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The resonant and chaotic conditions for non-dampened, non-linear, planar rods
are developed through the Chirikov criterion, and the subharmonic bifurcation
conditions for weakly dampened, non-linear, planar rods are also presented
through the Melnikov method. The analytical conditions are based on a simply
supported, geometrically non-linear, planar rod model with a specific single-mode
response, but these conditions are applicable to geometrically non-linear planar
rods with different supports. Chaos and transient motion from chaos to periodic
motion in the non-linear rod are simulated through the approximate rod model,
and they are illustrated through the Poincare mapping section.
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1. INTRODUCTION

The accurate prediction of dynamic responses of an elastic rod experiencing large
deformation is very significant in practice, and it relies on a more accurate beam
theory describing such large deformation. The earlier beam theory developed by
Kirchhoff was presented by Love [1]. In 1958, Erisksen and Truesdell [2] used the
Cosserat approach [3] to develop an exact theory of stress and strain in rods and
shells through the oriented bodies. In 1965, Green and Laws [4] extended this
concept and developed a general theory of rods through two directors at each point
in rods. Such theory is very difficult to apply in practice. In 1972, Reissner [5, 6]
developed a one-dimensional finite-strain, static beam theory but how to treat the
moment was not given. In 1973, Wempner [ 7] presented mechanics of curved rods
but the strain is the Almansi-Hamel strain. The strain energy of non-linear rods
was presented in reference [8]. In 1983, Maewal [9] gave strain—-displacement
relations in non-linear rods and shells. In 1987, Danielson and Hodges [10]
discussed non-linear beam kinematics through the deposition of the rotation
tensor, and a mixed variational formulation for dynamics of moving beams was
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presented in reference [11]. Simo and Vu-Quoc [12] used the exact strain to
develop a theory for geometrically nonlinear, planar rods, and several higher-order
approximate theories were also given. Recently, this approach was used for
development of the 3-D composite beam theory and numerical approaches were
developed for prediction of dynamic responses in references [13-18]. The finite
element modelling of geometrically non-linear beams in helicopters was also
reported in references [19, 20]. The other derivation of equations of motion for
geometrically non-linear rods can be found in references [21-25].

In 1972 the vibration of non-linear, planar rods based on an accurate beam
theory was investigated through a perturbation approach [26]. The free, non-linear
transverse vibration of beams was investigated in reference [27] when the beam
properties varied along with length. Ho et al. [28,29] discussed the non-linear
vibration of rods through a single-mode model and a perturbation approach. The
forced vibration of non-linear, torsional, inextensional beams was investigated in
reference [30]. The planar, forced oscillations of shear indeformable beams was
investigated through a specific, single-mode response and perturbation method
[31] and the planar motion of an elastic rod under a compressive force was
analyzed [32]. In 1981, Holmes and Marsden [33] used the Melnikov method to
investigate the chaotic oscillation of a forced beam. Maewal [34] investigated
chaotic motion in a harmonically excited elastic beam through the perturbation
approach and Lyapunov exponent method. The dynamical potential for the
non-linear vibration of cantilevered beams was discussed in reference [35], and the
numerical simulations of chaotic motions in non-dampened non-linear rods were
also presented. In 1984, Reichl and Zheng [36] used the Chirikov criterion
presented in reference [37] to present an analytical condition for a stochastic layer
in perturbed double-well systems. From the above literatures, the analytical
prediction of chaos in non-linear rods still needs to be developed.

In this paper, an approximate model governing the large deformation of planar
rods is presented. Based on this approximate theory, the conditions for chaos in
non-dampened rods will be developed through the Chirikov overlap criterion, and
the conditions for subharmonic bifurcation in dampened rods will be derived
through the Melnikov method. Chaos in vicinity of resonant scparatrix for the
non-dampened rod and transient motion to steady state periodic oscillation in the
dampened rod are simulated numerically.

