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Linear mechanical systems with periodic impulse excitation are related to the
classical area of dynamical analysis. The exact solutions obtained played an
important role in mathematics and had numerous applications in vibration
analysis and machine dynamics. The introduction of non-linear factors into the
excited models makes integration impossible and generally involves the use of
various di$cult estimated approximations. However, it is shown here that for one
important class of strongly non-linear mechanical systems, vibro-impact systems, it
is possible to produce an exact steady state solution of the problem of periodic
impulse excitation by the use of the periodic Green function method. These
solutions can be applied to the analysis of impulse transformations in percussion
machines, non-linear mechanical structures and in systems of vibration protection.

( 1999 Academic Press
1. INTRODUCTION

Linear mechanical system excited by periodic impulses represent the simplest
model of the in#uence of periodic impacts on mechanical systems. The explicit "nite
form of the exact solutions in these cases [1] allows the accumulative e!ect of
repeated impacts on the development of oscillations to be studied. The problem of
periodic impulse excitation in mechanical systems, however, often demands the
introduction of a non-linear factor into the model in the form of various types of
contact interaction. The interest with respect to the e!ects of multiple impact
interactions inspired the development of the theory of vibro-impact systems, an
important area of non-linear mechanical analysis, which has many applications in
engineering.

A method commonly used to study a vibro-impact system involves the
simultaneous solution of a series of equations, which include the general solutions
of the di!erential equations of motion in between impacts, and conditions of
periodicity and impact for one particular cycle of motion. This method is used to
"nd a steady state periodic behaviour and transients are ignored. It was "rst used in
vibro-impact studies by Rusakov and Kharkevich [2] and is known as the stitching
method. It was shown later that an analysis of solution stability under small
perturbations can be performed in this case with the help of linear di!erence
022-460X/99/420427#21 $30.00/0 ( 1999 Academic Press



428 S. A. KEMBER AND V. I. BABITSKY
equations [3]. The method as a whole has a clear geometrical interpretation with
the help of PoincareH mappings [4, 5].

The analysis of periodic solutions with the stitching method tends to be
cumbersome and so is limited in application to the simplest models of structures
and excitations. Often the number and complexity of the equations are such that
numerical solution is required. Moreover, the necessity of using the general
solutions of di!erential equations for describing the motion in between the impacts
makes the whole method inapplicable when such general integrals are absent or
when a mathematical description of the model is incomplete.

These problems were overcome with the development of methods based on the
structural description of mechanical systems [5]. These included both the use of
traditional methods of approximate non-linear analysis with the help of equivalent
(harmonic and stochastic) linearization, and the development of a new analytical
technique making use of periodic Green functions (PGF) [5, 6]. The latter were
previously introduced into general non-linear analysis as impulse-frequency
characteristics [7, 8]. It has been shown [5] that, in integrable cases, the PGF
method is able to analyze many complex systems without resorting to numerical
solutions. The PGF method generalized the previous approaches to vibro-impact
interaction modelling by a series of Dirac d functions [9, 10] and introduced an
e!ective application of integral equations, as well as asymptotic, frequency, and
structural concepts into vibro-import analysis. An English edition of reference [5]
contains extensive updated bibliography on vibro-impact dynamics.

The development of the PGF method opened up a wide variety of new
applications in the analysis and optimizing of vibro-impact systems [11, 12]. It
permitted the solution of problems with parametric excitation [11], and distributed
structural and impact elements [11, 13]. The PGF provided a natural method for
the analysis of regular and random perturbations of periodical vibro-impact
motions with the use of an averaging technique [11, 12], for solution to the problem
of optimal control of such motions [12].

In the current study the PGF method is applied to the analysis of the
transformation of periodic impulsive excitation by a vibro-impact system. This has
several applications in percussion machines and in the vibration analysis of
mechanical structures.

2. FORMULATION OF THE PROBLEM AND ITS SOLUTION
BY THE PGF METHOD

The model analyzed in this paper is shown in Figure 1. Two arbitrary
single-degree-of-freedom damped systems have a periodic one-dimensional impact
interaction between them under a periodic impulse excitation f (t) with impulses by
magnitude F applied to one of the systems. The systems have an initial distance
D between the two masses when there is no excitation. If D is negative then the
masses are initially in contact with a preload. The parameters of the excited (active)
system are identi"ed by the index 1, and those of the second (passive) system by the
index 2. Each system has a mass m, a linear spring with spring constant k, and



Figure 1. The two-degree-of-freedom system.
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a linear damper with damping coe$cient c. The directions of positive
displacements x are indicated in Figure 1.

