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An analytical procedure is proposed for the evaluation of the eigenfrequencies of
a thin-walled beam curved in plan in response to transverse bending and torsion
with various boundary conditions. The analysis is performed through the
introduction of four non-dimensionalized geometric parameters which govern the
dynamic behaviour of the beam. These parameters lead to an equally
non-dimensionalized eigenfrequency parameter through an appropriate treatment
of the di!erential equations on the basis of a computer program specially
developed for this purpose. This program is also applied to investigate the in#uence
of the aforementioned parameters on the eigenfrequency behaviour of a thin-walled
girder.

( 1999 Academic Press
1. INTRODUCTION

Thin-walled girders constitute structural elements which, although considered as
girders, exhibit a behaviour which cannot be analyzed on the basis of the
assumptions used in the technical theory of beams. Although this fact has been
recognized as early as the beginning of this century by Timoshenko, it was Vlasov
[1], who "rst developed a consistent theory which allowed the analysis of the
thin-walled beam as a linear member, overcoming the fact that the latter is
composed of virtually plate elements with a drastic in#uence on its bending and
torsional behaviour.

The theory of the thin-walled beams has not found an extensive use by structural
engineers due to the &&uncomfortable'' deviations from the well-established technical
theory. The reason goes back to the more advanced structural perception
demanded than the usual practice asked for, although some excellent works like
reference [2] have appeared to make the theory more understandable. Also the
wide introduction of the "nite element method has given perhaps the feeling of
independance from theories of such kind. That was an unhappy event as the
thin-walled sections are widely used not only in bridge design but also in building
2-460X/99/420383#14 $30.00/0 ( 1999 Academic Press
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structures (to speak only of the civil engineering applications), where the need of the
designer to have a direct and e!ectively simple perception of the structural
behaviour of his structures without being mainly confronted with the numerical
outputs of the "nite element programs, is of paramount importance.

The dynamic behaviour of such beams although to some extent investigated in
reference [1], has not been given so much attention in research, as was the case for
the classical beam members. However, the torsional vibrations of the thin-walled
open sections have been treated extensively by Gere [3], and using the matrix-
methods techniques, an interesting contribution on the eigenvalue problems of the
thin-walled assemblages has been made by Krajcinovic [4]. Very recently
a dynamic investigation of the dynamic problem of multicell thin-walled beams
with cutouts has been treated by Capuani et al. [5], following the needs of high rise
building design.

The present paper is a consequence of need to develop a tool to assess the
eigenfrequency characteristics of the thin-walled cured beams as they appear
mainly in the bridge design, without having to perform the time-consuming "nite
element analyses which of couse cannot o!er parametric study possibilities. For
this purpose the static di!erential equations for curved thin-walled beams already
established by Vlasov have been appropriately extended and treated through the
introduction of four dimensionless geometric quantities. The practical performance
of the proposed solution requires the use of a numerical procedure supported by
a computer program specially written for that purpose. This program enables not
only the determination of the eigenfrequency spectrum for a given case in any
desired extent and for various boundary conditions on the basis of an appropriately
formulated and treated frequency equation, but also enables parametric studies for
the evaluation of the in#uence of the aforementioned non-dimensionalized
parameters on the eigenfrequency behaviour of the beam.

2. BASIC EQUATIONS

A thin-walled girder of an open or closed cross-section is considered, exhibiting
a constant curvature in the horizontal plane. The girder is represented by its centre
of gravity axis, which is assumed to coincide with the axis of the shear centers of the
girder sections and at the same time lies on the horizontal plane. The girder is
loaded transversely to the plane of its curved axis together with a distributed
torsional moment acting along the same axis. Each point on the girder is referred to
by its co-ordinate s measured from one end along the curved axis. The girder is
supported at its ends, its curved length being equal to ¸ (see Figure 1).

It is assumed that although the points of the cross-section as a result of the
incoming non-uniform torsion undergo longitudinal displacements so that they do
not belong after the deformation to a single plane (warping e!ect), the pro"le of the
thin-walled girder section remains unchanged under any actions (rigid pro"le
assumption).