2. EQUATIONS OF MOTION

Consider the planar, non-linear vibration of a simply suported, initially straight,
slender rod experiencing large deformation, and this rod is subjected to an axially
compressive force P at the two ends, and a transverse, distributed, periodic force
q(x, t), as shows in Figure 1. The other planar rod models are found in references
[25, 31, 32]. The geometrical relation and the exact axial strain [31] are

Wy 14u,
O+ u)? +wh I+ u)? +wh
&x =&+ \/(1 + “,x)z + W,zx - 1, (2)

sinf = , cosf =

(1)
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Figure 1. A non-linear, planar rod subjected to the compressive force P and transversely
distributed loading ¢(x, t).

where u and w are the longitudinal and transverse displacements of the middle
surface, o = P/EA is the initial strain and the (o) , denotes partial derivative with
respect to x.

Similar to references [ 5, 26], the equations of motion for the large deformation of
the planar rod are

pAii + Cii —(NcosO — Qsin0) , =0, pAW + ¢w — (Nsin0 — Qcos0) , = q(t),
(3.4)
—M,+Q[(1 +u,)cosO +w sind0] — N[w,cos — (1 +u_,)sin0] ~0, (5

where N, Q and M are the normal force, shear force and bending moment; p and
¢ are the density and damping coefficient of the rod, and the dot represents the
derivative with respect to time. The slender rod is linear elastic and the moment and
normal force [26] are

El[w,xx(1 + u,x) - u,xxw,x]
[V +u)? + wi]?
N(x,t)=— P + EAe, = — P + EA[J/(1 + u)* + wi — 1], (7)

(6)

where E, I and A are the Young’s modulus, moment of inertia and cross-sectional
area, respectively. Substitution of equation (1) into equation (5) gives

M .
Q= S+ u)? +wh ®

Substitution of equations (6)-(8) into equations (3) and (4) yields accurate
equilibrium equations governing the large deformation of rod, i.e.,

. . (P+ EA) w
Aii + &i + —EA|(1 +u,)— ’
pAil + c <|:\/(] + u’x)z + W?x ( t.x) (r+ M,x)2 + W,Zx

{EI[W,xx(l + u,x) - u,xxW,x]} >
X
[V +u ) +wi] /s

=0, ©)
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. ) (P + EA) 1 +u,
Aw + + .
pAW + CW ([\/(1 +u)* + w (I 4+ uy)” +wi
EI 1 —
) { [l + 1) u,xxw,x]} > 0 o
[V +u)?+wr] S/

The boundary conditions for the simply supported rod in Figure 1 is

— EA} Wy —

U=w=u,=w,, =0 atx=0,1L (11)

For development of an approximate theory for the rod, the following
assumptions are adopted:

o(u)<o(w), o(u,)<o(Wy), 0l x)<OW, cx). (12)

Use of the Taylor series expansion in equations (6) and (7), and retention of the
lowest-order non-linear terms give

M=~ — EI[W,xx(1 - 2u,x - %W.Zx) - u,xxw,x]a (13)
N(x,t) ~ — P + EA(u . + 3w2). (14)

From equation (12), the inertia and damping forces in equation (3) (or equation (9))
can be neglected, and integration of equation (3) gives

NcosO — Qsin0 =~ e(t). (15)

Because the rod is very slender, Qsinff« Ncos0 can be proved through the
non-dimensionalization analysis with equations (6), (8) and (12). When Qsin# is
neglected in equation (15), equations (14) and (15) give
L , c)+P e()

U TV R T TEA

The integration constant ¢(t) = e(t) — P is determined through the axial force at
the boundary in Figure 1. With equation (11), integration of equation (16) yields

(16)

PR N LV ) 17)
~ 2OW,,Cx TR Zdx.
Therefore, equation (17) becomes
(! 1
U zEL w2 dx _EW,Zw (18)

Note that the reduction of equation (3) can be completed as in references [26, 32].
Substitution of equation (18) into equation (10), use of the Taylor series expansion
and retention of cubic terms gives an approximate equation of motion for the
planar, geometrically non-linear rod, i.e.,

l l

1
w2 dx) — EAW’”Z_IJ w2 dx

0

1
pAW—%éW%—PWJx<1—§jJ

0

3

1
+ EI |:W,xxxx<1 - 2_ZJ‘ W,Zx dx> + 2W,xxxw,xxw,x + W,?’xx:| ~ Cl(x» t) (19)
0
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For the other boundary conditions of rods, the approximate equations of motion
can be derived in a similar manner.