A similar structure under sinusoidal excitation has been analyzed previously with
simpli"cations in references [3, 9, 14}17]. The used cumbersome technique did not
permit the authors to reveal entirely the resonant behaviour of the system. In this
work, we demonstrate also, as an example, a simple solution of this problem in
explicit "nite form with PGF method and proper frequency responses of the
system.

The investigation here is limited to the analysis of forced vibration for which the
frequency of internal impacts is the same as the frequency of the externally applied
impulses. Other patterns of periodic vibro-impact regimes like sub- and
super-periodic resonances can be similarly analyzed.

The displacement x
1

of mass m
1

in the operating regime of interest can be
represented as the sum of two components: the response to the impulsive excitation,
and the response to the impact interaction with mass m

2
. The steady state response

to the impact with mass m
2

is the PGF given in equation (A6) multiplied by the
unknown impulse of interaction J between the two masses. An impact between the
two masses occurs at t"c¹ where ¹ is the period of the excitation, c"0, 1, 2, . . .
The response is Js

1
(t) where s

1
is the PGF of the single-degree-of-freedom system

containing m
1

and where J is the impulse acting on m
1
. Here J*0.

The steady state response to the impulsive excitation is similarly formed from the
impulse F and the PGF. As the impact excitation does not occur at the same time
as the impact between the two masses, a PGF with a time lead is used. This is
developed by using the transformation in equation (A7). The response is Fs

1
(t#q).

As the mass}spring}damper system is linear, the two responses can be added to
give the equation of motion of m

1
:

x
1
(t)"Fs

1
(t#q)!Js

1
(t). (1)

Likewise the equation of motion for m
2

is

x
2
(t)"Js

2
(t), (2)
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where the PGFs (see the appendix) are

s
1
(t)"

e~b1t

m
1
j
1
A

sin j
1
t#e~b1Tsin j

1
(¹!t)

1#e~2b1T!2e~b1T cos j
1
¹B

and

s
1
(t#q)"

e~b1(t`q~T)

m
1
j
1
A
sin j

1
(t#q!¹ )#e~b1Tsin j

1
(2¹!t!q)

1#e~2b1T!2e~b1T cos j
1
¹ B

when 0(t(¹ and ¹(t#q(2¹

or

s
2
(t#q)"

e~b2(t`q)
m

1
j
1
A
sin j

1
(t#q)#e~b1Tsin j

1
(¹!t!q)

1#e~2b1T!2e~b1T cos j
1
¹ B

when 0(t(¹ and 0(t#q(¹ and

s
2
(t)"

e~b2t

m
2
j
2
A

sin j
2
t#e~b2Tsin j

2
(¹!t)

1#e~2b2T!2e~b1T cos j
2
¹B,

where the following relationships apply to both systems (with appropriate
subscripts):

2b"2Xf"c/m, j"JX2!b2, X2"k/m, f"c/2Jkm

and X is the undamped natural frequency of the "rst mode and f is the damping
ratio.

The PGFs can be simpli"ed. Let

B
1
"e~b1T, B

2
"e~b2T, A

1
"1/m

1
j
1
(1#B2

1
!2B

1
cos j

1
¹)

and

A
2
"1/m

2
j
2
(1#B2

2
!2B

2
cos j

2
¹).

If one assumes that the motion of the system has reached a steady state with all
displacements having the same period ¹, and that at t"0, impact between m

1
and

m
2

occurs, the two displacements at t"0 can be related by

x
1
(0)!x

2
(0)"D. (3)

There is another relationship at t"0 which is the equation relating J to velocity.
This can be calculated from the following three equations.

