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This research deals with pressure waves in a gas trapped in thin layers or narrow
tubes. In these cases viscous and thermal e!ects can have a signi"cant e!ect on the
propagation of waves. This so-called viscothermal wave propagation is governed
by a number of dimensionless parameters. The two most important parameters
are the shear wave number and the reduced frequency. These parameters were used
to put into perspective the models that were presented in the literature. The
analysis shows that the complete parameter range is covered by three classes of
models: the standard wave equation model, the low reduced frequency model and
the full linearized Navier}Stokes model. For the majority of practical situations,
the low reduced frequency model is su$cient and the most e$cient to describe
viscothermal wave propagation. The full linearized Navier}Stokes model should
only be used under extreme conditions.

( 1999 Academic Press
1. INTRODUCTION

The propagation of sound waves with viscothermal e!ects has been investigated in
several scienti"c disciplines. The propagation of sound waves in tubes was
investigated already by Kirchho! and Rayleigh [1]. In tribology, the Reynolds
equation is used to calculate the pressure distribution in #uid "lms trapped between
moving surfaces. Reynolds' theory assumes that the inertial e!ects are negligible: it
is based on a so-called creeping #ow assumption. Increasing machine speeds and
the use of gas bearings initiated research on the role of inertia [2}10]. In -uid
mechanics, the propagation of sound waves in tubes and in particular the steady
streaming phenomenon have been extensively discussed [11}14]. Two early papers
on thin "lm theory in acoustics were presented by Maidanik [15] and Ungar and
Carbonell [16]. A large number of investigations have been carried out since then.
Consequently, a seemingly endless variety of models is available now to deal with
viscothermal e!ects in acoustic wave propagation.

The variety of models is deceiving. The models that were presented in acoustics
can be grouped into three basic categories. Key words in the characterization of
these models are: pressure gradient across layer thickness or tube cross-section, and
the incorporation of e!ects such as compressibility and thermal conductivity.
0022-460X/99/430555#32 $30.00/0 ( 1999 Academic Press
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The most extensive type of model clearly must be based on a solution of the full
set of basic equations. This means that, for instance, all the terms in the linearized
Navier}Stokes equations are taken into account. The second type of model
incorporates a pressure gradient. However, not all the terms in the basic equations
are retained. In some models, for instance, thermal e!ects are neglected. The
simplest model, the low reduced frequency model, assumes a constant pressure
across the layer thickness or tube cross-section. The e!ects of inertia, viscosity,
compressibility and thermal conductivity are accounted for. This leads to a very
straightforward and useful model.

The main aim of this paper is to provide a framework for putting models
for viscothermal wave propagation into perspective. It is not the intention
of the author to present a list of all papers related to viscothermal wave
propagation. Wave propagation is considered from a standard acoustical point
of view. Non-linear e!ects are therefore neglected. For an extensive overview
of non-linear e!ects and viscothermal wave propagation the reader is referred
to the papers by Makarov and Ochmann [17}19] and Too and Lee [20]. Makarov
and Ochmann present an overview of the literature, based on more than 300
references.

The present analysis is based on the use of dimensionless parameters. It is an
extension of the work on the propagation of sound waves in cylindrical tubes, as
presented by Tijdeman [21]. The three groups of models are all written in
a dimensionless form. As a consequence, a number of dimensionless parameters
appear in the equations. With the help of these parameters the range of validity for
each group is indicated. Furthermore, for each type of model a short list of related
literature is given. The list o!ers information about parameter ranges and
applications. Based on this information, one can easily determine which model
should be used for a given application. Finally, the problem of acoustic-elastic
coupling, i.e., the mutual interaction between vibrating #exible surfaces and thin
layers of gas or #uid, is addressed for each type of model.

2. BASIC EQUATIONS

2.1. DERIVATION OF EQUATIONS

The basic equations governing the propagation of sound waves are the linearized
Navier}Stokes equations, the equation of continuity, the equation of state for an
ideal gas and the energy equation. In the absence of mean #ow the equations can be
written as
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where v6 , p, o6 , ¹M , k, g, R
0
, o

0
, j, C

p
and t denote respectively the velocity vector,

pressure, density, temperature, viscosity, bulk viscosity,s gas constant, mean
density, thermal conductivity, speci"c heat at constant pressure and time. The
operators $1 and DM are the gradient and the Laplace operator respectively. (A list of
nomenclature is given in Appendix B).

The following assumptions are used: no internal heat generation; homogeneous
medium: the dimensions and the wavelength have to be large compared to the
mean free path*for air under standard atmospheric conditions this assumption
breaks down for lengths smaller than 10~7 m or frequencies higher than 109 Hz; no
mean #ow; small, sinusoidal perturbations; laminar #ow.t

Dimensionless small harmonic perturbations are introduced according to
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where c
0
, ¹

0
, p

0
, u and i are the undisturbed speed of sound, the mean

temperature, mean pressure, angular frequency and the imaginary unit. The
gradient and the Laplace operators are non-dimensionalized with a length scale l.
This length scale can, for example, represent the layer thickness or the tube radius.
The other directions are scaled with the acoustic wavelength. An overview of length
scales and operators for various geometries is given in Appendix A. At this stage
one can write

$"l$1 , D"l2DM . (3)

After further linearization the basic equation can be written in the following
dimensionless form:A
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The following dimensionless parameters were introduced:}

shear wave number, s"lJo
0
u/k ;

reduced frequency, k"ul/c
0
;

ratio of speci"c heats, c"
C

p
C

v

;

square root of the Prandtl number, p"JkC
p
/j ;

viscosity ratio, m"g/k . (5)
sFor monatomic gases g"0, for air g"0)6k
tFor the transition to turbulence for oscillating pipe #ows, see e.g. [14] and [72].
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Here, C
v

is the speci"c heat at constant volume. The dimensionless equations
indicate that the viscothermal wave propagation is governed by a number of
dimensionless parameters. These parameters can be used to characterize di!erent
#ow regimes. Furthermore, they enable solutions given in the literature to be put
into perspective: assumptions or restrictions of models can be quanti"ed in terms of
these parameters.

