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The exact solution for radiation from a cylindrical pipe obtained by using
the Wiener}Hopf method has been available for over 50 years. Approximate
solutions can be used to simplify the problem, and their accuracy compared with
the exact solution. Firstly, the exact solution can be simpli"ed by using the
method of the steepest descent to cast the problem in the form of Weinstein's
;-approximation. A simpler technique involves the use of the Kirchho!
approximation. This vastly simpli"es the problem by considering the radiation
emanating from a circular aperture in a thin screen. The various formulae are then
compared in a parameter space related to the physical structure of a propagating
model. If one considers the behaviour of the approximations solely as one of the
governing parameters is altered (i.e., as k

0
a is increased), the physical behaviour of

the propagating mode would not linearly change. In considering the parameters in
terms of mode angles, one can observe the accuracy of the approximations for
various parameters while linearly changing the ray structure.
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1. INTRODUCTION

The sound radiation from an un#anged cylindrical duct was calculated by the
Wiener}Hopf technique some years ago by Levine and Schwinger [1] and
Weinstein [2], and later workers who have used this technique include Homicz and
Lordi [3] and Lansing [4]. The earlier work of Levine and Schwinger concentrated
on non-spinning modes, which are modes with azimuthal order zero. Later work by
Homicz and Lordi [3] includes directivity plots for spinning modes. The "gures
given by Homicz and Lordi illustrate the general structure of a directivity pattern
with multiple lobes in the front half-plane that result from two rays interfering with
each other, and show a broad lobe towards the rear of the duct. High azimuthal
order and high-frequency calculations are of particular interest when considering
the noise produced by turbofan engines, although these large parameters increase
the computation necessary with the exact solution. When considering problems
with large parameters, the next step is to either determine approximations to the
exact solution using asymptotic methods or to consider simpler techniques that are
valid in a high parameter limit.

A number of simpler techniques are available which can be used to give an
approximation to the solution, two of which will be considered in this paper. The
0022-460X/99/420397#11 $30.00/0 ( 1999 Academic Press
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"rst of these involves the use of Weinstein's ; function. This is a complicated
technique that requires some knowledge of the exact solution but produces an
approximation valid for all h. The ; function has been extensively analyzed by
Weinstein [2], primarily for plane-parallel waveguides and electromagnetic modes
in circular waveguides. A ray-based approach to a parallel-plate duct has been used
by Lee [5], with the exact solution also expressed in terms of the; function. It has
also been noted that the; function can be related to multiply re#ected rays, shown
for the parallel-plate waveguide by Bowman et al. [6, see pp. 46, 47]. The classical
work of Tyler and Sofrin [7] "rst identi"ed the far"eld modal directivity function,
which is of a similar form to the Kirchho! approximation used here. This
approximation is a widely used technique which involves considering an acoustic
source at the duct fact [7}10]. The nature of the approximation prevents the
radiated "eld behind the plane of the duct rim from being determined. It is believed
[11] that the Kirchho! approximation is accurate only for angle near the principal
lobe although results presented here show the usefulness of this approximation may
have been underestimated for spinning modes.

It is convenient to introduce a modal ray structure to describe how the acoustic
mode propagates through the duct so that the regions in which the approximations
can be considered satisfactory and can be physically interpreted. Some aspects of
the ray structure have been determined by earlier authors, with the importance of
the &&mode ray angle'' noted [2, 9, 12]. To describe fully a propagating spinning
mode, a further angle is required which is noted by Weinstein (problem 3.13 [2])
and used by Rice et al. [12]. This paper uses the analytic expressions for the mode
angles determined by Chapman [11] which contains a detailed analysis of the ray
structure of the radiated "eld, and is put to full use in reference [10] which notes
that the mode ray angle corresponds to a &&nil-shielding direction''. The angles /

ms
,

h
ms

and h
m

are used where /
ms

is the azimuthal mode angle, h
ms

is the polar mode
angle, the mode ray angle of earlier references and h

m
is the &&quiet-zone'' angle.