The equation for conservation of momentum,

m
1
xR
1`

#m
2
xR
2`

"m
1
xR
1~

#m
2
xR
2~

(4)

(where subscript# indicates the velocity after impact and subscript! the velocity
before impact); the de"nition of the coe$cient of restriction R

R"(xR
2`

!xR
1`

)/(xR
1~

!xR
2~

), (5)
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and the impulse}momentum relationship:

J"(m
2
xR
2`

!m
2
xR
2~

). (6)

Relationships (4)}(6) can be arranged to give

J"M(1#R)(xR
1~

!xR
2~

), (7)

where M"m
1
m

2
/(m

1
#m

2
).

So at t"0, the displacement of the active system is

x
1
(0)"FA

1
e~b1q(sin j

1
q#B

1
sin j

1
(¹!q) )!Js

1
(0) (8)

and the displacement of the passive system is

x
2
(0)"Js

2
(0), (9)

where s
1
(0)"A

1
B

1
sin j

1
¹ and s

2
(0)"A

2
B
2
sin j

2
¹.

Hence substituting equations (8) and (9) into equation (3) yields

D"FA
1
e~b1q (sin j

1
q#B

1
sin j

1
(¹!q) )!Js, (10)

where s"s
1
(0)#s

2
(0).

At t"0, the velocities are

xR
1~

(0)"FA
1
e~b1q (j

1
cos j

1
q!b

1
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1
q)

!FA
1
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1
(¹!q)#b

1
sin j

1
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and

xR
2~

(0)"JsR
2~

(0), (12)

where sR
1~
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1
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1
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1
(j

1
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1
¹!b
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1
¹)!A

1
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Inserting equations (11) and (12) into equation (7) gives

J"M(1#R)FA
1
e~b1q(j

1
cos j

1
q!b

1
sin j

1
q)

!M(1#R)FA
1
B
1
e~b1q (j

1
cos j

1
(¹!q)#b

1
sin j

1
(¹!q))

!M(1#R)JsR , (13)

where sR "sR
1
(¹)#sR

2
(¹).

The two simultanious equations (10) and (13) contain two unknowns, J and q which
need to be determined. As the two equations are very complex, they can be
simpli"ed if it is assumed that the damping coe$cient c

1
is small and the damping

losses are very low in value in comparison with the impact losses (as usual in real
mechanical systems). As b

1
is calculated by dividing c

1
by 2m

1
, so b

1
will be close to

zero. Thus the following simpli"cations can be made:

e~b1q+1, j
1
"JX2

1
!b2

1
+X

1
, B

1
"e~b1T+1
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and

A
1
"1/m

1
j
1
(1#B2

1
!2B

1
cos j

1
¹)+1/m

1
X

1
(2!2cosX

1
¹),

so equations (10) and (13) become

(D#Js)/FA
1
"sinX

1
q#sinX

1
(¹!q) (14)

and

J(1/M(1#R)#sR )/FA
1
X

1
"cosX

1
q!cos X

1
(¹!q). (15)

If equations (14) and (15) are squared and added, the terms with the time lead q are
removed. The result can be rearranged to produce

J"sDX2
1
/(1/M(1#R)#sR )2#X2

1
s2

]A!1$S1!
((1/M(1#R)#sR )2#X2

1
s2)(D2!2rF2A2

1
)

s2D2X2
1

B, (16)

where r"1- cos X
1
¹.

The time lead q can be found by solving equations (14) and (15) for sinX
1
q and

cosX
1
q to give the following:

sinX
1
q"

rX
1
(D#Js)!J(1/M(1#R)#sR )sinX

1
¹

2rFA
1
X

1

, (17)

cosX
1
q"

)
1
(D#Js)sinX

1
¹#rJ(1/M(1#R)#sR )

2rFA
1
X

1

, (18)

Equation (16) for J is similar to the result obtained for an identical system with
sinusoidal excitation of F

0
cos ut. The equation of motion for the active system

becomes

x
1
(t)"A cos(ut#u)!Js

1
,

where A"F
0
/J(k

1
!m

1
u2)2#(c

1
u)2. The method is identical to that used for

the impulse excitation so that two equations are found:

D#Js
A

"cosu and
!J(1/M(1#R)#sR )

Au
"sin u,

These can be solved to give the result

J"sDu2/(1/M(1#R)#sR )2#u2s2

]A!1$S1!
((1/M(1#R)#sR )2#u2s2)(D2!A2)

s2D2u2 B, (19)

Solution (19) is similar to the solution obtained for a generalized system with
sinusoidal excitation given in reference [5].
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3. STABILITY OF THE SOLUTION

Equation (16) has two solutions for J, one with a positive square root and one
with a negative square root. The method used here to "nd the stable solution is the
energy balance principle, as explained in references [5].

