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1. INTRODUCTION

The title problem occurs in several engineering applications and has received
attention from several researchers. The theoretical modelling based on
Euler-Bernoulli theory of bending is relatively easy but only a limited range of
results are found in publications. Some classical boundary conditions were
considered in references [1-8] and elastically restrained supports in [9-13]. In
references [1-4], approximate fundamental frequencies were presented for
clamped-clamped, pinned-pinned and clamped-free cases. In reference [5]
a comparison was made of the fundamental frequencies of a pinned-pinned case
obtained by Euler-Bernoulli theory and Timoshenko theory. Reference [6] listed
10 frequency equations for combinations of the classical boundary conditions. The
frequency equations were first expressed as 8 x 8 determinants and then generated
into transcendental form using M A PLE but only the fundamental frequency of the
clamped-clamped case was listed. References [7,8] suggested approximate
solutions for large amplitude vibrations. In references [9-13] elastic support
resilience was included in the analysis. Reference [9] does not contain any
numerical results. In reference [ 10] results for the pinned-pinned case was included
as a special case. In reference [11] fundamental frequencies obtained by
approximate methods were compared with experimental results. In reference [12]
a theory was developed for elastic supports but only the fundamental frequencies of
pinned-pinned and clamped-clamped cases were listed. The only results listed in
reference [13] were the fundamental frequencies of beams restrained against
angular deflections at the ends.

In the present paper, the frequency equations for all the combinations of the
classical boundary conditions are presented as 4 x 4 determinants equated to zero.
These determinants in turn may be expressed as 2 x 2 determinants. The first three
natural frequencies for all the combinations of boundary conditions are tabulated
for various magnitudes and positions of the particle mass. Some mode shapes
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(which consist of two portions) are presented and discussed. A similar range of
results are not found elsewhere.

2. THEORY

Figure 1a shows a uniform beam O;0, of flexural rigidity. EI, mass per unit
length m and length (R; + R,)L carrying a particle of mass M at a distance R L
from the left end. In the study of lateral vibration of this system. Low [6]
used a single co-ordinate system with origin at O;. In the present note, O; an O,
are the origins of the co-ordinate systems for portions of the beam to the left
and to the right of the particle. The use of the two separate co-ordinate systems
has some algebraic advantages. In the text subscript k =1 refers to the left
portion and subscript k = 2 refers to the right portion. For the beam in free
vibration at frequency w, if the amplitude of the deflection is y(x;) at
abscissa x; (0 < x; < R L), then the amplitude of the bending moment
M, (x,), shearing force Q,(x;) and the mode shape differential equation for the two
portions are

Mi(xi) = EId?y, () /dx¢, Qu(xi) = —EId%y(x)/dxE,
EId*y(x,)/dxi — maw?yi(x) = 0. (1)
Equations (1) may be expressed in dimensionless form with the choice
xp = X L, Vie(xx) = V(X)) L, 6= M/mL, Q? = mw*L*/EI ()

Here 6 is the particle mass parameter and Q2 is the dimensionless natural frequency.
The dimensionless mode shape equations for the left- and right-hand portions are

d*Y, (X)/d X — Q*Yi(X,) = 0. 3)

The corresponding solutions (the mode shape functions for the left and right
portions) are

Yk(Xk) = Bkl Sin(Ql/ZXk) + Bk2 COS(QI/ZXk) + BkS Sinh(Ql/sz) + Bk4- COSh(Ql/ZXk).
4)

Here By, through to By, are the eight constants of integration.

An advantage of the two separate co-ordinate systems is that two of the
constants of integration in each of equations (4) may be eliminated from the
boundary conditions at O; and O, and the two mode shape functions Y;(X;) and
Y,(X,) expressed as

Yk(Xk) = Ciy Uk(Xk) + Ciz Vk(Xk) (5)

and in this problem U, (X)), Vi(X,) are transcendental functions. These functions for
the four classical boundary conditions are tabulated in Table 1.
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Figure 1. The two separate co-ordinate systems and free body diagram of the particle.

