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Excitation at frequency far beyond dominant resonance frequencies may a!ect
the usual &&slow'' dynamics of a mechanical system. Here an examination of the
e!ects of high-frequency excitation on a simple continuous mechanical system,
a simply supported beam is presented and the possibility of utilizing high-
frequency excitation to change the system's dynamical properties is considered.
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1. INTRODUCTION

Excitation at frequency far beyond dominant resonance frequencies may a!ect the
statics and dynamics of mechanical systems. This study deals with the analysis of
such e!ects on a continuous system. The linear behaviour of a beam subjected to
high-frequency excitation is considered. The possibility of controlling the
dynamical properties of the beam by means of high-frequency excitation is also
considered.

When a structure is subjected to &&fast'' excitation at a frequency which many
times exceeds the lowest natural frequencies of the structure, one intuitively expects
the structure to oscillate at the excitation frequency. However, when the frequency
is su$ciently high, non-trivial e!ects may occur that cause the structure to behave
quite di!erently. For example, equilibria may move, disappear, gain or lose
stability: e.g., a pendulum subjected to fast excitation can be stable in the upward
position [1] and unstable in the downward [2], and natural frequencies may
change: e.g., a pendulum clock mounted on a vibrating wall can be incorrect [1].
For some other phenomena caused by fast vibration, see reference [3].

The Method of Direct Partition of Motion (MDPM) has been worked out by
I.I. Blekhman as a general mathematical tool for dealing with fast excitation [4].
Based on the idea of the separation of motion into slow and fast components, the
method allows one to determine the so-called &&vibrational force'' that accounts for
the average e!ect of fast excitation. The MDPM has been used for a wide range of
practical applications, for example the transport of granular materials or solid
bodies on vibrating feeders, the separation of mixtures according to the size or
density of their components, the submergence of piles, etc.
0022-460X/99/420343#18 $30.00/0 ( 1999 Academic Press
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Thomsen has shown that the Method of Multiple Scales (MMS) can also deal
with this kind of problem [5]. Similar to the MDPM, the modi"ed MMS is based
on the separation of a motion into its fast and slow components.

Using these methods, Jensen [6, 7] analyzed changes in the stability properties of
two-degree-of-freedom structures subjected to fast excitation. Tcherniak and
Thomsen [8] and Tcherniak [9] examined a simple one-degree-of-freedom system
and showed that its linear and non-linear properties can be e!ectively controlled by
applied fast kinematic excitation. Thomsen [10] used the MDPM to determine
vibrational drift velocity.

One can consider a simple example of a continuous system: a beam. It is
well-known that axial (parametric) excitation may cause dynamic instability of the
straight beam con"guration [11]. In contrast, fast axial excitation may increase
beam stability: Chelomei mentioned the rise in the axial stability of a compressed
rod, caused by fast longitudinal excitation, and compared this e!ect with the gain in
stability of the upward position of a pendulum [13]. Some experimental
con"rmations can be found in references [3, 14]. Jensen [15] also showed that the
addition of fast excitation would increase the critical axial force of the similar
structure.

In contrast to the above-mentioned studies, a di!erent approach is used here: the
method of separation of motion is applied before system discretization. This makes
it possible to obtain and analyze the partial di!erential equation for the slow
component of motion, which will facilitate a general understanding of the e!ects
caused by fast excitation.

The practical realization of high-frequency excitation is thought to be feasible.
For example fast excitation may have a kinematic nature, e.g., could possibly be
generated by ultrasonically driven piezoelectric ceramics with attached mass, which
are distributed throughout the structure length. A fast oscillating excitation force
changes the dynamical properties of the system, such as the natural frequencies and
modes. As a result, by regulating the applied voltage, one may manipulate the slow
dynamical properties of the system to adapt them to speci"c conditions of
operation.

The paper is organized as follows: in section 2 the system to be examined is
presented and its equation of motion is established; in section 3 the method of
multiple scales will be applied to obtain the equations for fast and slow motion; in
section 4 the slow component of motion is analyzed, the results are compared with
the results of numerical simulation and the e!ects of shear and rotational inertia on
the solution are discussed.