If all the energies existing in a stationary system are summed over one period,
some of those energies will not sum to zero. These are the energy applied to the
system by the excitation and the energy lost through dissipation. In a stationary
regime these two energies will balance each other. But if such a system receives
a perturbation, then the energy balance is lost. However, if the system is stable then
the energies of the transient will be arranged in such a way that the system will
return to its stationary behaviour.

Based on the previous works with sinusoidally excited systems [5, 11], it is
proposed that equation (17) represents the energy balance of the system with
sinX

1
q proportional to the energy from the excitation. It has not been possible to

prove this rigorously, at this stage. However, this assumption is supported by the
results presented in the following sections.

De"ne a, q, h, and d as follows:

a"!

rX
1
D

2rFA
1
X

1

, q"
!(rX

1
s!(1/M(1#R)#sR )sinX

1
¹)

2rFA
1
X

1
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1
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1
¹

2rFA
1
X

1

, d"
X

1
ssinX

1
¹#r(1/M(1#R)#sR )

2rFA
1
X

1

, (20)

so that equations (17) and (18) can be rewritten as

sinX
1
q"sinu"!(a#qJ) and cosX

1
q"cosu"h#dJ. (21, 22)

It is proposed that after a small perturbation the motion becomes

xJ
1
(t)"Fs

1
(t#qJ (t) )!JI (t)s

1
(t),

where uJ (t)"X
1
qJ (t) and uJ (t) and JI (t) are arbitrary slowly varying variables. So as

equation (21) represents the energy balance and sinu is proportional to the energy
of excitation, then the system is stable if the following condition is true:

d
dJI

[a#qJI #sinu8 ]
JJ/J

'0. (23)

This means that under the perturbation the balance of energies changes in such
a manner as to compensate the perturbation.

Di!erentiating equation (23) gives

Mq#cosuJ (duJ /dJI )N
JJ/J

'0, (24)

this introduction uJ and JI as two arbitrary functions which can be connected by an
additional condition. Here it is convenient to take this additional condition to be
equation (22). Inserting the two arbitrary functions into equation (22) and
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di!erentiating gives

!sinuJ (duJ /dJI )"d. (25)

Upon using equation (25) to substitute for duJ /dJI , equation (24) becomes

Mq!d cotuJ N
JJ/J

'0, (26)

when JI "J and u8 "u. If equation (22) is divided by equation (21) to give cotu,
then equation (26) may be written as

(hd#d2J)/(a#qJ)#q'0. (27)

Multiplying equation (27) by a#qJ and rearranging yield,

J'!(aq#hd)/(q2#d2). (28)

Substituting for a, q, h and d from equation (20) then gives

J'!sDX2
1
/(1/M(1#R)#sR )2#X2

1
s2 . (29)

Therefore, the positive root of equation (16) corresponds to the stable solution. This
agrees with the results for other vibro-impact systems [5, 11].

4. REDUCTION TO A SINGLE-DEGREE-OF-FREEDOM SYSTEM

Equation (16) can be simpli"ed to show the underlying non-linear structure of
the system. If c

2
is made very small and R almost 1, then 1/M(1#R)#sR "0 so

equation (16) simpli"es to

J"!

D
s
#

FA
1
J2r
s

. (30)

If m
2

is very large so that the system is e!ectively a single-degree-of-freedom system
(an impact oscillator) then

s"A
1
sinX

1
¹"

1
2m

1
X

1
tan(X

1
¹/2)

as r"1!cosX
1
¹"2sin2(X

1
¹/2) and sinX

1
¹"2sin(X

1
¹/2)cos(X

1
¹/2), so

equation (30) becomes

J"!2m
1
X

1
Dtan(X

1
¹/2)#F/cos(X

1
¹/2) (31)

If the system is under free vibration (F"0) then the result is identical to the result
given in reference [11] for an impact oscillator, and the frequency characteristic (see
Figure 2) is a typical backbone curve for a non-linear system. This shape is retained
as long as the second term in equation (31) is small in comparison to the "rst term.
Similarly the sinusoidal result (19) can be simpli"ed to

J"!2m
1
X

1
Dtan(X

1
¹/2)#2F

0
X

1
tan(X

1
¹/2)/J(X2

1
!u2)2 . (32)

Again the same backbone curve is in the "rst term of the equation.