3. GALERKIN PROCEDURE

With equation (11), a solution to equation (19) is expressed as

wix, 1) = ¥ F(f)sin . (20)
m=1
For a specific m, application of the Galerkin method to equation (19) yields
fHof+af+uf* = Q) (21)
where
mmnF,,(t P,.— P EA —4P,. + P
f(t): ()5 oy =———— 0y = 5
l a 4a
Al 2EI 1 [
s=—— a=L2 p ~UVEL oo L gnsin T ax. 22)
mmna mmn [ 2a Jo )

Consider Q(t) = Qgcos 2t as an example for illustration of chaotic motion. The
coefficients oy and o, vary with the mode number m, the compressive force P and
the material and geometrical properties. Therefore, there are four possible cases, i.e.,
Casel:a; > 00, > 0; CaseII: ¢y > 0 and o, < 0; Case III: «; = 0 and a, > 0; Case
IV: oy <0 and a, > 0.

4. CHAOTIC CONDITIONS FOR A NON-DAMPENED ROD

4.1. CHAOTIC MOTION NEAR RESONANT SEPARATRIX

Consider chaotic motion in Case I (¢; > 0 and «, > 0) of the non-linear rod. The
first-order equations of equation (21) at 6 = 0 are

f=00=—of=0f>+ Qcos Q1 (23)
and its Hamiltonian,
H =3y + 301 f + 305 f* — fQocos Q1 (24)
is expressed by H = Hy + H;, where
Ho =3%y* + 30, f* +4an f* and H; = —fQocos Qt, (25)

For the conservative system in equation (23), its orbits in the phase plane for a given
energy are qualitatively sketched in Figure 2. The solution of the conservative
system for given Hy = E, in equation (25) is [36-38]

2
f=hcn[¥,k] andy=i/%%sn[2£ne,k}dn|:¥,k} (26)
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Figure 2. Conservative trajectories in the phase plane for the given energy of Case I.

G

where “cn”, “sn”, and “dn” are the Jacobian-elliptic functions, K = K (k) is the
complete elliptic integral of the first kind and k is its modulus. The amplitude A, the
natural frequency @ and the phase 0 of the solutions are

/ 2k2a1 1 05} hn
h= m, G)—E 7k—K and 0 = wt. (27)

The energy E, and the action variable J for a specific orbit are expressed by

£ k(1 — k?)a?

_ «/20(2]’13 2 2

where E = E(k) is the complete elliptic integral of the second kind. The period is
computed by T = 2n/w. Substitution of equation (26) into equation (24) and the
Fourier expansion of the time-dependent term give

H = Hy(J)— Q, i Qsn—1{cos[(2n — 1) — Q]tcos Qt

n=1
+ cos[(2n — 1)w + Q]tcos Qt}, (29)

where

h 1\ K’ . , , —0
anl—ﬁsech[n<n—§>f} K' =K(k')and k' =./1 —k*.  (30)

Except for the (2n — 1)th primary resonance, all other terms in H will average to
zero over one period T in references [38, 39]. Hence, with equation (27), the
resonant condition is

W = Q _ T o1
To—1 2K\ I1=2k

(1)
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From the foregoing the specific k for the (2n — 1)th primary resonance and the
given  can be determined, and this value is represented by k,,_;. Further, the
amplitude h and the action J corresponding to k,,_; are represented by h,,_; and
Jon—1. Chaotic motion in the neighborhood of the (2n — 1)th resonant separatrix is
of great interest. Only the contribution of the (2n 4+ 1)th resonance to the chaotic
motion relative to the (2n — 1)th resonant separatrix is considered, and the
Hamiltonian H, in the neighborhood of the (2n — 1)th resonant separatirx is
expanded by a Taylor series. Therefore, equation (29) becomes

dH 1/d*H
HzHo(JZn_1>+< °> (J—JZn_1)+§< °> (J = Jou_ 1) + -
Jon-1 Jon-1

dJ dJ?
—Qo[Q2n-1(J2n—1)cos[(2n — o — 2]t
+ Q2nt1(J2ns1)cos[(2n + N — Q]t} (32)