The parameters c and p depend solely on the material properties of the gas. The
most important parameters are the shear wave number and the reduced frequency.
The shear wave number is a measure for the ratio between the inertial e!ects and
the viscous e!ects in the gas: it is an unsteady Reynolds number. For large shear
wave numbers the inertial e!ects dominate, whereas for low shear wave numbers
the viscous e!ects are dominant. In physical terms the shear wave number
represents the ratio between the length scale, e.g. the layer thickness or tube radius,
and the boundary layer thickness. The reduced frequency represents the ratio
between the length scale and the acoustic wavelength. For very low values of the
reduced frequency, the acoustic wavelength is very large compared to the length
scale l. The parameters presented in this section are essential for the choice of an
appropriate model for a speci"c situation.

2.2. BOUNDARY CONDITIONS

In order to solve the set of equations boundary conditions must be imposed. The
quantities of interest here are the (dimensionless amplitudes of the) velocity,
temperature, pressure and density. Boundary conditions for the density are usually
not imposed, and will therefore not be considered here.

2.2.1. <elocity

At a gas}wall interface, a continuity of velocity is assumed in most cases.
Continuity of velocity usually implies that the tangential velocity is zero: a no-slip
condition is imposed. The normal velocity is equal to the velocity of the wall. In this
way, the acousto-elastic coupling between vibrating structures and viscothermal
gases is established. For rare"ed gases, investigations indicate that it is more
appropriate to use a jump in velocity with corresponding momentum
accommodation coe$cientss [22, 23]. For gases under atmospheric conditions
a simple continuity of velocity condition su$ces.

2.2.2. ¹emperature

The most common boundary conditions are isothermal walls or adiabatic walls.
For an isothermal wall the temperature perturbation is zero, whereas for an
adiabatic wall the gradient of the temperature normal to the wall vanishes. When
sIn this case one assumes a jump condition at the interface, e.g. a velocity slip or temperature jump.
For the temperature the boundary equation then becomes: ¹!¹

w
"!¸$¹ ) n, where ¹

w
is the wall

temperature, ¸ is related to the thermal accommodation coe$cients and n is the outward normal.
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the product of the speci"c heat per unit volume and the thermal conductivity of the
wall material substantially exceeds the corresponding product for the gas, the
assumption of isothermal walls is usually accurate (see, e.g. reference [24]).

Again, for rare"ed gases, it is more appropriate to use a jump condition [22, 23].
This condition allows for a jump in temperature across the gas}wall interface with
a thermal accommodation coe$cient. In the literature, some models were
presented to model walls with "nite heat conduction properties (see, Reference
[25]).

A very interesting consequence of thermal e!ects is the phenomenon of thermally
driven vibrations. As a boundary condition, one could for instance impose
a varying temperature across the length of a tube. This temperature gradient drives
pressure pulsations in the gas. This e!ect will not be addressed here: for detailed
discussion the reader is referred to the literature [26}33].

2.2.3. Pressure

At the ends of a tube or layer boundary conditions can be imposed for the
pressure, for instance a pressure release. In the present investigation end e!ects are
neglected. For a more detailed discussion on this subject the reader is referred to the
literature [34}39].

2.3. GEOMETRIES AND CO-ORDINATE SYSTEMS

The basic equations were given in terms of gradient and Laplace operators. In
Appendix A an overview of length scales, dimensionless co-ordinates, gradient
operators and Laplace operators is given for a number of geometries.

3. FULL LINEARIZED NAVIER}STOKES MODEL

3.1. DERIVATION OF EQUATIONS

The most extensive type of model is that obtained by solving the complete set of
basic equations. The derivation in this section is based on the paper by Bruneau
et al. [40]. Their formulation however was rewritten in terms of dimensionless
quantities for the present study. In order to solve this problem, the velocity is
written as the sum of a rotational velocity v

v
, due to viscous e!ects, and a solenoidal

velocity v
l

v"v
v
#v

l
, (6)

where these satisfy

$ ) v
v
"0, $]v

l
"0. (7)

The following relationship was used in this derivation:
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Inserting these expressions into the basic equations and taking the rotation and
divergence gives the following set of dimensionless equations:
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After some algebraic manipulations the following equation can be derived in terms
of the temperature perturbation:
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It can easily be veri"ed that both v
l
and p also satisfy this equation. Note that if

m"0 in this equation, i.e., the bulk viscosity is neglected, a dimensionless equation
is obtained that was already derived by Kirchho! and Rayleigh [1].

3.2. SOLUTION STRATEGY

The equation for the temperature perturbation can be written in a factorized
form,
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in which:
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The solution for the temperature perturbation can be written as
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are referred to as the acoustic and the entropic temperatures. The

constants A
a
and A

h
remain to be determined from the boundary conditions. The
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Once the solution for the temperature is known, the values for the velocity v
l
and

the pressure p can be expressed in terms of A
a
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h
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The rotational velocity v
v

has to be solved for from a vector wave equation with
wave number k

v
:
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v
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v
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The rotational velocity is related to the e!ects of viscosity, since the wave number is
a function of the shear wave number.