The equations governing the statical behaviour of such a beam have been
established by Vlasov in reference [1]. In order to examine the dynamic behaviour



Figure 1. General layout.
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of the beam, the corresponding inertia terms have to be added and the following
equations are then obtained:
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where, w(s, t) is the vertical de#ection of the girder axis, h (s, t) the angle of torsional
rotation of the girder axis, w(n)"Lnw(s, t)/Lsn, h(n)"Ln h (s, t)/Lsn,

R the constant radius of curvature of the girder axis, I
y

the moment of inertia
about the principal y-axis, Iu the warping resistance of the cross-section, I

T
the

Saint}Venant torsional inertia of the cross-section, m the mass per unit length of the
girder, I

m
the rotatory inertia mass of the cross-section per unit length; it is

expressed according to the relation I
m
"(m/A) (I

y
#I

z
) where I

z
is the moment of

inertia about the principal z- axis and A the area of the cross-section, E the modulus
of elasticity, G the shear modulus, q

z
(t) the distributed load per unit length in

direction z, and m
s
(t) the distributed torsional moment per unit length about the

curved axis.
As already pointed out, the above equations are strictly valid only for girder

cross-sections whose centroids coincide with the shear center but, as is also
mentioned by Vlasov in reference [1] for the static case, they can also be applied
with a practically negligible loss of accuracy for girders of an arbitrary cross-
section, whose ratio of the biggest dimension of the cross-section to the radius of
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curvature does not exceed the value of 1
10

, a condition which is normally satis"ed in
the case of a bridge girder.

The stress resultants of interest in the examined case are the bending moment
M

B
about the y-axis, the shearing force Q along the z-axis, the torsional moment

M
T

and the bimoment Mu. They are expressed according to reference [1] as
follows:
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As it is aimed now to investigate the free vibration of the girder, the right-hand sides
of the equations (1) and (2) are set equal to zero. By using the classical technique of
the separation of variables, the functions w(s, t) and h(s, t) are expressed as
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Moreover, upon expressing the functions w(s) and h(s) in terms of the dimensionless
co-ordinate

m"s/¸ (9)

as =M (m) and H(m), respectively, and taking into account that
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equations (1) and (2) become
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Now, the following non-dimensionalized parameters are introduced:
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together with the non-dimensionalized eigenfrequency parameter
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The above parameters are referred as the wraping parameter (C
1
), the torsional

parameter (C
2
), the central angle (a) and the rotatory mass parameter (¹)

respectively.
Upon expressing the non-dimensionalized de#ection as

= (m)"= (m)/¸, (19)

equations (12) and (13) take the non-dimensionalized forms
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3. BOUNDARY CONDITIONS

Four boundary conditions have to be satis"ed at each end. According to the type
of support at each end of the girder, the following conditions have to be satis"ed in
each case.

3.1. SIMPLE SUPPORT

The girder end is allowed to rotate freely about its y-axis and moreover the
section is allowed to warp also freely, and at the same time it is restrained in
rotation about the tangent of the curved axis: i.e.,

w"0, h"0, M
B
"0, Mu"0. (22a}d)

These relations, upon taking into account the above expressions as well as the
non-dimensionalized parameters, take the following form:

="0, H"0, =(2)!aH"0, H(2)#a=(2)"0. (23a}d)

3.2. FIXED SUPPORT

The girder end is totally restrained also against warping: i.e.,

w"0, h"0, w(1)"0, h(1)"0. (24a}d)

Expressing the above relations in terms of the non-dimensionalized deformations
yields

="0, H"0, =(1)"0, H(1)"0. (25a}d)
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3.3. FREE END

The girder end is totally free from any stress; i.e.,

M
B
"0, Mu"0, M

T
"0, Q"0. (26a}d)

In terms of the introduced non-dimensionalized parameters the following form is
equivalently obtained:
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4. TREATMENT OF THE DIFFERENTIAL SYSTEM

The di!erential system of equations (20) and (21) is written more conveniently as
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and treated in the following way.
Considering the system as a linear one with unknowns=(4) and=(2) and solving

it, one obtains
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After double di!erentiation of equation (31), the following relation is also obtained:
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If now equations (30)}(32) are considered as a linear system with unknowns=(4),
=(2) and= and solved in terms of H(6), H(4), H(2) and H, then by substituting the
resulting expression for=(2) in equation (29), the following di!erential equation of
eighth degree for H is obtained:
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Moreover, the function = is expressed through the function H according to the
relation:
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The coe$cients D and F of the above equations, respectively, can be evaluated in
terms of the non-dimensionalized parameters a, C

1
, C

2
, ¹ as well as the non-

dimensionalized eigenfrequency X
i
, according to the expressions given in the

appendix.
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Now the frequency equation can be formulated by appropriate satisfaction of the
eight relevant boundary conditions (four for each end) of the respective beam.

