( ju) for this
system is achieved by shaping the family of open-loop frequency responses de"ned
by

¸( ju)"G(ju) )P( ju) (24)

such that ¸(ju) satis"es the Nyquist encirclement condition. The stable plant set
for;I 3[0, 1.75] requires no encirclements of the critical point since all singularities
for this subset of P(s) are stable. On the other hand, the unstable plant set for
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;I 3(1)75, 7] requires two counter-clockwise encirclements of the critical point in
the ¸(s) plane due to the two unstable poles that exist for this subset of P(s). The
e!ects of the additional branches of the bifurcation diagram that were discovered
for large initial conditions in Section 2 will be neglected since they are not present in
the frequency responses of equations (18) and (19). The stability over these portions
of the #ow regime will therefore need to be demonstrated via numerical
simulations.

The only performance speci"cation placed on the design is a peak magnitude
condition on the closed-loop sensitivity. This peak is speci"ed as 3 dB for all plants
in the uncertain set. The 3 dB bound on the peak magnitude of the closed-loop
sensitivity limits the reaction of the closed-loop system to the ba%e plate impact
force. In addition, it directly enforces a certain degree of closed-loop stability by
ensuring ample gain and phase separation between the family of loop transmission
functions and the critical point.

The design of a robust controller for the #ow regime;I 3[0, 7] must integrate the
stability and performance requirements of the plant set for ;I 3(1)75, 7] with the
performance needs of the plant set corresponding to;I 3[0, 1)75]. From Figure 5 it
is evident that the only qualitative di!erence between the stable and unstable plant
sets is the 3603 phase di!erential that occurs after the "rst resonance, at
u:0)8 rad/dtu. The open-loop gain-phase plots of the unstable and stable families
of frequency responses with closed-loop sensitivity grids are shown in Figures 7
Figure 7. Gain-phase plot of the uncompensated loop transmission functions for ;I 3(1)75, 7].



Figure 8. Gain-phase plot of the uncompensated loop transmission functions for ;I 3[0, 1)75].
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and 8. Any controller features beyond u:2 rad/dtu will modify both the stable
and unstable plant set frequency responses in the same qualitative manner. The key
controller design frequency range is thus u3[0, 2] rad/dtu. Over this frequency
range, the controller must stabilize the plant set for;I 3(1)75, 7] while retaining the
stability of the plant set for ;I 3[0, 1)75]. According to the Nyquist encirclement
condition, the mapping in the ¸(s) plane of the Nyquist contour must encircle the
critical point two times to achieve closed-loop stability of the unstable plant set.
Therefore, one encirclement of the critical point is required for ¸(ju) over
u3[0,R] for the unstable plant set, which is accomplished by adding phase lead
and gain to ¸ (ju) near the "rst resonance. Since the stable plant set requires no
encirclements of the critical point for closed-loop stability, this control action will
also improve the stability of the stable plant set by increasing the separation
between the family of loop transmission functions and the critical point (Figure 8).
Therefore, a controller designed to stabilize and enhance the performance of the
unstable plant set will also improve the stability and performance of the stable
plant set.

The controller design is realized by loop shaping the family of frequency
responses for ;I 3(1)75, 7] on the open-loop gain-phase plane. Recall from
equation (20) that the actuator dynamics are included in the controller. Therefore,
the actuator dynamics (14) are "rst added to the system frequency responses. For
closed-loop stability, a gain of !43 dB and phase lead at u"0)2 and
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u"3 rad/dtu are added to obtain the required encirclement of the critical point by
the family of loop transmission functions near the "rst resonance. Then, complex
zeros at u"11)66 rad/dtu and complex poles at u"10)27 rad/dtu are added to
cancel the resonances and antiresonances in the plant dynamics at these frequencies
(see Figure 5). Complex zeros at u"5)92 rad/dtu and two simple poles at
u"20 rad/dtu add phase lead to ¸(ju) at u"11 rad/dtu to achieve satisfaction of
the 3 dB maximum closed-loop sensitivity performance speci"cation by the family
of loop transmission functions. Two high-frequency poles at u"20 rad/dtu are
then added to make the controller strictly proper and achieve a higher amplitude
roll-o! for sensor noise attenuation. The open-loop gain-phase plots of the family
of compensated transfer functions for this #ow regime and for the plants in
;I 3[0, 1)75] are shown in Figures 9 and 10, respectively. Since both plant sets are
closed-loop stable and meet the performance speci"cations, this robust control law
can be used to regulate g (m

b
) over the entire #ow velocity regime;I 3[0, 7] without

the need to sense the #uid #ow velocity. The transfer function of the designed
controller is

G(s)"
2400000(s#0)008)(s#2)(s2#0)2s#135)8530)(s2#1)9s#35)

(s#60)(s2#10s#25)(s2#0)2s#105)3805)(s2#40s#400)(s2#40s#400)
.

(25)
The Bode plot of G(s) is shown in Figure 11.
Figure 9. Gain-phase plot of the compensated loop transmission functions for ;I 3(1)75, 7].



Figure 10. Gain-phase plot of the compensated loop transmission functions for ;I 3[0, 1)75].