For introduction of a new canonical co-ordinate system (p, ¢) requiring p =0
when J = J,,_ 1, a generating function is defined as

_ b + Qt
6(0.8) = — (0 = S (5251). (3)
Therefore,
_0G  J—Jyy o 8G_<1§+Qt
P==%= -1 M V=G =1 (34)
Introduce a new Hamiltonian
_ 1
A=H+C x Hy(Jar 1) — £ Bo2n — 175
ot 2
— 2n+ 1 -
— Qo {QZn—l(J2n—1)COS¢ + Q2n+1(J2n+1)COS|:2n 1 ¢+ Q1t:|}, (35)
where
dZHo(J)> ? [ 1 —2(kzy—1)? }
B, = = Ky ———=2nt g
° < dr’* )i A PKow P T=kae)? !
20 0G _ (dHy(J)
=BT —< > >J2H“ Jon-1) (36)
The variables in equation (35),
_ 2n — 1)?(2n + 1)B, _ 2n — 1)?>Q2n + 1)®’B, _ —
¢=¢,P=( )22 ) OP,H=( )(Qz ) O[H_HO(Janl)]a

(37)
are re-scaled. Thus the re-scaled Hamiltonian is

1, 2n—1
H—Ep —Uocosqb—Vocos<2n+1qﬁ+Q,t>, (38)
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where

(2n — 1)*(2n + 1)?
QZ

B 2n — 1)’(2n + 1)’B
0Q0Q2n—1 and Voz( I ) 0Q0Q2n+17

QZ
(39)

UOZ

ﬁQ
Q2n* 1= 1 ,
J22(2n = 1)cosh [x(n — 3) Koy 1 /Kau-1]
\/§Q
Q2n+ 1= . (40)
a2+ 1)cosh [x(n + 3) Ky s 1 /Kans1]
The Chirikov resonance overlap condition in references [36-38] is written as

2/ Up +2/Vo = 1. (41)

From the foregoing, the chaotic condition for the onset of global stochasticity near
the (2n — 1)th resonant separatrix with the influence of the (2n + 1)th resonance is

and

Q2 1 2
Qo 4(2n — 1)*(2n + 1)*B, <JQ2H N JQZ,M) ' (42)

For a given excitation frequency €2, equation (31) gives the elliptic modulus k,,,
(e.g., the (2n — 1)th resonance). From equation (28) the constant E, for a specific
resonance can be computed, and also the complete elliptic integral of the first and
second kinds (K,,-{ and E,,_) and h,,_ in equation (27) can be evaluated as
well. From equations (30) and (36), the intermediate parameters Q,,+1, Q»,-1, Bo
can be determined. Finally, the excitation amplitude Q, is determined through
equation (42). For a given (2, the critical value of Q,, is also constant for the specific
resonance. For illustration of such a relationship, the resonant condition in
equation (31) is illustrated in Figure 3(a) through excitation frequency 2 and
conservative energy E, at oy = o, = 1-0. The chaotic condition in equation (42) is
shown in Figure 3(b) through excitation amplitude Q, and excitation frequency Q.

The derivations for Cases II, III, IV(a) and (b) are similar to Case I; hence, the
results are placed in Appendix A. Figure 4 shows the conservative orbits in the
phase plane for the aforementioned four cases. The Case 1V(c) will be discussed in
the next section because it possesses a chaotic motion different from the above
Cases.

The resonant conditions for Cases II-1V(b) are illustrated in the left plots of
Figures 5-8 through the excitation frequency 2 and the conservative energy E, at
|oy| = |az| = 10 The chaotic conditions for Case: II-1V(b) are shown in the right
plots of Figures 5-8 through the excitation amplitude Q, and the excitation
frequency .