More concisely, the solution of the di!erential equation (33) is built in terms of
the eight conjugate roots of its characteristic algebraic equation:
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The expression for H has then the form
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, are the conjugate imaginary and real roots of equation

(35), respectively, and K
i

and K
j
, (i#j"8), are appropriate coe$cients.

Consequently the function= (m) can also be determined by direct substitution into
the expression (34).

The expressions (36) and (34) can be substituted into the respective eight
boundary conditions of the speci"c girder considered, so that a homogeneous linear
system of eight equations with the eight unknown K is obtained. In order that
a solution exists the determinant of the corresponding coe$cients has to be equal
to zero for appropriate values of the quantities X

i
, a condition known as the

frequency equation of the problem.

5. NUMERICAL PROCEDURE

Since it is practically impossible to provide analytic expressions for the
coe$cients of the unknown K's, and the problem is even worse for their
determinant, the frequency equation of the problem cannot be explicitly obtained.

Therefore, a simple iterative technique is developed in order to detect the
relevant non-dimensionalized eigenfrequencies X

i
, through a computer program

specially written for this purpose.
Beginning from a safe lower limit set by the value X

0
"(0)5)2 which is de"nitely

less than the one corresponding to the cantilever beam, an increase is used by
a constant step set equal to one tenth of that value used in subsequent cycles. The
program adheres to the following scheme:

1. Assignment of an initial value of X
0
"(0)5)2 for the non-dimensionalized

eigenfrequency X
i
.

2. Determination of the coe$cients D and F in equations (33) and (34) respectively.
3. Determination of the roots of the algebraic equation (35).
4. Determination of the coe$cients of K's on the basis of the established eight

boundary conditions of the beam, according to the equations (36) and (34).
5. Evaluation of the determinant of the above coe$cients.
6. Steps 1}5 are repeated with an incremental step equal to X

0
/10 so many times

continuously, until the last evaluated determinant shows a change of sign,
respectively, to the previous one.
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7. Steps 1}6 are repeated with a halved value of the incremental step i.e. X
0
/20-

times, until a satisfactory approximation of the relevant non-dimensionalized
eigenfrequency X

i
is reached.

8. Steps 6}7 are repeated until the desired number of eigenfrequencies is obtained.

6. THE CASE Iu&0

6.1. THE BASIC EQUATIONS

The vanishing of Iu, which expresses the absence of warping and the subsequent
consideration of a uniform torsion, deserves special attention because it
corresponds to a practically adopted assumption for closed celled girders as they
are used in bridge design.

In this case the above formulation cannot be applied "rstly because the basic
equations (1) and (2) change their structure and secondly because three boundary
conditions instead of four for each end have to be taken into account. The basic
equations (1) and (2) are rewritten as
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In an analogous way as in section 2, the following non-dimensionalized
equations are correspondingly obtained:
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6.2. THE BOUNDARY CONDITIONS

In the case of "xed support the equations (24a}c) are valid. Expressed in terms of
non-dimensionalized deformations, they take the form

="0, H"0, =(1)"0. (41a}c)

In the case of a free end equations (26a), (26c) and (26d) are valid. Expressed in
terms of non-dimensionalized parameters they take the form

=(2)!aH"0, (H(1)#a=(1))"0, =(3)!aH(1)"0. (42a}c)

6.3. TREATMENT OF THE DIFFERENTIAL SYSTEM

The di!erential system of equations (39) and (40) is written more conveniently in
the form
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By eliminating from the above equations H(2) the following form is obtained:
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and substituting in equation (44) one obtains
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The procedure for assembling the six homogeneous linear equations
coresponding to the respective boundary conditions at both ends of the girder and
subsequently the numerical evaluation of the frequency equation, is to the one
previously described in sections 4 and 5.

7. PARAMETRIC STUDIES

In order to assess the in#uence of the warping parameter C
1
, the torsional

parameter C
2
, the rotatory mass parameter ¹ and the central angle a on the

fundamental non-dimensionalized frequency X
1
, a series of parametric studies is
Figure 2. In#uence of the variation of the central angle and torsional parameter on the fundamental
eigenfrequency (Case 1). C

1
"0)0, ¹"0)0.
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carried through, for the case of a girder "xed at its both ends, by applying the
aforementioned computer program. The results are presented in the following
"gures and tables.