TABLE 1

The functions Uy(X,) and Vi (X,) for the classical supports at origin Oy

Oy Ui(Xi) Vi(X3)

Clamped sin(Q'2X,) — sinh(Q'/2X,) cos(212X,) — cos(Q'V2X,)
Pinned sin(Q'2 X)) sinh(Q1/2X,)
Sliding cos(Q1?X,) cosh(Q12X,)

Free sin(Q'2X,) + sinh(Q'/2X,) cos(Q'2X,) + cosh(Q'*X,)

The conditions of continuity of deflection and slope, compatibility of bending
moment and shearing force at x; = R;L and x, = R,L as in Figure 1b (which
shows the d’Alembert’s free body diagram of the particle) are

V1(R1L) = y2(R,L), dy1(R{L)/dx; = — dy,»(R,L)/dx,,
M;(R,L) = M,(R,L), 0:(R.L) + Q5(R,L) = Mw?y,(R,L). (6)
Equations (6) in dimensionless form are
Yi(R;) — Y5(R,) =0, dY;(R;)/dX; + dY,(R,)/dX, =0,
d?Y{(R,)/dX?} — d*Y,(R,)/dX3 =0,
A*Y1(R,)/dX} + d*Y,(R,)/dX3 + 6Q2°Y(R,) = 0. (7)

Equations (7) may now be expressed as
Al 1 A12 Al 3 A14 Cl 1

; (®)
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where
[A11, A1z, Ars, Aral = [UL(Ry), Vi(Ry), —Uz(Ry), —V2(Ry)],
[A31, Aza, Azs, Aza] = [dU{(Ry)/d Xy, dV1(Ry)/dXy, dU,(R,)/dX,, dV5(R,)/dX, ],
[As1, Asz, Azz, Ass] = [d*U;(Ry)/d X7, d*V(R,)/dXT,
—d?U,(R,)/dX3, —d?*V,(R,)/dX3],
and
(A1, Aga, Aus, Aga] = [APUL(Ry)/dX3 + 0Q2U,(R,), d*Vi(Ry)/d X3
+ 0Q%V1(Ry), d*U,(R,)/dX3, d*V,(Ry)/dX3],

The frequency equation is the determinant of the 4 x 4 matrix equated to zero.
There will be a frequency equation for each of the 16 combinations of clamped,
pinned, sliding or free boundary conditions at O; and O,. The choice R; and
R, =1, 1i.e., a beam of length L, will not result in loss of generality and in this case
there will be 10 frequency equations. A 4 x4 determinant may be expanded
manually by inductive development [14]. From the conditions of continuity of
deflection and slope at the location of the particle, two more constants of
integration may be eliminated and the frequency equation expressed as a 2 x 2
determinant. The determinant when expanded and simplified will yield the
frequency equations listed by Low [6] in which the frequency equations were
expressed as 8 x 8 determinants which needed MAPLE to expand.

2.1. NATURAL FREQUENCY CALCULATIONS

The roots of the frequency equation were determined by a “search” followed by
an iterative procedure based on linear interpolation. Corresponding to a selected
boundary condition, ¢, R; and a trial Q, each element of the determinant was
calculated. A “coarse” search was made (starting with = 0-1 with a step increase
of 0-1) to locate a range at which a sign change occurred in the value of the
determinant. A search was now made in this range (with step change of 0-01) to
narrow the range of the root. One may go another stage to narrow the range of the
root even further. An iterative procedure based on linear interpolation was now
invoked to locate the root to a predetermined accuracy. The search was now
continued for the next root and so on.

In Table 2, the first three non-zero values of Q% of a beam of length L are
tabulated for 16 combinations of the classical boundary conditions (BC) and for
values of Ry = 0-125, 0-375, 0-500 and 6 = 0-5, 10, 10-0. The boundary conditions
are indicated (i, j) where i or j = 1, 2, 3 or 4 denote clamped, pinned, sliding or free
support. For example, the boundary condition (2, 4) means pinned at O, and free at
0,. If one denotes the dimensionless natural frequency for a certain boundary
condition by Q(, j, 4, Ry), then for the beam of length L (i.e., R{ + R, = 1),

Q(iaja 57R1) :Q(.]7 ia 57 1 _Rl) (9)
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One may deduce frequencies for R; = 0-625, 0-75, 0-875 from the results in Table 2.
For R; = 0-5, the second non-zero frequencies for boundary conditions (1, 1), (2, 2)
and (4, 4) and the first non-zero frequencies of (3, 3) are independent of §. In these

cases because of symmetry, there is a node at R; = 0-5.