Figure 2. The backbone curve derived from equation (31).

Figure 3. Experimental model.
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5. APPLICATION TO A REALISTIC PHYSICAL SYSTEM

The physical parameters of a working laboratory model (see Figure 3) similar to
that used for the PGF model (Figure 1), were used to study the behaviour of
a realistic physical system. The laboratory model, when excited sinusoidally, was
observed to have two resonances, one at 5)6 Hz and the other at 9 Hz. The
resonance at the lower frequency was &linear' in form, as the frequency of resonance
was una!ected by changes in the excitation amplitude. The displacements of the
two masses were large and the masses moved together in the same direction with
a weak contact*a grazing resonance. At the higher natural frequency the two
masses moved in opposite directions with one strong impact per cycle*a clapping
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resonance. This clapping resonance was strongly a!ected by changes in excitation
amplitude, demonstrating non-linear features. In addition, when the frequency of
excitation was swept up through the resonances, both resonances occurred, while
on the downsweep only the "rst resonance occurred. Based on this experiment, the
following parameters were chosen as inputs to the PGF model; m

1
"0)125kg,

m
2
"0)094 kg, k

1
"135 N/m, k

2
"128N/m, c

1
"c

2
"0 Ns/m, R"0)7 and

D"0)001m.
The response of the PGF model to a range of sinusoidal excitation frequencies is

shown in Figure 4, and the equivalent response for impulse excitation is shown in
Figure 5. The solid lines indicate the displacement behaviour for the active system
and the dotted lines represent the passive system. The displacements were
calculated for each excitation frequency and the magnitude of the peak amplitude
as a half of the total swing is plotted.

The "rst peak at u/X
1
"1)05 (5)5 Hz) is almost identical for both types of

excitation and for both active and passive systems. The displacement graph for
impact excitation (Figure 6) shows this resonance to be a grazing resonance.

The second peak is at u/X
1
"2)13 (11)1Hz). From the displacement graph

(Figure 7) the behaviour shown by the model is the clapping resonance. The
behaviour under sinusoidal excitation at both resonances is identical apart from the
amplitudes, The result correlates well with the laboratory model behaviour.
However, the amplitudes are likely to be di!erent as the excitation amplitude
varied during the experiment. The response of the system in grazing resonance has
a strong ampli"cation because viscous damping, which a!ects strongly this
Figure 4. Frequency response to sinusoidal excitation. The active system displacements have the
solid line and the passive system the broken line.



Figure 5. Frequency response to impact excitation.

Figure 6. Behaviour over one period at u/X
1
"1)05 (5)5 Hz) impact excitation.
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resonance, was not applied in calculations. The clapping resonance is controlled
mainly by impact damping. With an increase of R it comes more prominant. The
graph of J against frequency during the clapping resonance follows to the
backbond curve shown in Figure 3. The results for the two types of excitation were
identical, so only one is shown in this paper (see Figure 8).



Figure 7. Behaviour over one period at u/X
1
"2)13 (11)1 Hz) impact excitation.

Figure 8. Frequency response of J to impact excitation.
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6. COMPARISON WITH NUMERICAL SIMULATION

The PGF results shown in the previous section can be compared with
a numerical simulation carried out in SIMULINK. To bring the problem close to



Figure 9. Model with compliance used in Simulink studies
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reality the model was altered to include a compliance between the two masses. The
type of compliance chosen was a viscoelastic model containing a spring and
damper (see Figure 9), as proposed in reference [18]. As the laboratory model
consisted of two steel masses, the sti!ness was set at a high value
(k

3
"100 000N/m) and the damping at a low value (c

3
"0)1 Ns/m). The

simulation model detects when the contact between the two masses has occurs and
brings the compliance into operation. Once the masses start to move apart the
simulation monitors the forces acting on the masses due to the compliance, and
when these sum to zero the simulation turns the compliance o!. The alternative
method of switching o! the compliance after a particular distance can cause
a physically impossible tensile force in the compliant surface.