In Figures 2 and 3 two extreme cases are treated regarding the parameters
C

1
and ¹, while the parameters C

2
and a are allowed to vary in a region of practical

interest. Table 1 shows also some characteristic numerical results taken from these
"gures. It is seen that with increasing value of the central angle (¸/R) the
eigenfrequency is reduced almost linearly, having a direct in#ence on the results.
The increase of the torsional parameter C

2
leads to a slight increase of the

eigenfrequency X
1
, while the in#uence of the warping parameter C

1
is also small.

In Figures 4 and 5 the parameters C
1
and C

2
are varied. Two "xed values for ¸/R

are, respectively, used with a constant value for ¹ as shown. Table 2 shows also
TABLE 1

In-uence of ¸/R and C
2

on the range of values of X
1

¸/R C
2

C
1
"¹"0 C

1
"¹"10~2 D%

0)50 0)2 481 445 !7)5
0)8 491 469 !4)5

2)5 0)2 309 335 #8)4
0)8 360 359 0

Figure 3. In#uence of the variation of the central angle and torsional parameter on the fundamental
eigenfrequency (Case 2). C

1
"10~2, ¹"10~2.



Figure 4. In#uence of the variation of the warping and torsional parameter on the fundamental
eigenfrequency (Case 1). ¸/R"n/4, ¹"10~2.

Figure 5. In#uence of the variation of the warping and torsional parameter on the fundamental
eigenfrequency (Case 2). ¸/R"n/2, ¹"10~2.
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TABLE 2

In-uence of C
1
, C

2
and ¸/R on the range of values of X

1

C
2

C
2

¸/R"n/4 ¸/R"n/2 D%

0)20 0)0 144 348 #141)7
10~3 204 354 #73)5

0)40 0)0 252 385 #52)8
10~3 313 387 #23.6

0)60 0)0 343 402 #17)2
10~3 388 402 #3.6

0)80 0)0 403 410 #1)7
10~3 426 411 !3.5

Figure 6. In#uence of the variation of the rotatory mass parameter and the central angle on the
fundamental eigenfrequency (Case 1). C

1
"10~3, C

2
"0)6.
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some characteristic numerical results taken from these "gures. The increase of the
eigenfrequency X

1
together with the torsional parameter C

2
is recon"rmed while,

as also previously mentioned, the warping parameter C
1

does not have a strong
in#uence on the results especially for girders used in bridge design with big values of
radii of curvature as imposed by the roadway alignment. The in#uence of the
central angle (¸/R) is more pronounced for the smaller values of the torsional
parameter C

2
.



Figure 7. In#uence of the variation of the rotatory mass parameter and the central angle on the
fundamental eigenfrequency (Case 2). C

1
"10~3, C

2
"0)2.
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From Figures 6 and 7 the e!ect of the rotatory mass parameter ¹ in two cases
with "xed values of C

1
and C

2
can be seen. Although this e!ect is in general of no

special importance as shown, intense changes take place for low values of the
central angle.

8. CONCLUSIONS

According to the described procedure, the evaluation of the eigenfrequency
analysis of the transverse response of the thin-walled beams curved in plan is made
possible by considering four non-dimensionalized parameters regarding the central
angle of curvature, the torsional rigidity, the warping resistance and the rotatory
mass of the cross-section, on the basis of a computer program, specially written for
this purpose. The in#uence of all these factors has been investigated by using this
program and shown in respective curves and tables, whereby it is found that the last
two parameters at least in bridge construction do not play such an important role.
It has to be emphasized that the above procedure, due to its dimensionless
character, is much more e!ective than the appropriate use of a "nite element
program. Moreover, as the range of the values of the non-dimensionalized
eigenfrequencies X

1
is rather restricted, a direct comparison with the &&critical''

frequency region between 2 and 5 Hz in roadway bridges could be easily made in
order to draw relevant conclusions during also the preliminary design calculations
also.
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APPENDIX

The coe$cients in equations (22 and 23) are as follows:
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Moreover the coe$cients &&D'' and &&F11 of equations (27 and 28) are expressed as
follows:
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where
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