2.2. MODE SHAPE CALCULATIONS

The mode shapes, position of nodes, etc. are useful tools in vibration analysis. To
establish the modes shape for a particular condition (i, j), 6 and R;, the natural
frequency Q2 was calculated. In this note the mode shape (two separate curves) was

normalized with the factor R, (without loss of generality) so that

Yi(Ro) = C11U1(Ro) + C12V1(Ro) = Z,, (10)
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Figure 2. The first three mode shapes (normalized with R, = R; and Z, = 1-0, first mode in first
column, etc.) of clamped-pinned (first row), clamped-sliding (second row) and clamped-free (third
row) beams. Thin line R; = 0-25, thick line R; = 0-5 and discontinuous line R; = 0-75. For all cases

0=02.
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Figure 3. The first three mode shapes (normalized with Ry = 0-1 and Z, = 0-5, first mode in first

column, etc.) of clamped-clamped (first row), pinned-pinned (second row), sliding-sliding (third row)
and free-free (fourth row) beams. Thin line for R; = 0-2, thick line R; = 0-3 and discontinuous line
R; = 0-5. For all cases 6 = 1-0.
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where Z, is arbitrarily chosen and the normalizing factor Ry < R;. The four
constants of integration in equation (5) were obtained from

Aoy Aoz 0O 0 Ciy Zo
Azr Azz Azz Asal| Coa _ 0 ’ (11)
A3y Aszy Asz Asa|| Cay 0
Asr Asz Asz Asa|| Ca 0

where Ay = U;(Ry) and Ay, = Vi (Ry).

Figure 2 illustrates the change in the first three modes shapes of clamped-pinned,
clamped-sliding and clamped-free beams when a particle of 6 = 0-2 is placed at
R; = 0-25 or 0-5 or 0-75 and the mode shapes were normalized with Z, = 1-:0 and
Ry = R. By substituting C;; and Cy, from equation (11) into equation (8), the
normalized left portion of the mode shape Y;(X;) was established by increasing
X in small steps from 0 to R;. The right portion was similarly established.
A clamped-free uniform beam has a node at 0-7834L in its second mode and nodes
at 0-5035L and at 0-8677L at its third mode; see for example [ 15]. This explains the
“bulgy” second normalized mode shape of the clamped-free case in Figure 2 when
the particle is located at Ry = 0-75 (close to a node) and the excessively “bulgy”
normalized third mode shape with the particle at R; = 0-5 (too close to a node).
The “bulgy” normalized second mode shape of the clamped-sliding beam is
because of a node in the vicinity of 0-75L. “Bulgy” normalized mode shapes are due
to the accidental choice of the normalizing factor Ry and does not imply large
deflections. Figure 3 shows the normalized mode shapes of clamped-clamped,
pinned-pinned, sliding-sliding and free-free beams for particle of 6 = 1-0 and
Ry =02, 03 and 0-5 and the choice made for equation (11) are R, =0-1 and
Zo, = 0-5. Note the symmetrical mode shapes for R; = 0-5 and in this case one
avoids the choice of Ry = 0-5.

3. CONCLUSIONS

Low (6) presented the frequency equations of a uniform beam with a particle at
an intermediate point as 8 x 8 determinants, used MAPLE software to expand
them but presented only the fundamental frequencies of the clamped-clamped case.
In the present note, the choice of two separate co-ordinate system enabled the
frequency equations to be expressed as 4 x 4 determinants (which if needed may be
expanded manually) equated to zero. Two more constants of integration may be
eliminated from the conditions of continuity of deflection and slope at the position
of the particle and the frequency equations may now be expressed as 2x2
determinants, but it was found that this additional manual operation did not offer
much overt advantage.

For 16 combinations of classical boundary conditions, the first three frequencies
are presented in Table 2 for R; = 0-125, 0-250, 0-375 and 0-500 and 6 = 0-5, 1-0 and
5:0. Equation (9) enables the frequencies for Ry = 0-625, 0-750, 0-875 to be deduced
from the table.



214 LETTERS TO THE EDITOR

Typical normalized mode shapes are presented. If accidentally or otherwise, the

normalizing factor R, is near a node, large values will result for the normalized
mode shapes which means that there is a node in the vicinity of R.

10.

11.

12.

13.

14.

15.
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