4.2. CHAOTIC MOTION NEAR HOMOCLINIC ORBIT

The chaotic motion in the neighborhood of the homoclinic orbit possessing
Hy, =0 is different from the Cases I-IV(b). The conservative orbits in the
neighborhood of the homoclinic orbit are sketched in Figure 9, and the solution of
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Figure 3. (a) Resonant condition and (b) chaotic condition for Case I of a non-dampened rod at

oy =0y = 1.
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Figure 4. Conservative trajectories in phase plane: (a) Case II (heteroclinic orbit), (b) Case III,
(c) Case 1V(a) (homoclinic orbit), and (d) Case IV (b) (homoclinic orbit).

the homoclinic orbit is

12 2
f=+ |:<1| sech(\/oTZI) and y=+ \/“: |oc1|sech(\/oc72t)tanh(\/o?2t).
2 2

(43)
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Figure 5. (a) Resonant condition and (b) chaotic condition for Case II of a non-dampened rod at
oy =0dy = 1.
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Figure 6. (a) Resonant condition and (b) chaotic condition for Case III of a non-dampened rod at
oy = 0y = 1.

Because k — 1 as Ey; — 0, the solutions of the conservative systems in Cases IV(a)
and IV(b) approach to the homoclinic orbit. From Appendix A, the amplitude h,
the conservative energy E, and the period T for Case IV (a) are approximated from

2 2 2K
na (Al Eozﬂ(l—kZ)andeﬂ (44)

o2 o2 \/oTzh

As in references [ 38, 40], the complete elliptic integral of the first kind as k — 1 is
approximated by

1 16



PREDICTIONS OF CHAOS

25 80
(@)

20 I~ =3
a S 60
) 3
£ 5| @2n-1)=7 2
z 2
bl (n-1)=5 § 40
g 10 :
g g
'8 2n-1)=3 8
& S enD B 20

@2n-1)=1
0 | | 0
0 5 10 15 20

Conservative energy E,

533

®)

B @2n-1)=5

(2n-1)=3

(2n-1)=1
~ | |

4 8 12
Excitation frequency 2

16

Figure 7. (a) Resonant condition and (b) chaotic condition for Case IV (a) of a non-dampened rod
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Figure 8. (a) Resonant condition and (b) chaotic condition for Case IV (b) of a non-dampened rod

ata1=a2=l.

Substitution of equation (45) into equation (44) results in

The energy increment for

AH

2 1
Tz—ln( 62

e

one period T in reference [38] is

T-

e [ (0Ho 0H:
B . dy of

0

0H, 0H,
T >dt

2 159
— Qo [|— sech [ —— |sin(Qt,),
QO %, <2m> ( 0)

(46)

(47)
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AN
7

Figure 9. Homoclinic orbit and conservative trajectories in its neighborhood for Case 1V(c).

where t, is the initial time and AH = E;,; — E;. Let E; = E;, in equation (46); the
phase change of the trajectory for one period is

2
Ap = disy — i = QT ~ 20 1n< 1607 > 48)
aEn By

The energy and phase relationships between the ith and (i + 1)th iterations are

Eii1 R E;— QynQ /3 sech <ﬂ> sin(¢;) and
%1 Vol

2Q 1607
bivi =i+ 1n< B ) (49)
Al arEi
which is a separatrix map. The period-1 fixed point of equation (49) requires
2Q 1601
Sl <i> —2t2n—1) and ¢, =0, 7, (50)
Vel \e2Ey

where E; is the energy at the period-1 fixed point. Let E; = E; + AE;, linearization
of the separatrix map in equation (49) at E; gives a standard map, i.c.,

Wit1 =W; + Dsin(¢;) and ¢; 1 = ¢ + Wiy, (51)

where

2Q AE; 2 Q 2 Q
= ‘ and D= Qom h <2n7|> (52)
o

W= — —— —— =———— [—seC
l oy | Ei Ey/Jog | N %2

The parameter D is termed the strength of the stochasticity. For the standard
mapping, the transition to chaos occurs at D* ~ 0-9716... in reference [38]. The
KAM torus will disappear and thus, the chaotic condition relative to the (2n — 1)th
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Figure 10. (a) Resonant condition and (b) chaotic condition for a non-dampened rod for Case IV (c)
loy| = ap =1 (——) Case IV(a); ——, Case IV(b)).