In order to solve the full model, solutions must be found to two scalar wave
equations for the temperature perturbation and a vector wave equation for the
rotational velocity. With the appropriate boundary conditions the complete
solution can then be obtained. An analytical solution for this type of model can be
found only for simple geometries and boundary conditions. For more complex
geometries one has to resort to numerical techniques.

3.3. ACOUSTIC AND ENTROPIC WAVE NUMBERS

The expressions for k
a
and k

h
are rather complex. In the literature they are often

approximated; see e.g., reference [40]. With the help of the dimensionless
parameters this approximation can be quanti"ed. A Taylor expansion of the
denominator of the wave numbers in terms of k/s gives
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These expressions are valid for k/s@1: the acoustic wavelength is very large
compared to the boundary layers thicknesses. This assumption seems very
reasonable. However, it has important implications that actually eliminate the need
for a full model, as will also be illustrated in section 5.5. If one sets k/s"0 the
expressions reduce to

k2
a
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h
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This result shows that the wave number k
a
is related to acoustic e!ects. The wave

number k is related to entropy e!ects, since the product sp does not contain the

h
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viscosity k. However, this separation is possible only for k/s@1. When the acoustic
wavelength is of the same order of magnitude as the boundary layer thickness, the
complete expressions for the wave numbers k

a
and k

h
must be used. In this situation

a separation is not possible.
Note that for sA1 the wave numbers k

h
and k

v
become very large. The solutions

for ¹
h
and v

v
approach zero. The value of k

a
is not a!ected, since it is not a function

of the shear wave number. As a consequence, the full linearized Navier}Stokes
model reduces to the standard wave equation.

3.4. ACOUSTO-ELASTIC COUPLING

The motion of the gas can be coupled to the motion of a #exible structure,
usually by demanding a continuity of velocity across the interface. In general,
this leads to a very complicated set of equations. The full linearized Navier}
Stokes model was used in a number of applications, such as spherical resonators
or miniaturized transducers, to calculate the acousto-elastic behaviour of
systems.

Spherical resonators are used to determine the acoustical properties of gases with
a high degree of accuracy. Mehl investigated the e!ect of shell motion, hereby
neglecting viscothermal e!ects in the gas [41]. Moldover et al. [24] used a full
linearized Navier}Stokes model for the description of the acoustic "eld inside the
resonator. A boundary impedance condition was imposed for the radial velocity in
order to account for the e!ect of shell motion. The models developed by Mehl were
used to calculate this shell impedance.

In some types of miniaturized transducers a vibrating membrane is backed by
a rigid electrode, thus entraping a thin layer of gas. Plantier and Bruneau [42],
Bruneau, et al. [43], and Hamery et al. [44] developed analytical models to
describe the interaction between (circular) membranes and thin gas layers. Because
of the complexity of the problem, their calculations are restricted to geometries with
rotatory symmetry. In order to overcome this problem, recently Karra et al.
[45, 46] presented a boundary element formulation for the propagation of sound
waves in viscothermal gases. Although their paper concerns only an uncoupled test
case and did not include viscous e!ects, the algorithm is able to deal with fully
coupled problems [47]. Their method therefore now o!ers the possibility to model
more complex geometries.

In Part II of the present paper the spherical resonator and the miniaturized
transducers are discussed in more detail.

3.5. LITERATURE

In Table 1 a list of related literature is presented. The list contains information
concerning applications and acousto-elastic coupling. For layer geometries the
parameter ranges in the calculations and experiments are given. These values will
also be used in section 5.5. For an overview of parameter values for tubes the reader
is referred to the paper by Tijdeman [21].



TABLE 1

¸iterature full linearized Navier}Stokes models (z): calculations

Authors Ref Year Application Coupling Remarks

Moldover et al. [24] 1986 Spherical resonator Full Analytical model
Bruneau et al. [69] 1990 Spherical resonator

Cylindrical tubes No Analytical model
Plantier and Bruneau [42] 1990 Circular membrane Full Analytical model

2)3]10~9)k)2)3]10~3 (z)
2)9]10~6)k/s)2)9]10~3 (z)

Bruneau [70] 1994 Membrane No Analytical model
Hamery et al. [44] 1994 Circular membrane Full Analytical model

4)6]10~5)k)4)6]10~2 (z)
9)0]10~4)k/s)2)8]10~2 (z)

Bruneau et al. [40] 1989 Spherical resonator No Analytical models
cylindrical tube
plane wall

Bruneau et al. [71] 1987 Tubes No Analytical model
Karra et al. [45] 1996 Circular membrane No Boundary element model

7)9]10~3)k)1)4]10~2 (z)
8)5]10~3)k/s)1)1]10~2 (z)

Karra and Tahar [46] 1997 Circular membrane No Boundary element model
Case I (h

0
"0)5 mm):

1)0)k)1)4 (z)
9)9]10~3$k/s)1)1]10~2 (z)
Case II (h

0
"1 km):

7)9]10~3)k)1)4]10~2 (z)
2)7]10~2)k/s)3)6]10~2 (z)

Scarton and Rouleau [72] 1973 Tubes No
Tijdeman [21] 1975 Tubes No
Liang and Scarton [73] 1994 Tubes No
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4. SIMPLIFIED NAVIER}STOKES MODELS

In this class of models, the e!ects of compressibility or thermal conductivity are
neglected compared with the full model described in section 2.3. In this section, two
models will be discussed in more detail. The two models were rewritten in
a dimensionless form for this purpose. Other models are also available, but all
simpli"ed Navier}Stokes models are inconsistent. An overview is presented in
section 4.4.