This paper proceeds by describing the geometry of the problem and brie#y
stating the formulae used for calculation of the directivity patterns. A set of
results are shown and analyzed for various choices of /

ms
and h

ms
, although any

combination of the mode angles is possible. For example, another interesting
choice would be to observe the results as k

0
a is increased for a "xed cone, i.e.,

"xed h
m
.

2. ANALYSIS AND GEOMETRY

2.1. NOTATION

Consider an acoustic mode, denoted by A
ms

, of the form,

p"p
0
e~*ut`*m(`*kxx J

m
(k

r
r) (1)

in a semi-in"nite cylindrical duct of radius a, propagating towards the open end.
A system of cylindrical co-ordinates (r, /, x), shown in Figure 1, is used to describe
the mode, with the duct aligned along the x-axis, lying in x(0. In the above mode,
p represents the pressure, t the time and the modal parameters are u the frequency,



Figure 1. Cylindrical co-ordinates (r, /, x) and spherical co-ordinates (R, h).
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m the azimuthal order, k
x
the axial wavenumber and k

r
the radial wavenumber. The

duct wall at r"a is assumed to be hard, so one can use the boundary condition
Lp /Lx"0 on r"a which yields J@

m
(k

r
a)"0. One can write j@

ms
"k

r
a where j@

ms
is the

sth zero of J@
m
, thus introducing the radial order s. The incident mode is also

a solution of the problem, and when substituted into the wave equation leads to
a second order di!erential equation based on the Bessel function J

m
(z), where

Bessel's equation is satis"ed provided that one has k2
x
"k2

0
!k2

r
, where k

0
"u/c is

the free-space wavenumber. The relationship between k
x
and k

r
is an important one;

for "xed values of k
0
a this determines which modes propagate (when k

x
is real) and

which modes evanesce. Note that k
x
,kms

x
.

A number of angles can be introduced to describe the form of the propagating
mode as it progresses along the duct. De"ne /

ms
, h

ms
, h

m
such that

sin/
ms
"

m
j@
ms

, sin h
ms
"

j@
ms

k
0
a

, sin h
m
"

m
k
0
a
. (2)

These quantities are represented in Figure 2. The propagating ray forms a piecewise
linear helix which can be considered as a continuation of a series of individual rays
lying in planes tangent to some caustic cylindrical surface. At the duct wall, each
tangent plane is &&tilted'' to the meridional plane at the angle /

ms
. Two tangent

planes will intersect to give a straight line along the duct wall with a ray on one
tangent plane joining a ray on the next to form a composite ray. Following a ray
through successive tangent planes will give the helical ray structure shown in
Figure 2(b) where each segment is at a polar angle h

ms
to the duct axis on the

tangent plane. The propagating mode exits the duct at angle h
ms

to the duct axis so
that h

ms
corresponds to the continuation of the incident ray along the cone of

di!racted rays. In the far"eld directivity plots, one can see that h
ms

is close to the
location of the main beam.

When the ray strikes the rim of the duct, a Keller cone of di!racted rays forms,
with the cone obtained by extending the incident ray from the duct and rotating the
extended ray about the tangent to the rim [13, 14]. The cone is at an angle n/2!h

m
to the tangent to the duct rim at the point of di!raction. With the vertex of the cone
at every point of the rim, a family of cones is obtained which envelops two surfaces.



Figure 2. Ray geometry: (a) End view of the duct showing Keller cone at angle h
m

to y-axis and
portion of propagating ray at angle /

ms
to y-axis, (b) side view of duct showing ray to be piecewise

linear helix with each segment at an angle h
ms

to the duct axis.
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In the far "eld, these tend to cones of angle h
m

centred on the forward and backward
direction of the duct axis. No rays lie inside these cones, giving rise to the term
&&quiet-zone'' angle for h

m
. An inspection of the directivity plots shows that the

radiated "eld begins to decay rapidly in the forward and rearward directions at this
angle. This phenomena is also clearly illustrated in the directivity plots of Homicz
and Lordi (see Figure 2 of reference [3]).