resonance outside the homoclinic orbit is

4D* |051|> oy | —[2n—1)n/|n]/Q] ( g >
~ (et} — e~ l@n= Drylul/€ cogh . 53
Qo i < Q 2005 2oy | >

In a similar manner, the chaotic condition relative to the mth resonance inside the
homoclinic orbit is

8D* |oc1|> o] — e /mT9) < Q2 >
o~ — — ¢~ emmJ/Inl/%) cosh . 54
0o~ <Q e = (54)

As in Case I, the resonant conditions in neighborhood of the homoclinic orbit and
the chaotic conditions in equation (53) and (54) are given in Figure 10 for
oy | = [ota| = 1-0.

5. BIFURCATION CONDITION FOR A WEAKLY DAMPENED ROD

5.1. RESONANCE-BASED BIFURCATION
From equation (21), the equivalent system of first order equations is

f=py=—af—uf+eQocosQt —5f). (55)
As in reference [41], the Melnikov function for the foregoing at ¢ = 1 is

to+ T

M(zn_l)(toa QOa 51 Q) = Jv y[QOCOS(Qt - 5)’)] dt = — 511 + QOI2 SithO’

to

(56)
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where T = 2n/w is the period of the non-damped system and
30, 1 —2k*

21 /20 1\ K
I =222 [( - ) . _] 57)
Jn 2)TK

I, = i( il >3[(1 — kK + (2k* — 1)E],
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Figure 11. Subharmonic bifurcation conditions for the dampened rod (6 = 0-5) at |y | = |o,| = 1:

(a) Case 1, (b) Case 11, (c) Case III, (d) Case 1V(a,b), (¢) Case IV(b) and, (f) Case IV(c).
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If Qy/0>1,/I,, there is a (2n — 1)th subharmonic periodic motion with
T = 2(2n — 1)7/Q. Thus, the subharmonic bifurcation condition in reference [41]
is

I
Qo = I 0. (58)

Similarly, the conditions for the subharmonic bifurcations of Cases II-1V(b) is
derived and the results are summarized in Appendix B.

5.2. HOMOCLINIC-ORBIT-BASED BIFURCATION
The Melnikov function in reference [41] is

o0

M(ty, Qo, 0, Q) = J y[Qocos{Q(t + to) — 0]dt = — 51, + Qol,sin Qt,,

(59)
where
4(/ 3 2n./2Q Q
I, = w and I, = 77: sech< n > (60)
30, V% 2o

The bifurcation condition for Case IV (c) can be expressed in equation (58). These
bifurcation conditions for Cases I-1V(c) are also plotted in Figure 11 at 6 = 0-5.

6. NUMERICAL SIMULATIONS

An adaptive Runge-Kuta integration scheme is used for illustration of chaotic
motion in the non-linear rod through the Poincare mapping section. For
observation of chaos in vicinity of a specific resonant separatrix relative to the given
conserative energy E,, the initial condition, excitation frequency and excitation
amplitude should be computed analytically. The (2n — 1)th resonance of Case I is
used for explanation of the computation of input parameters for numerical
simulations. For the given E,, the (2n — 1)th resonant separatrix in Case I can be
determined through the conservative system of equation (38). As in reference
[36-38], the hyperbolic points are at ¢ = 0, 2m 7w (m; = 1,2, ... ). The initial phase
0 for specified m; can be computed by equation (34), and the initial condition
(fo, ¥o) can be computed from equation (26), and (fy, yo) also satisfy Hy = E, in
equation (25). The elliptic modulus can be obtained from equation (28). The
excitation frequency 2 can be computed through equation (31) and the critical
excitation amplitude Q, for chaotic motion can be computed through equation
(42). For the weakly damped rod, the excitation amplitudes Q, in the
non-dampened rod are used, and the dampened coefficients are chosen for
satisfaction of bifurcation condition. The computed input data is tabulated in Table
1. Because the chaotic motion of Cases III and IV(a) are similar to Case I, their
numerical simulations will not be presented.
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TABLE 1

Input data for numerical simulations (0qy = o, = 1)

