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1. INTRODUCTION

The multi-layered structure has been widely used in the "elds of mechanical and
structural engineering [1, 2]. The primary objective in the analysis of this structure
is to understand the lateral vibration of each layer. The transfer matrix method and
"nite element method have been introduced for numerical analysis in this problem
using typical vibration texts [3, 4]. Recently, some analytical methods have been
proposed to evaluate the transmissibility of these linear multi-degree-of-freedom
systems [5}7]. However, the processes are still complicated when each subsystem
of the system is not identical. Moreover, it is more di$cult to calculate the
analytical dynamic response of the displacement (velocity) and shear force of each
layer of the structure using the classical methods.

In this paper, the forced vibration of an N-layer structure will be analyzed by the
two-way state-#ow graph method [8, 9]. The analytical frequency response of each
layer of the structure subjected to a harmonic excitation is evaluated. It is
convenient to apply the results of the vibration analysis for periodic excitation.
Moreover, computation of the transient response based on the di!erential
equations, which is transferred from the frequency response, for non-periodic
excitation is investigated in the article. Finally, the frequency and transient
response of a "ve-story building is examined in numerical examples to illustrate the
performance of the method.

2. FREQUENCY RESPONSE ANALYSIS

An N-layer structure subjected to displacement excitation at the end of the
system, x

0
, as shown in Figure 1 is considered. If the excitation is harmonic, the

responses of the displacement and shear force in each layer of the structure are all
harmonic with the same frequency. Using the exponential form, the relationship of
the shear force and the displacement for the elastic segment in layer i may be
expressed as
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Figure 1. Schematic diagram of a N-layer structure.

Figure 2. State-#ow graph model for the ith layer substructure: (a) elastic segment, (b) lumped mass.
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where u is the excitation frequency, k
i
and c

i
are the sti!ness and damping of the

massless elastic segment in layer i. X
i
and F

i
are the Fourier transform of x

i
(t) and

f
i
(t) in which x

i
(t) is the displacement of the lumped mass and f

i
(t) is the shear force

of the elastic segment in the ith layer of the structure. Based on equation (1), the
dynamics of the elastic segment can be expressed as a two-way state-#ow graph
model as shown in Figure 2(a). For the lumped mass in layer i, the dynamic
equation is given as
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In the same way, the dynamics of the lumped mass can be described in Figure 2(b).
From Figures 2(a) and 2(b), we see that the directions and variables of the state-
#ow at the higher side of Figure 2(a) match those at the lower side of Figure 2(b).



Figure 3. State-#ow graph model for the N-layer structure.
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Thus, both state-#ow models can be connected in a series. This technology can be
extended over the entire system to construct the entire state-#ow graph model of
the dynamic system as shown in Figure 3, in which the input state-#ow also
matches the direction of the excitation.

Based on the graph model of the entire structure, the frequency response can be
calculated using a gain formula [10,8]. From Figure 3, we see that the path of
a state-#ow forms a closed loop when the state-#ow passes through any transverse
path from right to left, through a vertical path from a higher to a lower position,
through any transverse path from left to right, which is below the previous
transverse path, and through the vertical path from a lower to higher position.
Thus, there are N(N!1)/2 loops in the graph model of the total system. The
directions of the state-#ow in these loops are all counterclockwise. The loop gain of
these loops ¸

i,k
is

¸
i,k
"

u2m
k

juc
i
#k

i

for k"1, 2, 3,2,N!1, N, i"1, 2, 3,2, k!1 k. (3)

When the displacement of the mass in the ith layer is calculated, we see that there
is only one forward path from the excitation to the displacement variable X

i
.