Figure 11. Bode plot of the designed controller.
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4.3. TRANSIENT SIMULATIONS

The family of transient responses of the controlled system with the ba%e force
modelled as a cubic spring and initial conditions g

b
"0)0048 and gR

b
"0 for

!¹)q)0 is shown in Figure 12. This corresponds to the bifurcation diagram in
Figure 3 for ;I 3[0, 7]. The transient responses are allowed to develop without
feedback control for 10 dtu, after which the controller is active. From Figure 12, it is
evident that complete suppression of the transient vibrations is achieved within
10 dtu. The control e!ort required to maintain stability at steady-state
asymptotically approaches zero.

The family of transient responses of the controlled system with the ba%e force
modelled as a cubic spring and initial conditions g

b
"0)159 and gR

b
"0 for

!¹)q)0 is shown in Figure 13. This corresponds to the bifurcation diagram in
Figure 4, for;I 3[0)7, 2]. Once again, the transient responses are allowed to develop
without feedback control for 10 dtu, after which the controller is active. From
Figure 13, it is evident that complete suppression of the transient vibrations is
achieved within 10 dtu. Once again, the control e!ort required to maintain stability
at steady-state asymptotically approaches zero.

The family of transient responses of the controlled system with the ba%e force
modelled as a trilinear spring and initial conditions g

b
"0)159 and gR

b
"0 for

!¹)q)0 is shown in Figure 14. The transient responses are allowed to develop
Figure 12. Closed-loop transient response for;I 3[0, 7], with small initial conditions (cubic spring
model).



Figure 13. Closed-loop transient response for;I 3[0)7, 2], with large initial conditions (cubic spring
model).
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without feedback control for 10 dtu, after which the controller is active. Here again,
it can be seen that the unstable motions are suppressed within 10 dtu. Furthermore,
the control e!ort required to maintain stability at steady-state asymptotically
approaches zero. The absence of the ba%e constraint force for g

b
)0)15 allows the

tube vibration amplitudes to grow larger than the vibration amplitudes from the
simulations with the cubic spring model. However, the larger impact force restrains
the development of the tube vibration amplitude beyond g

b
"0)15 severely. In fact,

the simulations show the gap limits acting as rigid stops.
A "nal simulation was performed to test the robustness of the closed-loop system

to changes in the #ow velocity. The transient response of the closed-loop system
with the #ow velocity incrementally stepped between 0)1);I )7 is shown in
Figure 15. The ba%e force is modelled as a trilinear spring and the initial conditions
are g

b
"0)159 and gR

b
"0 for !¹)q)0. The transient response is allowed to

develop without feedback control for 1 dtu, after which the controller is active.
From Figure 15, it is evident that complete suppression of the transient vibrations
is achieved within 10 dtu. Step changes in the #ow velocity have no transient e!ects
on the de#ection g

b
once the equilibrium position has been reached. Therefore,

stability of the uncertain closed-loop system over the entire #ow regime ;I 3[0, 7]
has been con"rmed.



Figure 14. Closed-loop transient response for ;I 3[0, 7] with large initial conditions (trilinear
spring model).
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5. CONCLUSIONS

A feedback controller design methodology applied to the #utter-type non-linear
vibrations of heat exchanger tubes was developed in this paper. The motivation is
to counter the adverse e!ects of tube and ba%e plate impacting on the heat
exchanger life. A stability analysis of the system using a cubic spring model for the
impacting force was performed to identify #ow velocity regimes that required
stabilizing control action and performance enhancement. The analysis provided
detailed bifurcation diagrams as a function of #ow velocity that illustrate the onset
of #uid dynamic instabilities, limit cycles and chaotic oscillations of the heat
exchanger tube. The stability analysis also identi"ed two additional branches of the
bifurcation diagram that arise as a result of large displacements of the heat
exchanger tube from its undeformed position.

The feedback controller provided robust closed-loop stability and performance
despite a wide variation in the #uid #ow velocity. The controller was designed via
loop-shaping on the open-loop gain-phase plane such that the Nyquist
encirclement condition was satis"ed. A closed-loop peak sensitivity performance
speci"cation was used to limit the transmission of the external disturbance to the
system output. The design approach neglected the additional bifurcation diagram
branches and the e!ects of the restoring ba%e impact force by focusing on
stabilizing the #uid dynamic instabilities that arise in the system for certain



Figure 15. Closed-loop transient response for incrementally stepped ;I 3[0, 7] (trilinear spring
model).
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dimensionless #ow velocity ranges. Numerical simulation was needed to verify
closed-loop stability and performance.

The design of the feedback controller was based on the heat exchanger tube array
model which considered all tubes in the array except one to be rigid. For
implementation, each heat exchanger tube would need an actuator and sensor, and
each tube would have an individual controller. The interaction and cross-coupling
that could occur between several loosely "tting tubes has been neglected by this
design approach due to the form of the model. However, the only path that can
transmit this type of interaction is the #uid medium which would be expected to
have a low-pass characteristic. Therefore, this design technique should prove
e!ective for tube array stabilization purposes.

A wide class of continuous systems are required to operate near equilibrium
points that are either unstable or have poor stability margins. The controller design
approach advanced in this paper can be applied to enhance the stability and
performance of these types of systems. For example, #ow-induced oscillations in
gas turbine engine blades, column buckling under critical loads, and galloping
phenomena exhibited in tra$c light posts are a few of the systems that could bene"t
from this controller design technique. Since the closed-loop systems are required to
operate near these equilibrium points at steady-state, the control e!ort required to
maintain closed-loop stability at steady-state could be minimal. Therefore,
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feedback control could be a viable option for reducing weight and material costs
associated with the conventional passive sti!ening techniques currently used to
address these problems.
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