2. MODEL SYSTEM AND EQUATION OF MOTION

Figure 1(a) shows the system: a simply supported uniform beam subjected to
time-harmonic excitation with frequency X*, distributed axial load Q(X, X*t) and
horizontal force P(X*t). Beam properties are de"ned by the following parameters:
Young's modulus E; shear modulus G; moment of inertia I; area of the beam
cross-section A; beam material density o. The forces acting on an elementary



Figure 1. (a) Model system; (b) di!erential beam element.
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segment of the beam bounded by the co-ordinate X and X#dX are shown in
Figure 1(b).

Due to the high-frequency excitation, shear stress and rotational inertia terms
have to be included in the equation of motion; thus the Timoshenko beam model
will be used [16,17]. Following the standard scheme, one considers the dynamic
equilibrium of the beam segment (longitudinal inertia has been disregarded):
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Timoshenko shear constant. In order to obtain the linear equation for slow motion,
one has to retain non-linear terms of the second order in the equation for the total
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where cubic and higher order non-linearities have been omitted (there are no
quadratic non-linearities); r"J(I/A) is the radius of gyration of the beam cross-
section. Inertial and restoring forces are on the left and excitation terms are on the
right-hand side of the equation.
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Equation (2) has to satisfy the boundary conditions

=(0)"=(¸)"0 and =A(0)"=A(¸)"0. (3)

To complete the equation, dissipative terms have to be added. It is assumed that
the beam material is viscoelastic and of the Kelvin}Voigt type, and the damping
associated with the surrounding air is ignored. Further, the dissipation is assumed
to be small so that it may be presented as a single additional term in the equation
[18], E*I=Q AA, where E* is the linear viscoelastic coe$cient.

The equation of motion is put in a non-dimensional form by using the following
set of variables:
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Here the "rst natural frequency of the simply supported beam u
0

is chosen as the
characteristic frequency of the system. The functions q and p describe the load
oscillating at the high-frequency X; g denotes the internal damping; the parameters
a and b re#ect the e!ect of shear and rotational inertia, respectively (if the shear
sti!ness of the beam is signi"cant, a becomes a small quantity, and, if rotational
inertia can be disregarded, b should be put to zero).

The resulting non-dimensional equation becomes
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(5)

where ( )"L ( )/Lx and (. )"L( )/Lq now. In turn, the boundary conditions
become

w(0, t)"w(1, t)"0 and wA(0, t)"wA(1, t)"0. (6)

3. DETERMINING SLOW RESPONSE TO HIGH-FREQUENCY EXCITATION

Equation (5) is a non-autonomous partial di!erential equation. The right-hand
side (the so-called fast force) contains a fast oscillating load and depends explicitly
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on time, whereas the left-hand side contains the forces that do not explicitly depend
on time (inertial and slow forces). It is possible to suppose that the solution to
equation (5) will also include correlated fast and slow components. The method of
multiple scales (MMS) has been used to obtain an approximate solution. Basically,
the method consists of three stages: (1) fast and slow time scales are introduced and
motion is split into fast and slow components; (2) the magnitude order of the terms
is determined and the problem is subdivided into several levels; (3) the solution to
each level is sought to obtain the equations for slow and fast motion.

For a more detailed description of the application of MMS to non-resonant
problems, see reference [5].

3.1. TIME SCALES AND SEPARATION OF MOTION

First, one can introduce a small parameter e"X~1@1. The two time scales can
then be introduced as follows:
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are considered to be the new independent
variables of equation (5). This causes the time derivatives to be transformed
according to
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Now, one can seek an approximate solution to equation (5) having the form
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which is required to be uniformly valid to the order e2. The "rst term of the
expansion represents the slow component of w, whereas the u-terms represent small
overlays of fast motion.

3.2. MAGNITUDE ORDERING

Now, one has to set the order for two groups of coe$cients in equation (5): the
order of loading p and q, and the order of coe$cients due to shear and rotational
inertia a and b.