Figures  Types Order of System input parameters

resonance
0 (fos ¥o) Q Qo

Non-dampened rod

12(a) Case 1 3rd / (— 2:75723145, 0-00000000) 7.64562 13-092%*

12(b) Case 11 3rd / (0-32752924, 0-45959614) 2:51708  0-305°

12(c) Case 1(b) 2nd / (1-27721125, 0-00000000) (R) 2:57721  0-105%
(— 0-88066134,0-41721017) (L)

12(d)  Case I1V(c)3rd (inner) / (0-00000000, 0-00000000) 3-00 0-06°

5th (outer)

Dampened rod

13(a) Case I 3rd 0-001" (2:75723145, 0-00000000) 7-64562 13-092

13(b) Case 11 3rd 0-001" (— 032752924, 0-45959614) 2-:51708  0-305

13(c) Case IV(b) 2nd 0-001" (0-88066134,0-41721017) (R) 2-57721 0105
(— 1-27721125, 0-00000000) (L)

13(d)  Case IV(c)3rd (inner) 0-0017 (0-00000000, 0-00000000) 3-00 0-06

*Predicted by Chirikov overlap crierion

"Less than Q, = 0-2598 obtained through the Chirikov overlap criterion,

Less than Q, = 0-1257 obtained by the analytical prediction,

SGreater than the critical values Qo ~ 0:0294 for the 5th resonant separatrix outside of homoclinic
orbit and Qo ~ 0-202 for jthe 3rd resonant-separatrix inside of homoclinic orbit,

“Less than critical damping value for periodic motion relative to the resonance.

The Poincare mapping sections of chaotic motions for Cases I, II, IV (b) and (c) of
the non-dampened, non-linear rod are shown in Figure 12. From selection of the
input data in Table 1, the chaotic motion in the neighborhood of the third resonant
separatrix should be observed for Case I. In Figure 12(a) such chaotic motion
relative to the third resonant separatrix is clearly shown. The chaotic motion in the
neighborhood of the third resonant-separatrix of Case II is also simulated, as
shown in Figure 12(b). For Case I1V(b), the chaotic motions based on the second
resonant sepatratix in the two potential wells are illustrated in Figure 12(c). The
asymmetry of the chaotic motion in the two wells is observed even though the
conservative trajectories in the two wells are symmetric. For Case IV (c), the chaotic
motion in the neighborhood of the homoclinic orbit pertains to Cases IV (a) and (b).
As analytically predicted, the 5th resonant separatrix outside the homoclinic orbit
and the 3rd resonant separatrix in the two potential wells are observed in Figure
12(d), and the asymmetry of chaotic motions in the two wells is also observed.

The Poincare mappings of the transient motion from the chaotic motion to the
steady state, periodic motion relative to the subharmonic resonance for Cases I, II,
IV(b) and (c) of the weakly dampened rod are illustrated in Figure 13. For
observation of periodic motion pertaining to subharmonic resonance, the damping
for numerical simulations is less than the critical damping. For Case I, the transient
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Figure 12. Poincare mapping sections of chaos in a non-dampened rod at |a;| = |o,| = 1: (a) Case
I, (b) Case II, (c) Case IV(b), and, (d) Case IV(c).

motion from the chaotic motion to a steady state periodic motion relative to the
3rd resonance is illustrated in Figure 13(a). The period-3, subharmonic motion will
be obtained as t —oo. If 6 > 0-195, such periodic motion under the chosen
excitation will not exist. Similarly, for Case II, a transient motion from the chaotic
motion to a steady state, period-3 motion is shown in Figure 13(b). For Case IV (b),
a transient motion from the chaotic motion to the steady-state, period-2 motions in
the two potential wells are given in Figure 13(c). The locations of the period-2
motion in the two wells are very distinguishing. For Case I'V(c), a transient motion
from the chaotic motion to period-3 motion in the right potential wells is shown in

Figure 13(d).