Two types of excitation were applied to this model, one was sinusoidal and the
other was a series of narrow pulses representing impact excitation. The same
parameters as those used for the PGF model were used, except that
c
1
"c

2
"0)1Ns/m and the magnitudes of the excitations required a little

adjustment to create vibro-impact behaviour.
With sinusoidal excitation, the r.m.s. displacement behaviour of the model

with a compliant surface is shown in Figures 10 and 11. When the frequency
is swept up through the resonances, both resonances are excited and they are at
5)7 and 10)6Hz, Figure 10(a) shows the result for m

1
and Figure 10(b) the

result for m
2
. Notice that the "rst resonance has no frequency pulling while

the second resonance clearly demonstrates frequency pulling and jump e!ects. As
with the PGF results, the "rst resonance is a grazing resonance and the second is
a clapping resonance. When the frequency of excitation is swept down through the
resonances, only the "rst resonance is excited (Figure 11(a) and (b)). Figure 12
shows the reaction force Q of the compliant surface against the frequency for the
unsweep. This reaction force is related to J the impulse between the two surfaces
and shows some similarly to the graph of J (Figure 8) calculated in the previous
section.

The results from the model when pulse excitation is applied are almost similar, so
only the displacement results (for both masses) for the unsweep are presented here
(see Figure 13(a) and (b)). The resonances are at 5)7 and 10)7 Hz. Again the "rst
resonance is a grazing resonance and is excited on both the unsweep and
downsweep. The second resonance is a clapping resonance and is only excited
on the upsweep of the excitation frequencies. The additional small peak in



Figure 10. Frequency response to sinusoidal excitation, frequencies swept up (a) x
1
, (b) x

2
.
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Figure 11. Frequency response to sinusoidal excitation, frequencies swept down (a) x
1
, (b) x

2
.
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Figure 12. Frequency response to reaction force to sinusoidal excitation, frequenies swept up.
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low-frequency range is a super-periodic resonance typical for the use of pulse
excitation. The simulation results are in good agreement with the experiment and
the PGF method, as regards both the frequencies and the overall behaviour of the
system.

7. CONCLUSIONS

It has been demonstrated that the periodic Green function method is capable of
analytically solving the equation of motion of a two-degree-of-freedom
vibro-impact system with periodic impulse excitation. The overall behaviour and
resonance frequencies predicted by the technique are in good agreement with the
laboratory measurements carried out. Further work is required to produce
a rigorous proof of solution stability. The PGF method may be applied to a variety
of vibro-impact systems and the model used here could be extended to more
complex problems. This could also include real systems whose mathematical
descriptions are limited to experimental data collected at a few physically accessible
points.

The results from the PGF method have provided a solid basis for the
computer-based simulation so that more complex systems can be safely modelled in
Simulink without the uncertainty of possible numerical integration errors.
However, are detailed comparisons could be carried out on the current model



Figure 13. Frequency response to pulse excitation, frequencies swept up (a) x
1
, (b) x

2
.
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between the PGF method, computer-based simulations and experiment especially
as regards the amplitude levels.
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APPENDIX: THE PERIODIC GREENS FUNCTION OR

A SINGLE-DEGREE-OF-FREEDOM SYSTEM

This section develops a periodic Green function for the system shown in Figure
A1. The mathematical description of such functions as impulse}frequency
characteristics and their use in general non-linear analysis has been published in
reference [8]. In reference [11] and in the later work on their applications in
analysis of mechanical systems they became known as periodic Green functions.

The equation of motion for damped vibration for a single-degree-of-freedom
system is

mx(#cxR #kx"f (t). (A1)

If the excitation is f (t)"Qeiut assume the periodic solution is x(t)"X(iu)eiut

(where X(iu) is a complex amplitude) then the equation of motion becomes

(m(iu)2#ciu#k)X (iu)e*ut"Qe*ut. (A2)

So the dynamic compliance (ratio between the complex amplitudes of steady state
displacement and force) is

¸(iu)"
1

(k!u2m)#i(uc)
"

X(iu)
Q

. (A3)

The dynamic compliance gives a measure of the response of the system to a periodic
excitation and it can be rewritten in the form