In the present study, the fast excitation is supposed to be large. For example, it
could have a kinematic nature, (that is, some distributed mass is forced to move
harmonically at high frequency but small amplitude). Thus, the excitation forces
have an inertial nature and their magnitudes are proportional to the values of the
moving mass, displacement and squared frequency. Using the parameter e one can
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quantify them as follows:

q (x, Xq)"e~1q
a
(x) cosXq, p(Xq)"e~1p

a
cos Xq. (10)

Here q
a

and p
a

are of the order of unity.
The orders of a and b are mainly de"ned by the chosen ratio r/¸ of the beam.

After subdivision of equation (5) into orders of e one will be concerned with the
orders of e~1 and e0. It is easy to show that a and b will appear at these order levels
if they are of the order of e1. If

a"O(e2) and b"O(e2), (11)

the e!ects of shear and rotational inertia can be ignored. The expressions in
equations (11) may be suggested as the criteria determining whether or not one
should take the above-mentioned e!ects into consideration.

One can now consider case (11) and postpone examining the in#uence of shear
and rotational inertia to section 4.6.

3.3 THE EQUATION FOR SLOW MOTION, SHEAR AND ROTATIONAL INERTIA DISREGARDED

Inserting expressions (8)}(11) into equations (5) and (6) and equating the
coe$cients of like powers of e, to zero one obtains to order e~1
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and boundary conditions are
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The full solution to equation (12) is
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where z"z(x, ¹
1
), so that the integration is carried out by treating z as a constant

in the fast time ¹
0
. Note that the axial force and the fast motion are in anti-phase:

that is, the beam curvature increases during the tension part of the loading period
and decreases during the compression part. Such fast behaviour is typical for cases
when the fast force magnitude is signi"cant, the so-called &&pure inertial
approximation'' [4].

Now, u is a known function of z and ¹
0
, one can turn to the e0-problem (15) for
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Inserting expression (20) into equation (15) one obtains
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Let c
3
"c

4
"0 be the same arguments that led to c

1
"c

2
"0 in expression (18).
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Substitution into this of the known function u, averaging and linearization into this
gives
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The partial di!erential equation (25) with boundary conditions (17) governing
the slow component z (x, ¹

1
) of w(x, ¹

1
, ¹

0
) is the one of primary concerns. One can

note that

(a) it is autonomous in ¹
0
, since all explicit dependence on ¹

0
is averaged out;

(b) the left-hand side of the equation coincides with the left-hand side of the initial
equation (5) (if one puts a"b"0 there) and the right-hand side is the slow
term, the so-called vibrational force [4], accounting for the averaged e!ect of the
fast forces;

(c) equation (25) coincides by its structure with the equation for the beam with
variable sti!ness EI(x) but uniform mass distribution oA:
oAwK#g*wR AA#(EI(x)wA)A"0NoAwK#g*wR AA#(EIAwA#2EI@wA@#EIwAA)
"0 and hence, well-known methods of analysis may be applied;

(d) the coe$cients of zA, zA@, zAA depend on the function n
a
(x), and thus by choosing

n
a
(x) one may change the solution to equation (25).

4. ANALYSIS OF SLOW MOTION

4.1. GALERKIN DISCRETIZATION

The partial di!erential equation (25) is discretized in the space co-ordinate x by
Galerkin's technique, with the simply supported beam's eigenfunctions, sin (knx),
k"1, 2, 32 being used as a suitable set of base functions satisfying the boundary
conditions (17), and u

k
(t) being the correspondent generalized co-ordinate; thus
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+
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u
k
(t) sin (knx). (26)

Considering in"nitely small harmonic oscillations about the straight beam position
one puts u

k
(t)"a

k
ejt. Inserting expression (26) into equation (25), multiplying by
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the shape functions sin (knx) and integrating from 0 to 1, lead to the matrix
equation

ejt(Mj2#Cj#S)d"0. (27)

where M"I, C, S are the mass, damping and sti!ness matrixes, respectively,
d"Ma

1
, a
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,2NT is the displacement vector. C is the diagonal matrix with
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is the Kronecker delta.
To simply the analysis consideration will be given only to functions such as n
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which are symmetric about the beam middle x"0)5. Hence the load distribution
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with a
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denoting the Fourier coe$cients. Note here that the sti!ness matrix S is

non symmetric: s
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; this means that a distributed axial (i.e., following)

load preserves its non-potential nature even after averaging.
The non-trivial solution to equation (27) is K pairs (j
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eigenvalues and eigenvectors. As j
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, where i"J!1, and for a

j
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non-positive, the u
j

are damped natural frequencies of the harmonic beam
vibration (for any positive a

j
the straight beam con"guration becomes unstable).