Moreover, the cofactor of this forward path is formed by the part of the graph
model, which is higher than X

i
. Then, the frequency response of the displacement
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X
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, denoted by H
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, leads to
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If the shear force of the elastic segment in layer i is considered as the output, there
are N!i#1 forward paths from the excitation to the output with path gain u2m

i
,

u2m
i`1

,2, and u2m
N
. The cofactor of this forward path passing through the gain

of u2m
k
is formed by the part of the graph model, which is higher than the section of

X
k
and F

k`1
. Then, the frequency response of the shear force F

i
, H

Fi
, is given by

H
Fi
"

u2
N
+
k/i

m
k
D

k

D
0

. (6)

3. TRANSIENT RESPONSE ANALYSIS

For non-periodic excitation, the transient response is usually considered in the
vibration analysis. From the frequency responses of the displacement and the shear
force as shown in equations (4) and (6), we see that both the equations can be
rewritten as a polynomial fractional. Based on the inverse Fourier transformation,
both equations of the frequency responses can be transferred to the time domain.
Thus, the transient response of the displacement and the shear force may be
expressed as the di!erential equations
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for k"1, 2, 3,2, N!1, N, i"1, 2, 3,2, k!1, k, (10)

with dK the derivative operator de"ned as dK i"di/dti. Since equations (7) and (8) are
ordinary di!erential equations with constant coe$cients, many numerical
techniques [4, 11, 12] can be applied to calculate the transient response for
arbitrary excitation.

4. FORCED VIBRATION OF UNIFORM STRUCTURES

If the mass of each layer is identical, and the damping and sti!ness constant of
the elastic segment in each layer are also the same, the gain of each closed loop of
the graph model will be identical. Replacing each loop gain of equation (3) with the
identical loop gain, D

i
can be simpli"ed to
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where m*, c*, and k* are the identical mass, damping constant, and the sti!ness for
each layer of the structure. By substituting equation (11) into equation (4), the
frequency response of the displacement in the layer i can be rewritten as the
polynomial fraction
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where m and X are the damping coe$cient and natural frequency of each layer of
the structure. In the same way, the frequency response of the shear force in the
elastic segment of layer i, H

Fi
, can be obtained by substituting equation (11) into

equation (6) leading to
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In the same way, the di!erential equations for the calculation of the transient
response of the displacement and shear force can be obtained by substituting
equation (11) into equations (7) and (8):
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5. NUMERICAL EXAMPLES

To illustrate the application of the present method, a "ve-story building is
considered in the example. The structural properties of every story of the building
are the same, namely, mass m*"2)0]105 kg, the sti!ness coe$cient
k*"3)5]108 N/m, and the damping coe$cient c*"2)0]105 Ns/m. The
frequency responses of the displacement and shear force in each story of the
building can be directly calculated using equations (12) and (13). The frequency
response of the story 3, for example, is given as
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If a non-periodic excitation is considered as
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with X
n

being the natural frequency of each layer of the building. The transient
response of the displacement and shear force can be calculated using the di!erential
equations, which are obtained from the equations of the frequency response by
simply replacing ju with the derivative operator dK . The transient response of stories
1, 3, and 5 are shown in Figures 4 and 5.



Figure 4. Transient response of the displacement of stories 1, 3, and 5. (. . . . .) 1st story, (- - - - ) 3rd
story, (**) 5th story.

Figure 5. Transient response of the shear force of stories 1, 3, and 5. (. . . . .) 1st story, (- - - - ) 3rd
story, (**) 5th story.
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6. CONCLUSIONS

The frequency responses of the shear force and lateral displacement of
multi-layered structures subjected to an excitation from one end of the structure
has been evaluated using an analytical method. In the investigation, the
multi-layered structure is represented by a two-way graph model, from which the
frequency response of each layer can be directly calculated. Moreover, succinct
forms for representing the response of uniform-layered structures are also derived.
Since the results are represented analytically, the computation error will be reduced
to a minimum. Based on the derived frequency responses, the di!erential equations
for calculating the transient response of arbitrary excitation is easily obtained.
Finally, the frequency and the transient response of a "ve-story building subjected
to a periodic and a non-periodic load, respectively, have been investigated in
the numerical example to show the e$ciency of this method in a realistic
implementation.
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