¸(iu)"
1

m(X2#(iu)2#2biu)
. (A4)

where X2"k/m, 2b"2Xf"c/m and X is the undamped natural frequency of the
fundamental mode and f is the damping ratio. The derivation of the dynamic
compliance can be found in a number of books on vibration [19, 20].
Figure A1. Single-degree-of-freedom system.
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A periodic impulse excitation can be represented by a periodic series of Dirac
d functions:

f (t)"
=
+

l/~=

d (t!l¹), (A5)

where ¹ is the time between the pulses. The excitation f (t) can also be written as
a Fourier series [21]:

f (t)"
1
¹

=
+

n/~=

e*nut,

where u"2n/¹. (A6)

The steady state response due to the series of impulses can then be written as

s (t)"
1
¹

=
+

n/~=

¸(niu)en*ut (A7)

which is the periodic Green function.
Substituting equation (A4) into equation (A7) gives

s(t)"
1

¹m
=
+

n/~=

1
X2#(niu)2#2b(niu)

en*ut. (A8)

Series (A8) gives the steady state response of the system to a sequence of impulses at
t"2!3T, !2T, !T, 0, T, 2T, 3T2 . It can be transformed into a "nite
expression as follows to cover just one period by using a formula provided in
reference [8].

A generalized PGF takes the form

s (t)"
1
¹

=
+

n/~=

¸(niu) en*ut. (A9)

If the polynomial ¸(niu) has the fractional-rational structurre

¸(p)"
m(p)
d (p)

"

m
0
p2k~2#m

1
p2k~3#2#m

2k~2
d
0
p2k#d

1
p2k~1#2#d

2k

(A10)

and the roots of the equation d(niu)"0 are simple (all di!erent), then the PGF
(equation (A9)) can be rewritten as

s (t)"
n
+
o/1

m(po)
d@(po)

epot

1!epoT
, 0(t(¹, (A11)

where po are the roots of the equation d(niu)"0 and @ indicates a di!erentiated
variable. So equation (A8) becomes

s(t)"
1
m

n
+

o/1

1
2po#2b

epot

1!epoT
, 0(t(¹. (A12)
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The roots of the equation d(niu)"0 are p
1,2

"!b$iJX2!b2. Substituting
these two roots into (A12) gives

s(t)"
1
mA

1
2(!b#ij)#2b

e~bte*jt
1!e~bTe*jTB#

1
mA

1
2(!b!ij)#2b

e~bte~*jt
1!e~bTe~*jTB ,

where j"JX2!b2. After rearranging, it follows that

s(t)"
e~bt

2imjA
e*jt

1!e~bTe*jT
!

e~*jt
1!e~bTe~*jTB, 0(t(¹ (A13)

As eih"cos h#isin h, equation (13) becomes

s(t)"
e~bt

mj A
sin jt#e~bTsinj(¹!t)
1#e~2bT!2e~bT cos j¹B, (0(t(¹) (A14)

Equation (A14) represents the periodic Green function (PGF) over one period for
a single-degree-of-freedom system. Note that this PGF re#ects the steady state
periodic behaviour of the system with one impact per cycle occuring at t"0
(impact also occurs t"¹ which is the beginning of the next period).

If there is a time lead q, where 0(q(¹ (impact does not occur at t"0), it is
possible to write the PGF as

s(t#q)"
1
¹

=
+

k/~=

m (kiu)
d(kiu)

ek*u(t`q). (A15)

In reference [8] a transformation is given for a PGF with time lag where the result
is not one equation but two, so that the term t!q is kept within the range of one
period as long as q is less than one period ¹. By analogy, a similar pair of equations
can be set up for a PGF with time lead as follows:

s(t#q)"

i
g
j
g
k

n
+
o/1

m(po)
d@(po)

epo(t`q~T)

1!epoT
, 0(t(¹ and ¹(t#q(2¹

n
+
o/1

m(po)
d@(po)

epo(t`q~T)

1!epoT
, 0(t(¹ and 0(t#q(¹

e
g
f
g
h

, (A16)

Other PGFs can be calculated for more complicated systems and systems with
more than one impact per cycle. A non-linear oscillator may require linearizing
before creating a PGF. Also a PGF can be developed from a dynamic compliance
of an analyzed system which has been measured experimentally.
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