Unfortunately, it seems impossible to prove analytically that a
j
are always non-

positive. However, in the following numerical computations it was checked that
a was non-positive. One can now start to investigate how the fast excitation value
and its distribution a!ect the behaviour of damped natural frequencies u

j
.

4.2. A SIMPLE EXAMPLE

To demonstrate a possible in#uence of the fast excitation one can consider the
most simple case of excitation: the beam is subjected to the horizontal force P(Xt)
only. Putting q

a
"0 in (25) and reintroducing D2

1
and ¹

1
one obtains
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which shows that the apparent sti!ness of the rapidly excited beam is greater than
the sti!ness of the unexcited one. The sti!ness matrix S becomes diagonal with
s
jj
"(1#1

2
n4p2

a
) j4 and this re#ects that the horizontal point-force P is potential.

This system can be classi"ed as a complete and pure dissipative system [19] and,
since the matrix S is positive de"nite, the straight beam con"guration is always
stable (a

j
)0).

The natural frequencies of the slow motion for the case of undamped oscillations

u
j
"j2S1#

n4

2
p2
a

(31)

are shown in Figure 2 against the axial force magnitude p
a
. The spectrum of natural

frequencies for the rapidly excited beam shifts towards higher frequencies,
depending upon the intensity of the fast excitation applied. From small p

a
the

changes in the natural frequencies are very small (du
j
/dp

a
D
pa/0

"0); for larger
values of p

a
the rise is nearly linear.

Using equation (30) one can show that the quasi-static axial stability is also
increasing: the non-dimensional critical axial force for equation (30),

p
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"

1
n2

#

n2

2
p2
a
, (32)

exceeds the non-dimensional Euler force p
Euler

"1/n2. This agrees with the results
obtained in reference [15].

Note that to get a notable stabilization e!ect one has to apply a fast oscillating
force whose magnitude many times exceeds the Euler force: the fast force
Figure 2. The "rst "ve natural undamped frequencies versus fast force magnitude. ], The result of
the numerical simulation described in section 4.3; s, the results of the numerical simulation,
parameters X"500, g"0)006.
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magnitude (cf. expression (10)) is Xp
a
, XA1. For example, to get p

crit
"1)1 p

Euler
one

should apply a fast force with magnitude approximately equal to 0)45 Xp
Euler

. Due
to inertia the beam has no time to buckle during the compressive part of the loading
period and, on average, the fast axial excitation brings about a stabilizing e!ect.

4.3. COMPARISON WITH NUMERICAL SOLUTIONS

To obtain a numerical solution equation (5) is rewritten as

wK#
1
n4

wAA#
g
n2

wR AA"!wAn
a
X cosXq , (33)

where the in#uence of shear and rotational inertia has been disregarded by putting
a"b"0, and expressions (10) and (14) were used. The boundary conditions are
de"ned by expressions (6).

In the present study, the method of "nite di!erences is used to reduce a partial
di!erential equation to a system of ordinary di!erential equations [20]. To solve
the system obtained, Adam's method was used. The main problem is that the time
scales of the slow and the fast motion (for PDE (33)) are quite di!erent; this requires
many output points and hence many function evaluations. Therefore, the Shampine
and Gordon 12-order variable step-size solver [21] has been used, which is useful
for such cases.

Equation (33) is the equation of motion for a parametrically excited beam. The
value of the excitation frequency X is far above the lowest natural frequencies; thus,
the familiar low-mode parametric resonances cannot be provoked. However,
equation (33) has a spectrum of distinct natural frequencies, thus a number of
parametrically unstable regions appear. Nayfeh and Mook [11, pp. 319}320]
mentioned that along with the conventional primary and secondary resonances, the
so-called combination resonances occur which, unlike the "rst ones, can be
destabilized by viscous damping. This means that resonance at high frequencies
may emerge despite the viscous damping. However, in reality, these high-mode
resonances are e!ectively suppressed by internal damping. The analysis of this
high-frequency instability is beyond the scope of the present study (see reference
[12] for a more comprehensive numerical analysis). When solving equation (33) we
have always chosen (by trial-and-error process) the value of g to prevent any kind of
this high-frequency instability for a given excitation magnitude.