An alternative method of viewing the ray is to project the piecewise linear helix
into the meridional plane, so that the ray is composed of arcs of hyperbolae in this
plane [11, 15]. The inset diagrams in Figure 3 show a segment of this projection,
with the asymptotes to the meridional ray at an angle h

ms
to the duct axis. This

pattern is repeated along the length of the duct after each re#ection at the duct wall.

2.2. SUMMARY OF THE EXACT SOLUTION

To solve the problem with the Wiener}Hopf method, one considers a semi-
in"nite cylindrical duct lying axially along the x-axis for x(0, with the duct rim
lying in the plane x"0. The kernel used in the Wiener}Hopf calculations is given
by

K(k)"niaJ@
m

(ia)H@
m
(ia), i (k)"Jk2

0
!k2 . (3)

An exact solution is obtained that can be simpli"ed in the far "eld by using
spherical co-ordinates (R, h, /), and the power per unit solid angle derived such that
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Figure 3. Radiated "eld directivity patterns showing exact solution (solid line) and ;-
approximation (dashed line) on a logarithmic scale, individually varying h while varying /

ms
vertically

and h
ms

horizontally. Overall, values of /
ms
"0, 20, 40 and 603 and h

ms
"20, 40 and 603 are used, with

P
i
"1. The key for each pattern shows a segment of the three-dimensional incident ray projected into

the meridional plane, the portion illustrated being from the duct rim back to the last re#ection o! the
duct wall. The arrow denotes one wavelength j such that j"2na /k

0
a. The shorter dashed line

represents the asymptotes of the meridional ray, which are at an angle h
ms

to the duct axis. The longer
dashed line represents the centreline of the duct.
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where N denotes the radial order of the highest propagating mode and P
i
is the

power of the incident mode. Energy conservation holds with the incident power
being equal to the total radiated power plus the total re#ected power. The re#ected
"eld has been determined for the exact solution and the;-approximation, showing
that the re#ected power is a very small proportion of the incident power for the
spinning modes considered, although these results are outside the scope of this
paper. Here, H

m
(z) is the Hankel function H(1)

m
(z) with the superscript omitted. The

function R [S] is given by

R [S (f)]"
1
n

P P
k
0
a

!k
0
a

X (ia)
k!f

dk, (5)

X (k)"tan~1
Y@

m
(k)

J@
m

(k)
$

n
2

, G
(#), m"0
(!), mO0H .

When using the X function it is necessary to include its phase, which is given by
X(0)"0, X ( j@

ms
)"(s!1)n when mO0. If m"0, one must use X ( j@

ms
)"sn. The

integral above is taken in its Cauchy principal value sense, with all numerical
integration performed by using NAG libraries.

2.3. APPROXIMATE FORMULAE

When using the Wiener}Hopf technique, it is necessary to factorize the kernel
function into components that are analytic in two half-planes that overlap along
a narrow strip. The decomposition of the kernal involves a complex integral which
can be simpli"ed by using the method of steepest descent. In approximating the
kernel functions, one can reduce the integral to the canonical ;-approximation
that has been extensively analyzed by Weinstein [2], primarily for plane-parallel
waveguides and electromagnetic modes in circular waveguides. For computational
purposes, this is a simple function to determine with the numerical results produced
signi"cantly faster than the exact solution. The only drawback of this method is
that it introduces a discontinuity at the sideline, which has the e!ect of &&kicking
out'' the solution at the broad lobe in the rear half-plane. However, the size of this
discontinuity decreases as k

0
a is increased.