7. CONCLUSION

The resonant and chaotic conditions for non-dampened, non-linear, planar rods
are derived, and the conditions for subharmonic bifurcation in weakly dampened,
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Figure 13. Poincare mapping sections of transient motion from chaotic to steady-state periodic
motionsin a dampened rod at |ay| = || = 1:(a) Case I, (b) Case 11, (c) Case IV (b), and, (d) Case IV (c).

non-linear, planar rods are also presented. The derivation of the analytical
conditions is based on a simply supported, planar rod model, but these conditions
are applicable to the planar rod models with different supports.
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APPENDIX A: RESULTS FOR A NON-DAMPENED ROD

The results for Cases II, 111, IV(a) and (b) are listed as follows.
Case 11 (o; > 0 and o, < O):

k2o? 2k?oy loty | Tt
Eg=—— 0 h= [ = N Al
N CES PN G+ 07wl ok Y
. [ L4 (ko )? }
B, = Koy | ———an=t) p | A2
O = AW P (Ko 1) | N2 T T () D2 (A.2)

. /20 -
" J]%2|(2n — 1)sinh| n n—l 2o |
2 L 2 K2n71_
2Q
V2 Ayl (A3)
o,|(2n + 1)sinh| | n + < !
Voz( ) i ( 2>K2n+1

Q2n+1 =
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The chaotic condition for this case is identical to that of Case I.
Case I1I: o; =0 and o, > 0:

1/4 2
P h=<@> : _ /i ;L — (A4)

L% 2K(k) 2h? (Kzn— 1)2’

)

J20
Jloa@n — 1ycosh [n(n — )]’

V20
L ' A5
Oan+1 M(zn + l)cosh[n(n + %)] )

an—1 =

The chaotic condition for this case is expressed by equation (42).

Case IV (a): oy <0 and o, > 0: Consider the conservative energy of Case I'V: (a)
Ey >0, (b) Eg <0, (c) Eg = 0. Only the results for Cases 1V(a) and (b) are given
herein because the results for Case IV(c) have been presented in the paper.

For Case 1V(a), we have

1,2\ [,2.2 2
By = U KDKen oy el John (A6)
2k — 1), (2k* — Da, 2 2kK’
n? 1 — 2(k2n—1)2
Bio=————|Ky,.1———F—5EFE,,_ A.
=t o~ T B | a7
0 B \/§Q
T Jaa@n — Deosh[n(n — ) Koy /Kau-11
2Q
Qa1 = f (A.8)

— Joa2n + Dcosh [w(n +3) Kays 1 /Kans 1]

The chaotic condition for this case is expressed by equation (42).
For Case 1V (b), we have

(kK2 —1)ad B 20| Jozhn
B AN [ AW TS A2

I 2 — (ky)?
P S o
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0,- V20 Qs = V20
" \/oTzncosh[nnK,;/K,,]’ e @(n + 1)cosh[n(n + I)K;,/Kn]’
(A.11)

QZ 2
Qo= 4n BO <\/@ + Qn+1> .

For this case, the chaotic condition presented in equation (A.13) is different from
equation (41).

(A.12)

APPENDIX B: RESULTS FOR A WEAKLY DAMPENED ROD

The results for Cases II, III, IV(a) and (b) of a weakly dampened rod are listed
herein.
Case II: oy > 0 and o, < O:

L=t (/ k2> [ +Kk)E—(1—k)K],
3|0z

21, /2Q 1\ K
I, = r csch [(n — —>TC —J sin(Qty). (B.1)
Vo2l 2) K

Case III: o; =0 and o, > 0:

_ 16[K(WMI*Q® 270 N
I, = 3[2n — DalPoy,’ I, = \/072 sech [(n — 5) 7'c:| sin(Qto). (B.2)

Case IV (a). oy <0, 0, >0 and Eq > 0:

_ 8 |O(1| 2 2
11—372< T )[(2k DE + (1 - kK],

2 /20 1\ K’
=" sech [(n - §>n f} sin(Qto). (B.3)

NZA

Case 1V (a). oy <0, 0, >0 and Eq < 0t

L= ([525) te— e - -1

3o,

n\\//;z sech [nn’ f} sin(Qt,). (B.4)

The bifurcation condition for all the cases is identical to equation (58).
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