For a speci"c set of parameters and for the speci"ed co-ordinate x"0)5 we
attempt to verify the following.

(a) Whether the slow motion, obtained as a numerical solution for equation (25),
correctly captures the slow component of the full motion (obtained as
a numerical solution to equation (33)) and whether the period of free small-
magnitude vibration about the straight con"guration corresponds to the
natural frequency, obtained via Galerkin's technique.

(b) Whether two-term expansion (9) is a good approximation of the fully motion.
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The results of the comparison appear in Figure 3. The beam being subjected to
the fast axial force P has been initially bent to the sine-half-wave shape; and after
release it starts to perform damped &&quasi-free'' oscillations at the frequency
approximately equal to the "rst damped natural frequency.

In Figure 3(a) the line denoted by w shows the full motion (numerical solution to
equation (33)), whereas the line denoted by z show the slow motion (numerical
solution to equation (25)). One can see that the obtained slow behaviour is in good
agreement with the slow component of full motion. More careful comparison with
the application of a low-pass "lter also con"rms a good agreement between z and
"ltered w.

To compare the full motion and the two-term approximation (9) z#X~1u we
calculate u using expression (19). Figure 3 (b) shows (X~1u) and (w!z) instead of
w and (z#X~1u) because these lines, if plotted, would be indistinguishable. There
is a less convincing agreement between these lines as line w lies slightly behind z as it
appears from the enlarged inset in Figure 3(a). This disagreement does not a!ect the
slow motion because the magnitudes (envelopes) of the fast components (X~1u)
and (w!z), shown in Figure 3(c), almost coincide (note that the vertical scale in
Figures 3(b) and (c) is approximately ten times smaller than in Figure 3 (a)).
Figure 3. Numerical solution for the full motion and its two-term approximation. Top, full and
slow motion; line w: numerical solution for equation (33); line z, numerical solution for equation (25);
line w

unexcited
, oscillations of the unexcited beam. Middle: fast motion: line u, result of equation (19);

line w}z, result of subtraction at the every time point. Bottom, fast motion envelope. Loading
parameters: p

a
"0)3, q

a
"0, X"50, g"0)02.
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The period of slow oscillations ¹
slow

was measured to calculate the approximate
value for the "rst natural frequency: ¹

slow
+2)71 and u

1
"2n/¹

slow
+2)32, i.e., the

applied fast excitation increases the "rst natural frequency more than twice: the
damped oscillation of unexcited beam is shown for comparison by the thin line in
Figure 3(a) (u

1unexcited
"1). This value agrees with the one obtained via Galerkin's

technique (denoted by the cross in Figure 2: internal damping does not signi"cantly
a!ect the lowest frequencies). The performed numerical simulations (their results
are denoted by the circles in Figure 2) also correspond well with the second and the
third natural frequencies (for the small value of g).

Based on the results of the comparison with the numerical simulations, one may
conclude that the equation for slow motion (25) is able to predict the slow
component of full motion; and thus it can be used for system motion analysis.

4.4. CONTROL OF OSCILLATION MODES AND NATURAL FREQUENCIES BY SHAPING n
a
(x)

Consider now the case when q
a
O0 and p

a
O0. By altering p

a
and the coe$cients

a
cj
, a

sj
in equation (29) one shapes the function n

a
(x); various forms of n

a
(x)

di!erently a!ect distinct natural frequencies and oscillation modes.
Two speci"c cases of loading are considered here: p

a
"0 and 0)5 for the "rst and

the second cases respectively; q
a
(x)"a

s2
sin (2nx) for both cases. Schematically, the

load distribution is shown in Figure 4(a, b). Negative values of q
a

correspond to
anti-phase excitation.
Figure 4. The loading schemes and the a!ected changes in the oscillation modes. Undamped
oscillations. (a) p

a
"0, a

s2
"1)3; (b) p

a
"0)5, a

s2
"1)3; (c) the 1st mode; (d) the 2nd mode. a, b denote

the loading cases.