4.1. TROCHIDIS MODEL

Trochidis [48, 49] introduced the following assumption in addition to the basic
assumptions described in section 2.1: the gas is incompressible: $ ) v"0. The
dimensionless basic equations (4) now reduce tos

iv"!
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kc

$p!
1
s2

$]($]v), $ ) v"0. (20)

Combining these equations gives

Dp"0, [D!is2] v"
s2
kc

$p. (21)

The equation for the pressure is perhaps strange at "rst sight. Is does not
incorporate any viscothermal terms: it is a regular wave equation for
incompressible gas behaviour. It seems that the pressure can be completely
determined from this equation. However, the boundary conditions must be
satis"ed. At a gas}wall interface the velocity must be continuous. Usually, this
means that the tangential velocity is zero and the normal velocity equals the
velocity of the wall. With equation (21) the boundary condition for the velocity can
be expressed in terms of pressure gradients. In this way, viscous e!ects are
introduced into the model.

Clearly, the full linearized Navier}Stokes model reduces to the Trochidis model
for incompressible behaviour. The role of the compressibility depends, among other
things, on for example the frequency and the global dimensions. As an example,
consider the squeeze "lm damping between two plates, as described by Trochidis.
The e!ects of compressibility become important when the acoustic wavelength is of
the same order of magnitude as the plate dimensions. This means that the
incompressible model of Trochidis can only be used for frequencies for which the
acoustic wavelength is very large compared to the plate dimensions. In a squeeze
"lm problem, the layer thickness is very small compared to the plate dimensions. In
other words, the acoustic wavelength is also very large compared to the layer
thickness. The pressure will thus not vary much across the layer thickness. The
Trochidis model however incorporates a pressure gradient across the layer
thickness. This is a weakness of the model: the assumption of incompressible
sThe 2D formulation from Trochidis was extended to 3D for the present analysis.
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behaviour on the one hand and the incorporation of a pressure gradient across the
layer on the other hand are rather inconsistent for a squeeze "lm problem.

4.2. MOG SER MODEL

MoK ser [50] extended the Trochidis model in order to account for the
compressibility of the gas. However, only the compressibility term in the equation
of continuity is considered: the compressibility terms in the linearized
Navier}Stokes equations are neglected. Furthermore, the process is assumed to be
adiabatic. MoK ser in fact introduced the following assumptions in addition to the
basic assumptions described in section 2.1: incompressible linearized
Navier}Stokes equations; adiabatic process. The basic equations (4) now reduce tos
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Combining these equations gives
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In a further analysis, MoK ser assumed that the acoustic wavelength is very large
compared to the boundary layer thickness: k/s@1. The wave number in equation
(23) then reduces to k2 and thus the equation reduces to the standard wave
equation. In this model, the viscous e!ects are also incorporated through the
boundary conditions, if the wave number is approximated by k2.

This model is not very consistent, since the compressibility terms are not fully
accounted for. Furthermore, the thermal e!ects can play an important role. There
are indeed several examples where thermal e!ects do have a signi"cant in#uence.
For a more sophisticated model that incorporate pressure gradients, the thermal
e!ects should be accounted for as well.

4.3. ACOUSTO-ELASTIC COUPLING

In acoustics, the simpli"ed Navier}Stokes models were mainly used to calculate
the squeeze "lm damping between #exible plates. In the analysis of Trochidis only
one-way coupling is considered: the uncoupled de#ections of the plates were
imposed as boundary conditions for the gas. However, recent experiments and
calculations [51, 52] indicate that thin gas layers can have a signi"cant e!ect on the
coupled vibrational behaviour of a plate}gas layer system. The eigenfrequencies of
the plate are substantially a!ected by the presence of the layer, whereas the
viscothermal e!ects induce considerable damping. The full coupling was accounted
sThe 2D formulation from MoK ser was extended to 3D for the present analysis.
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for in the analysis of MoK ser. It has to be noted that the models as presented by
Trochidis and MoK ser concern two-dimensional problems.

The interaction between viscous #uids and #exible structures was also
investigated from a more mathematical point of view. Schulkes [53] presented
a "nite element method to describe the interaction between a viscous #uid and
a #exible structure. He assumed the #uid to be incompressible. For more literature
related to this topic the reader is referred to the papers by Schulkes [53, 54].

4.4. LITERATURE

In Table 2 a list of papers concerning simpli"ed Navier}Stokes models is
presented. Experiments were carried out by several authors. The parameter ranges
for the layer geometries are also given in the table.