Using the method of the steepest descent to simplify the Wiener}Hopf kernel
factors, denoted by K

$
(k), one obtains

K
`

(k
0
cos h)"G

e;(s
n,q) , cos h(0

K (k
0
cos h) eU(sn,q), cos h'0 H , (6)

where

; (s
n
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1
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The power per unit solid angle of the radiated "eld is given by
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The "rst expression is for cos h'0, and the second is for cos h(0. In equation (9),
;,; (s

n
, q) and ;

s
is obtained by replacing h with n!cos~1 (!ks

x
/k

0
) in the

expressions for ;. The behaviour of the ;-approximation is considered in greater
detail in reference [2], Appendix B.

The second, and the most simple approximation considered involves the use of
the Kirchho! approximation. To determine the power of the radiated "eld using
this method, one considers a circular aperture centred at the origin in a thin screen
lying in the y}z plane. A scalar "eld, u

i
, given by the propagating mode, is incident

from the left (x'0), and one takes Lu/Lx"0 on the screen. The di!racted "eld is
then taken as a double integral about the aperture by using the formula stated by
Keller et al. [16]. This method accurately predicts the location of the principal lobe
and the zeroes of the radiation pattern, as illustrated in Figure 4. An expression for
the power per unit solid angle is given by

P
k
(h)"P

i

k3
0
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x
a4
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) C
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m
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a)2 sin2 h!j@2
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D
2
. (10)

3. ANALYSIS OF RESULTS

To determine suitable parameter spaces, one can consider the mode angles
de"ned earlier so that one can relate the accuracy of the results to the physical
structure of the ray within the duct. The relation m(j@

ms
(k

0
a which results from

the properties of the Bessel functions, and the constraints upon propagating modes,
place a constraint on the choice of angles possible. For example, one can only
choose angles that satisfy sin h

m
(sin/

ms
.

The numerical results included in this paper show a comparison of the exact
solution and the two approximations for /

ms
against h

ms
. A set of "nite values for

these two angles were chosen as stated in the caption of Figure 3. Results for
/
ms
"03 are also included to illustrate the behaviour of the formulae if we consider

a non-spinning (m"0) mode. The results in this paper show a series of radiated
"eld directivity patterns with a portion of the propagating ray projected into the
meridional plane accompanying each graph. The directivity patterns use the
spherical co-ordinates (R, h, /) introduced earlier, such that h"903 is
perpendicular to the duct axis, and h'903 represents the "eld behind the duct
opening.

The importance of the mode ray angle is clearly illustrated in the directivity
patterns, although each of the formulae is singular at this point. An application of
L'Ho( pital's rule to equations (4), (9) and (10) shows that all three expressions agree



Figure 4. Radiated "eld directivity patterns showing exact solution (solid line), ;-approximation
(dashed line) and Kirchho! approximation (dot}dashed line) on a logarithmic scale, individually
varying h while varying /

ms
vertically and h

ms
horizontally. Overall, values of /

ms
"0, 20, 40 and 603

and h
ms
"20, 40 and 603 are used, with P

i
"1. The meridional-plane ray structure and mode numbers

are the same as that shown in Figure 3.
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at this speci"c angle. The solutions rapidly tend to zero at either end of the plotted
range so results were &&chopped'' below a certain point when graphed. We can see
that this occurs at h"h

m
, n!h

m
agreeing with statements made earlier, and in

reference [11], that in the far "eld, no rays lie within cones of angle h
m

centred on
the forward and backward directions of the duct axis. Furthermore, one
wavelength j is also denoted in this key. The number of lobes in the front half-plane
decreases as we increase j (equivalent to decreasing k

0
a). The second set of results

show both approximations so that a comparison of all three expressions can be
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made, though the meridional-plane ray "gures have been omitted in this case since
the ray structure is the same for both sets of results.

Although not explicitly shown, the formulae used here are appropriate for
parameter regimes close to cut-o!. However, if k

0
a is small the ;-approximation

starts to breakdown, though it can be reformulated when k
0
a+j@

ms
(problem 3.10

[2]).