Figure 5. The "rst three natural frequencies versus a
s2

for the parameters as for Figure 4. Solid line,
p
a
"0; dashed line p

a
"0)5, h, ], numerical solutions for X"300, g"0)006.
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The "rst and second oscillation modes are plotted in Figure 4(c, d), respectively,
to compare them with the mode of the unexcited beam (dotted line). The modes of
the rapidly excited beam redistribute their curvatures in a way that reduces their
value whereDn

a
(x) D has increased. For example, the "rst mode for the "rst case of

loading (Figure 4(c), line a) becomes less curved in the middle, where the function
Dn

a
(x) D has its maximum (Figure 4(a)). In contrast, the "rst mode for the second case

of loading (Figure 4(c), line b) becomes more curved in the middle; this is a!ected by
the decrease in Dn

a
(x) D at the beam middle. The changes in the second oscillation

mode (Figure 4(d)) can be explained in a similar way.
The "rst three undamped natural frequencies u

1,2,3
for the two previously

considered cases of load distribution are shown in Figure 5. Changes in the shape of
n
a
(x) bring about signi"cant changes in the natural frequencies. However, in any

case of loading, the values of the natural frequencies exceed the corresponding ones
of an unexcited beam.

By analyzing the "gures, it is possible to conclude that the in#uence of n
a
(x) is

similar to the in#uence of the sti!ness distribution EI(x) of a non-uniform beam: the
additional (apparent) local sti!ness, created by fast forces, seems to be proportional
to Dn

a
(x) D. This can be compared with the usual control of dynamical properties by

the additional/removal of beam material during size optimization, e.g. reference
[22].

4.5. THE INFLUENCE OF INTERNAL DAMPING

The dissipative term (g/n2) wR AA in equation (33) e!ectively damps high-mode
oscillations. For each value of g it is possible to "nd k: u

k
"0, a

k
(0. This means

that the free oscillations with frequencies above u
k
will be completely suppressed

(over-damped). The in#uence of the fast point-force p(q(x)"0) on the "rst four



Figure 6. The "rst four natural frequencies for damped (solid line, g"0)02) and undamped (dashed
line) cases.

FAST EXCITATION ON A CONTINUOUS SYSTEM 357
natural frequencies is shown in Figure 6. The chosen g"0)02 is large enough
to completely damp the oscillations at the fourth mode and signi"cantly reduce
the third damped natural frequency (note the minor damping in#uence on the "rst
two modes). Applying the fast oscillating force, one may weaken the e!ect of
the internal damping: on reaching some critical intensity of p

a
, u

4
becomes

non-zero and starts to increase. Due to fast excitation, the value of u
3

begins to
increase and approaches its undamped values (dashed lines) with the fast force
magnitude rising.

4.6. THE EFFECT OF SHEAR AND ROTATIONAL INERTIA

The e!ects of shear and rotational inertia have been disregarded in previous
sections. However, if the ratio r/¸ of the beam is not small or excitation frequency
X is large enough to violate criteria (11) some non-trivial e!ects may occur.

To de"ne the in#uence of shear and rotational inertia one can consider the
simple excitation model: q"0 when the beam is loaded by the point-force p only.

The two time scales are introduced and the separation of motion is performed as
described in section 3.1. The same load ordering as in expressions (10) is used, but
now, in contrast to criteria (11),

a"O(e) and b"O(e). (34)

Inserting expressions (8)}(10) and criteria (34) into equation (5) and equating to
zero the coe$cients of like powers of e, one obtains to order e~1,

n4abX2D4
0
u#D2

0
u"!zAp

a
cos¹

0
. (35)
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which di!ers from equation (12) by the "rst term. Introducing t"D2
0
u, dividing by

n4abX2 and reintroducing Dk
0
"Lk/L¹k

0
, one obtains

L2t
L¹2

0

#

1
n4abX2

t"!