5. LOW REDUCED FREQUENCY MODEL

5.1. DERIVATION OF EQUATIONS

In the low reduced frequency models some simpli"cations are introduced that
lead to a relatively simple but very useful model for tubes and layers. In this theory,
the propagation directions of the waves and the other directions are separated. The
following assumptions are introduced in addition to the basic assumptions
described in section 2.1: the acoustic wavelength is large compared to the length
scale l: k@1; the acoustic wavelength is large compared to the boundary layer
thickness: k/s@1. If one introduces these assumptions into the basic equations (4),
presented in section 2.1, one is left withs

ivpd"!
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p"o#¹, i¹"

1
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Dcd¹#iC
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c D p, (24)

where $pd, Dpd and vpd represent the gradient operator, the Laplace operator and
the velocity vector containing components for the propagation directions only. The
operators $cd, Dcd and vcd contain terms for the other directions, i.e., the
cross-sectional or thickness directions. Expressions for these operators for various
geometries are given in Appendix A.t The cross-sectional co-ordinates are denoted
by xcd and the propagation co-ordinates are denoted by xpd.
sIf not the acoustic wave length is the appropriate length scale for the pd-directions but
a characteristic dimension L, one can show that the conditions k@1, k/s@1 and l/¸@1 have to hold.
For thin layers or narrow tubes this geometric condition is implicitly satis"ed. Calculations indicate
that the low reduced frequency model can be used for l/¸(0)2.

tNote that a low reduced frequency model does not make sense for a spherical geometry.



TABLE 2

¸iterature simpli,ed Navier}Stokes models (C): experiments, (z): calculations

Authors Ref Year Application Coupling Remarks

Trochidis [48] 1982 Squeeze "lm One-way Incompressible
Case I (air):
4)6]10~4)k)8)8]10~2 (C) (z)
2)8]10~4)k/s)2)3]10~3 (C) (z)
Case II (water):
5)3]10~4)k)4)0]10~2 (C) (z)
1)7]10~5)k/s)1)3]10~4 (C) (z)

MoK ser [50] 1980 Squeeze "lm Full Incompressible Navier}Stokes
2)3]10~5)k)2)9]10~1 (z)
9)0]10~5)k/s)5)1]10~3 (z)

Schulkes [53] 1990 General Full Incompressible
Chow and Pinnington [67] 1987 Squeeze "lm (gas) One way Bulk viscosity terms neglected

Thermal e!ects neglected
Case I (atmospheric air):
2)3]10~4)k)7)3]10~2 (C) (z)
2)9]10~4)k/s)2)9]10~3 (C) (z)
Case II (air, decompression chamber):
3)5]10~4)k)3)5]10~2 (C) (z)
2)9]10~4)k/s)4)9]10~3 (C) (z)

Chow and Pinnington [68] 1989 Squeeze "lm (#uid) One-way Bulk viscosity terms neglected
Thermal e!ects neglected
5)2]10~5)k)1)3]10~1 (C) (z)
2)4]10~5)k/s)2)4]10~4 (C) (z)
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5.2. SOLUTION STRATEGY

The second of equations (24) indicates that the pressure is a function of the
propagation co-ordinates only: the pressure is constant on a cross section or across
the layer thickness. Hence, the low reduced frequency models are sometimes
referred to as constant pressure models. By using the fact that the pressure does not
vary with the cd co-ordinates, the temperature perturbation can be solved from
a Poisson type of equation. The general solution for adiabatic or isothermal walls
can formally be obtained by the Green function.s At this stage one can write

¹ (sp, xpd, xcd )"!C
c!1

c D p (xpd)C (sp, xcd ). (25)

For simple geometries, solution of the function C is very straightforward.t For
more complex geometries numerical techniques can be used. In the literature,
several approximation techniques have been developed to describe the propagation
of sound waves in tubes with arbitrary cross-sections; see e.g., references [55}57].
Once the solution for the temperature is obtained, the solutions for the velocity and
the density can be expressed in a similar way:

vpd (s, xpd, xcd)"!

i
kc

A (s, xcd )$pdp (xpd),

o (sp, xpd, xcd)"p (xpd) C1#C
c!1

c D C (sp, xcd )D . (26)

Note that, due to the fact that A and C are functions of the cd-co-ordinates, the
velocity, temperature and density are not constant in these directions. The
functions A and C determine the shape of the velocity, temperature and density
pro"les. For isothermal walls the functions A and C are directly related, whereas for
adiabatic walls the function C reduces to a very simple form. One has

isothermal walls, C (sp, xcd)"A (sp, xcd);

adiabatic walls, C (sp, xcd)"!1. (27)

The expressions for o, ¹ and vpd are now inserted into the equation of continuity.
After integration with respect to the cd-co-ordinates and some rearranging one
obtains

Dpdp (xpd)!k2C2p (xpd)"!ikn (sp)C2R (28)

where

C"S
c

n(sp)B(s)
, n (sp)"C1#C

c!1
c D D(sp)D

~1
sIt is also possible to include a "nite thermal conductivity of the wall, see e.g. section 2.2.2. and
reference [40]. The low reduced frequency model has to be coupled to a model that describes the
thermal behaviour of the wall.

tThe function C is a function only of the cd-co-ordinates for constant cross-sections. For varying
cross sections, the value of C depends also on the pd-co-ordinates.
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B(s)"
1

Acd P
Acd

A (s, xcd ) dAcd, D (sp)"
1

Acd P
Acd

C (sp, xcd )dAcd,

R"

1
Acd PLAcd

v ) e
n
dLAcd . (29)

where Acd is the cross-sectional area, LAcd is the corresponding boundary and e
n
is

the outward normal on LAcd. For simple boundary conditions, the function D can
be obtained from

isothermal walls, D (sp)"B(sp); adiabatic walls, D (sp)"!1. (30)

The function C is the propagation constant. The propagation of sound waves is
a!ected by thermal e!ects, accounted for in the function n(sp), and viscous e!ects,
accounted for in the function B(s). On the right hand side of equation (28) a source
term is present due to the squeeze motion of the walls. In Tables A.1}A.4 in
Appendix A the expressions are listed for various geometries and isothermal wall
conditions for the functions A and B. The tables also contain the asymptotic values
of the functions for low and high values of the corresponding argument. It can
easily be shown that for low values of the shear wave numbers the low reduced
frequency model reduces to a linearized form of the Reynolds equation. For high
shear wave numbers the low reduced frequency model reduces to a modi"ed form
of the wave equation. The modi"cation is due to the fact that the low reduced
frequency model is associated with a constant pressure in the cd-directions.