3.1. THE ;-APPROXIMATION

The nature of the ;-approximation introduces a discontinuity at the sideline
which can clearly be seen in Figure 3 having the e!ect of &&kicking out'' the solution
as we pass this point. However, as noted by Weinstein [2], the size of the
discontinuity decreases as one increases k

0
a. Overall, it can be seen that decreasing

the value of h
ms

results in the size of the discontinuity decreasing and improves the
accuracy of the broad lobe in the rear halfplane. The ;-approximation correctly
predicts the minor lobes though it does show a slight degradation in performance
near 903 which decreases for small h

ms
. Altering the value of /

ms
does not appear to

have any e!ect on the accuracy of the results, although we are unable to obtain
numerical results for large values of /

ms
because of the large values of m required in

this region. The most surprising aspect of these results is the accuracy of the
; approximation for the non-spinning mode case, where it is not possible to
separate the two solutions except when h

ms
is large.

3.2. THE KIRCHHOFF APPROXIMATION

Results for the same parameter space as above showing how the Kirchho!
approximation performs in relation to the exact solution and the;-approximation
are given in Figure 4. Only the approximation in the front half-plane is shown since
the formula is symmetric about the sideline giving minor lobes behind the duct
when one would only expect one broad lobe. The general degradation of the
accuracy of this approximation near the sideline is clearly illustrated in this series of
results. The formula accurately predicts the location of the zeroes, so when we
decrease h

ms
, thus increasing the number of lobes, the overall accuracy of the

approximation improves. When /
ms

is increased, the approximation degrades
slightly with the solution at the minor lobes near the sideline being noticeably
di!erent from the exact solution. For the special case of non-spinning modes, the
approximation degrades rapidly as we increase h

ms
, with the results only agreeing at

h
ms

in the third curve.

4. CONCLUSIONS

This paper presents three formulae for the calculation of the sound radiated from
a cylindrical duct in such a way that numerical solutions for any speci"c choice of
governing parameters can be easily obtained. We consider two simpli"cations to
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the problem ranging from a method that requires no knowledge of the exact
solution to one with which it is necessary to perform some of the Wiener}Hopf
manipulation. In this paper, we have only included results obtained when varying
/
ms

with h
ms

, but further results have been produced for combinations involving h
m

and k
0
a.

Firstly, consider the behaviour of the Kirchho! approximation which is simple
to use, and does not require any extensive computation. The simplicity of this
approach is re#ected in the results being noticeably less accurate than the exact
solution and failing completely in the rear half-plane. One also observes the
approximation rapidly becoming inaccurate as the sideline is approached. The
Kirchho! formula accurately determines the location of the principal lobe, and all
the zeroes, and is an ideal choice if only this information, or a rough outline to the
general form of the radiation pattern is desired. It was expected that the Kirchho!
approximation would be accurate near the principal lobe and degrade for sideways
radiation as seen in the /

ms
"03, h

ms
"603 case. Since this method is accurate at all

the zeroes, as one changes the governing parameters such that the number of lobes
in the front half-plane increases, the overall accuracy of the approximation
improves increasing the range of accuracy much more than expected.

The;-approximation performs very well for much of the parameter space in the
front half-plane where it is generally not discernible from the exact solution. The
only drawback of this method is a slight discontinuity at the sideline which a!ects
the broad lobe in the rear half-plane although this decreases as k

0
a increases. As

one changes the parameters to increase the number of lobes in the front half-plane,
the accuracy of the approximation increases. The ;-approximation is remarkably
accurate for non-spinning modes with only the slight discontinuity at the sideline
being evident. However, the exact solution is also much simpler to compute in this
case.

In conclusion, the exact Wiener}Hopf solution for radiation from a cylindrical
pipe is very complicated and numerically intensive. Two approximations have been
introduced which can be used to simplify the solution, the "rst of which requires
some knowledge of the exact solution whereas the second formula involves a simple
use of the Kirchho! approximation. These are just two of the possible approaches
that can be used in producing a satisfactory approximation to the exact solution.
Further work could consider the e!ect of other methodologies such as Keller's
geometrical theory of di!raction using the three-dimensional ray structure
described by Chapman [11].
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