zAp
a

n4abX2
cos¹

0
. (36)

This equation governs the forced oscillations of t at a frequency equal to 1. To add
dissipation to the equation one may present the shear modulus (which is contained
in a cf. expression (4)) as a complex quantity [23], G"G

0
(1#id

G
). The

introduction of the real non-dimensional c"E/G
0

1/k (r/¸)2 yields

L2t
L¹2

0

#

1#id
G

n4bcX2
t"!(1#id

G
)

zAp
a

n4bcX2
cos¹

0
. (37)

The solution to equation (37) is t"t
0
ei(¹

0
!/) with the magnitude and phase given

by

t
0
"!

zAp
a

J(1!n4bcX2)2#d2
G

and tan/"

d
G

1!n4bcX2
. (38)

The resulting fast motion is the real part of ::td¹
0
d¹

0
:

u"

zAp
a

J(1!n4bcX2)2#d2
G

cos (¹
0
!/). (39)

The four constants of integration have been set to zero by the same arguments that
led to c

1
"c

2
"0 in equation (18).

Substitution of the known u in the e0-problem and carrying out the same
operations as have been performed in section 3.3 gives the equation for slow
motion,

zK#
g
n2

zR AA#A
1
n4

#1
2
Sp2

aBzAA"0, (40)

which di!ers from equation (30) by the coe$cients S:

S"
cos/

J(1!n4bcX2)2#d2
G

. (41)

If the shear sti!ness is not signi"cant, or rotational inertia may be ignored, then
/P0 and SP1, and one comes to equation (30). If the ratio r/¸ or the excitation
frequency X increases then the expression (1!n4bcX2) approaches zero and an
internal resonance occurs. A reasonable explanation of this is the &&resonant
interaction between the rotatory inertia forces * rotation resulting from bending
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motion * and the shear sti!ness'' [16]. The magnitude of the fast oscillations
increases but the slow e!ects of the fast vibration disappear since SP0 due to
/Pn/2. The further rise of r/¸ or X causes the phase /Pn and hence makes
S negative. This results in the inversion of the vibrational force action: for equation
(40) the stabilizing e!ect of the fast axial excitation changes to a destabilizing e!ect.

5. SUMMARY AND CONCLUSIONS

The e!ects of fast harmonic excitation on the linear dynamics of a simple
continuous system have been considered analytically and numerically.

In accordance with a method of separation of motion, the system's motion was
split into two components: the "rst which slowly alters in time (&&slow motion'') and
the second, the rapidly oscillating component (&&fast motion''), overlying the "rst
one. The expression for fast motion has been obtained. The slow motion is
governed by a partial di!erential equation, which is simpler than the original
equation of full motion. The action of the fast oscillating force is represented in the
equation for slow motion by a &&vibrational force'', which accounts for the e!ects of
fast excitation.

By using Galerkin's technique the PDE obtained was discretized to obtain
natural frequencies and modes of quasi-free oscillations. It was shown that the fast
axial point-force, acting on the beam end, increases the longitudinal beam sti!ness
and stability and increases its natural frequencies as well. A rapidly oscillating
distributed load also changes the beam linear dynamics: by altering the value of
axial force and the shape of the distributed load, it is possible to change natural
frequencies and modes and thus control the system's linear dynamics.

Further it was shown that fast axial excitation changes the in#uence of internal
damping: for example, the free oscillations in higher modes, completely suppressed
by internal damping, may be released by high-frequency vibration.

The e!ects of shear and rotational inertia were looked into. To determine when one
should take these e!ects into consideration, we have proposed a criterion, relating
the beam geometry to the excitation frequency. It is shown that the above-
mentioned e!ects can change the sign of the vibrational force; this leads to quite the
opposite action of fast excitation: destabilization instead of stabilization, etc.

Despite its simplicity, the system considered has features of many engineering
structures. The results of this investigation may thus contribute to the general
understanding and utilization of high-frequency excitation.

Obviously, experimental studies are needed to con"rm the presence of the e!ects
considered and verify the possibility of their utilization in engineering. More
detailed investigation into the e!ects of shear and rotational inertia seems to be
necessary.
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