5.3. PHYSICAL INTERPRETATION

5.3.1 <elocity pro,le

The shape of the velocity pro"le is completely determined by the function A. This
function is thus well suited to illustrate the transition from inertially dominated
#ow to viscously dominated #ow. As an example, consider the layer geometry. In
Figure 1 the magnitude of the function A is given as a function of the layer thickness
for shear wave numbers 1, 5, 10 and 100. The magnitude of the function A is directly
related to the magnitude of the in-plane velocities for a layer geometry. Note that
the expression for the velocity is complex: there are phase di!erences between the
points. Consequently not all points pass their equilibrium position at the same
time.

For low shear wave numbers the viscous forces dominate and a parabolic
velocity pro"le is obtained, see also Tables A.3 and A.4. For high shear wave
numbers the inertial forces dominate and a #at velocity pro"le is obtained.

5.3.2. ¹emperature pro,le

For isothermal walls the shape of the temperature pro"le is identical to the shape
of the velocity pro"le. However, the temperature is not a function of the shear wave
sConsidering p as a constant.



Figure 1. Shape of velocity pro"le (magnitude).
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number s but of the product sp: its value does not depend on the viscosity k. For
high values of sp, adiabatic conditions are obtained, whereas for low values of sp,
isothermal conditions are obtained.

5.3.3. Polytropic constant

According to equation (26) the density and the pressure are related. If this
expression is integrated with respect to the cd-co-ordinates one obtains

o"p C1#C
c!1

c DD (sp)D . (31)

The same result would have been obtained if, instead of using the energy equation
and the equation of state, a polytropic law had been used, namely,

pN /oN n (sp)"constant, (32)

where n(sp) is the polytropic constant that relates density and pressure, see
equation (29). Note however that this only holds in integrated sense: relation (31)
was obtained by integration with respect to the cd-co-ordinates. As an example, the
magnitude and the phase angle for the layer geometry are given as a function of sp
in Figure 2. For low values n(sp) reduces to 1, i.e., isothermal conditions. For high
values of sp it takes the value of c corresponding to adiabatic conditions.

5.4. ACOUSTO-ELASTIC COUPLING

The low reduced frequency model results in a relatively simple equation for the
pressure. Because of the simplicity of the gas model, it is relatively easy to
incorporate the full acousto-elastic coupling. Several investigations are available
which deal with fully coupled calculations, most of them for the squeeze "lm
problem.



Figure 2. Magnitude and phase angle of polytropic constant for air (c"1)4).
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Fox and Whitton [58] and OG nsay [59, 60] presented models to describe the
interaction between a vibrating strip and a gas layer. The model of OG nsay was
based on a transfer matrix approach: an e$cient model for the strip problem. Fox
and Whitton, and OG nsay, carried out experiments, showing substantial frequency
shifts and signi"cant damping. Lotton et al. [61] and Bruneau et al. [62] and
Bruneau et al. [63] studied the behaviour of circular and rectangular membranes,
backed by a thin gas layer.

Recently, Beltman et al. [51, 52, 64}66] presented a "nite element model for fully
coupled calculations for the squeeze "lm problem. A new viscothermal acoustic
"nite element was developed, based on the low reduced frequency model. This
element can be coupled to structural elements, enabling fully coupled calculations
to be made for complex geometries. Furthermore, the layer thickness can be chosen
for each element. This enables calculations for problems with varying layer
thickness. The "nite element model was validated with experiments on an airtight
box with a #exible overplate. In this case there was a strong interaction between the
vibrating, #exible plate and the closed air layer. Eigenfrequency and damping of the
plate were measured as a function of the thickness of the air layer. Substantial
frequency shifts and large damping values were observed.

5.5. LITERATURE

In Table 3, the recent literature on the low reduced frequency models is
summarized. For layer geometries the ranges of dimensionless parameters are also
given.

6. DIMENSIONLESS PARAMETERS

6.1. VALIDITY OF MODELS

In sections 2.3, 3.5 and 4.4, three types of models were discussed for the modelling
of viscothermal wave propagation. The most simple type of model, the low reduced
frequency model, was shown to be valid for k@1 and k/s@1. As pointed out in
section 3.5, the validity of the simpli"ed Navier}Stokes models is di$cult to



TABLE 3

¸iterature low reduced frequency model. (C): experiments, (z): calculations

Authors Ref Year Application Coupling Remarks

Fox and Whitton [58] 1980 Squeeze "lm (strip) Full Analytical model
Case I (atmospheric air):
1)8]10~3)k)1)8]10~1 (C) (z)
k/s:4)0 ) 10~4 (C) (z)
Case II (air, decompression
chamber):
1)2]10~4)k)4)6 ) 10~4 (C) (z)
9)2]10~5)k/s)4)1 ) 10~3 (C) (z)
Case III (CO

2
decompression

chamber):
2)3]10~4)k)3)1 ) 10~4 (C) (z)
1)0]10~4)k/s)3)8 ) 10~3 (C) (z)

Onsay [59] 1993 Squeeze "lm (strip) Full Transfer matrix approach
9)2]10~6)k)4)6 ) 10~3 (C) (z)
9)0]10~5)k/s)9)0 ) 10~4 (C) (z)

Onsay [60] 1994 Squeeze "lm (strip) Full Step in layer geometry
9)2 ) 10~5)k)4)6 ) 10~3 (C) (z)
9)0 ) 10~5)k/s)9)0 ) 10~4 (C) (z)

Lotton et al. [70] 1994 Circular membrane Full Equivalent network model
Bruneau et al. [62] 1994 Circular membrane Full Equivalent network model
Bruneau et al. [63] 1994 Rectangular membrane Full 6)9 ) 10~7)k)6)9 ) 10~2 (z)

9)1 ) 10~5)k/s)2)9 ) 10~2 (z)
Tijdeman [21] 1975 Tubes No Parameter overview
Beltman et al. [52] 1997 Squeeze "lm (plate) Full Finite element model

4)6]10~4)k)1)4 ) 10~1 (C) (z)
2)0]10~4)k/s)4)9 ) 10~4 (C) (z)

Beltman et al. [64] 1997 Solar panels No Analytical model
1)8 ) 10~5)k)6)0 ) 10~2 (C) (z)
2)9 ) 10~5)k/s)9)0 ) 10~5 (C) (z)
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Figure 3. Parameter overview of models.
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quantify. These models incorporate some additional e!ects compared to the low
reduced frequency models. However, a parameter analysis shows that if a more
sophisticated model is desired, in fact all the terms have to be accounted for. The
complete parameter range is covered by the low reduced frequency model and the
full linearized Navier}Stokes model. One can summarize the ranges of validity for
the linear viscothermal models and the general wave equation as follows: sA1,
wave equation (wave); k@1 and k/s@1, low reduced frequency (Low); k@1 and
k/s@1 and s@1, low reduced frequency, Reynolds equation (Low-Rey); k@1 and
k/s@1 and sA1, low reduced frequency, modi"ed wave equation (Low-wave);
arbitrary k and s, full linearized Navier}Stokes (Full).s

A graphical representation of these ranges of validity is given in Figure 3. It is
stressed that in each area the most e$cient model is given. One could for instance
use the full model for all situations, but clearly for k@1 and k/s@1 the low reduced
frequency model is far more e$cient.

For the case of arbitrary k but k/s@1 the simpli"ed wave numbers, as described
in section 3.3 could be used. However, assuming k/s@1 immediately suggests that
another model, i.e., the low reduced, modi"ed wave or wave, would be more
e$cient (see Figure 3). This assumption, which is often used by authors who use
a full linearized Navier}Stokes model, at the same time eliminates the actual need
for the full model. Only for the most general case of arbitrary k and k/s should the
full model be used. Note that for sA1 the general wave equation can be used.

6.2. PRACTICAL IMPLICATIONS

The key quantities of interest for a good choice of the appropriate model are
obviously k and k/s. In physical terms these quantities represent the ratio between
sThe full linearized Navier}Stokes with simpi"ed wave numbers is valid for k/s@1. It can easily be
seen in the graph that this is not an e$cient model. Hence, it is not included.



Figure 4. Dimensionless parameters in the literature: calculations (*), experiments (} }).
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the length scale l and the acoustic wavelength, and the ratio between the boundary
layer thickness and the acoustic wavelength respectively. An interesting point is the
analysis of these terms. For s)1 and k/s*1 for instance the full model should be
used. The question now arises whether or not these conditions are of any practical
interest. With the dimensionless parameters one can write

s"lJo
0
u/k , k/s"Jku/o

0
c2
0

. (33)

For gases under atmospheric conditions, the speed of sound is of the order of
magnitude of 5]102 m/s, the density is of the order of 1 kg/m3 and the viscosity is
of the order of 10~5 Ns/m2. By varying the frequency or the length scale, the shear
wave number can vary from low to very high values. Expression (33) shows that the
frequency is the only variable quantity in k/s : it does not depend on the length scale
l. For gases under atmospheric conditions, k/s exceeds unity only for frequencies
higher than 109 Hz. However, for these high frequencies the medium can no longer
be regarded as homogeneous and one of the basic assumptions described in section
2.1, is violated.

This can be illustrated with the following simple example. By using expression
(33), the basic conditions l'10~7 m and f(109 Hz can be expressed in terms of
k/s and s as

f(109 Hz, A
k
sB(S

2nk
o
0
c2
0

]109 ; l'10~7 m, s'
o
0
c
0

k
]10~7 A

k
sB . (34)

For air under atmospheric conditions this gives

(k/s)(0)3n, s'2)24 (k/s). (35)

Thus, the full linearized Navier}Stokes model is not even valid in the major range
where it should be of use for air under atmospheric conditions.
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For #uids this reasoning also holds. The quantity k/s contains the ratio between
the viscosity and the density. For #uids the viscosity is higher, but compared to
gases the ratio between viscosity and density is of the same order of magnitude.
Furthermore, the speed of sound in #uids is generally higher. This implies that for
#uids the condition k/s@1 will also usually be satis"ed. If this condition is not
satis"ed one has to ensure that the basic assumptions are not violated.

This simple analysis shows that the practical importance of the full model is very
limited. Only under extreme conditions, e.g. at low temperatures or low pressures,
one encounters situations were the full model should be used.s However, one has to
ensure that the basic assumptions are not violated in these cases. This leads to the
perhaps surprising conclusion that for gases under atmospheric conditions the full
linearized Navier}Stokes model is not valid in the parameter range where it should
be of use. Most viscothermal problems can be handled with the low reduced
frequency models. In fact, a number of papers indicate the necessity of a full model
because of the high frequencies involved, whereas a low reduced frequency model
would have been su$cient [42, 44, 45]. Some examples will be presented in Part II
of the present paper.

6.3. OVERVIEW OF THE LITERATURE FOR LAYERS

The dimensionless parameters are used to analyse the literature for the layer
geometry. The overview is based on the references presented in Tables 1}3. For this
purpose, the values of the dimensionless parameters at which the calculations and
experiments were performed were determined from the data given in the references
[42, 44, 45, 48, 50, 67, 68, 58}60, 52, 65].

The graph clearly shows that for all investigations the low reduced frequency
models, modi"ed wave equation models or general wave equation models would
have been su$cient. None of the present cases required a more sophisticated
model, such as the full linearized Navier}Stokes model. The conclusion to be
drawn from this "gure is that, although a variety of models has been developed,
this was not necessary when taking a critical look at the dimensionless parameters.
Some investigations mentioned in Tables 1 and 2 could have been carried out with
much simpler models. Analysis of the values of the parameters, listed in tables,
also immediately reveals that the conditions for the use of simpler models are
satis"ed.

7. CONCLUSIONS

The conclusions to be drawn from the present investigation are as follows.
Viscothermal wave propagation is governed by a number of dimensionless

parameters. The most important parameters are the shear wave number, s, and the
reduced frequency, k
sFor these cases situations are encountered where the jump conditions must be applied at the
boundaries, see section 2.2.
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The viscothermal models presented in the literature, can be grouped into three
categories: full linearized Navier}Stokes models, simpli"ed Navier}Stokes models
and low reduced frequency models. The range of validity of the models is governed
by the values of k and k/s

The full linearized Navier}Stokes model should only be used under extreme
conditions. For gases under atmospheric conditions, this model is not even valid in
the range of use because the basic assumptions are violated

The assumption of small k/s, as often used in the literature concerning full
models, actually eliminates the need for a full model

The simpli"ed Navier}Stokes models are redundant: the complete parameter
range is covered by the other models

The low reduced frequency model can be used for most problems. Because of the
simplicity of this model, models are already available that include the full
acousto-elastic coupling for complex geometries. The model is valid for k@1 and
k/s@1.

In the literature a variety of models was presented for the squeeze "lm damping
problem. Several authors stated that for miniaturized transducers, the full model had
to be used because of the high frequencies involved. An analysis of the parameters
shows that for all literature concerning squeeze "lm problems, treated in this paper,
a simple low reduced frequency model is su$cient and the most e$cient.

ACKNOWLEDGMENTS

The author would like to thank Henk Tijdeman, Ruud Spiering, Peter van der
Hoogt, Bert Wolbert, Tom Basten, Frits van der Eerden, Diemer de Vries, Leen van
Wijngaarden, Jan Verheij, Piet Zandbergen, Jean Pierre Coyette and Bart Paarhuis
for their valuable suggestions and comments.

REFERENCES

1. J. W. S. RAYLEIGH 1945 ¹he ¹heory of Sound, Vol. II, New York: Dover, second revised
edition.

2. W. S. GRIFFIN, H. H. RICHARDSON and S. YAMANAMI 1966 Journal of Basic Engineering
451}456. A study of #uid squeeze-"lm damping.

3. S. M. R. HASHEMI and B. J. ROYLANCE 1989 ¹ribology ¹ransactions 32, 461}468.
Analysis of an oscillatory oil squeeze "lm including e!ects of #uid inertia.

4. E. C. KUHN and C. C. YATES 1964 AS¸E ¹ransactions 7, 299}303. Fluid inertia e!ect on
the "lm pressure between axially oscillating parallel circular plates.

5. J. PRAKASH and H. CHRISTENSEN 1978 Journal of Mechanical Engineering Science 20,
183}188. Squeeze "lm between two rough rectangular plates.

6. P. SINHA and C. SINGH 1982 Applied Scienti,c Research 39, 169}179. Micropolar
squeeze "lm between rough rectangular plates.

7. R. M. TERRILL 1969 Journal of ¸ubrication ¹echnology 91 , 126}131. The #ow between
two parallel circular discs, one of which is subject to a normal sinusoidal oscillation.

8. J. A. TICHY and M. F. MODEST 1978 Journal of ¸ubrication ¹echnology, 100, 316}322.
Squeeze "lm #ow between arbitrary two-dimensional surfaces subject to normal
oscillations.



VISCOTHERMAL WAVE PROPAGATION 577
9. J. A. TICHY 1984 AS¸E ¹ransactions 28, 520}526. Measurements of squeeze-"lm
bearing forces and pressures, including the e!ect of #uid inertia.

10. J. V. BECK, W. G. HOLLIDAY and C. L. STRODTMAN 1969 Journal of ¸ubrication
¹echnology 91, 138}148. Experiments and analysis of a #at disk squeeze-"lm bearing
including e!ects of supported mass motion.

11. V. RAMAMURTHY and U. S. RAO 1987 Fluid Dynamics Research, 2, 47}63. The steady
streaming generated by a vibrating plate parallel to a "xed plate in a dusty #uid.

12. C. Y. WANG and B. DRACHMAN 1982 Applied Scienti,c Research 39, 55}68. The steady
streaming generated by a vibrating plate parallel to a "xed plate.

13. N. ROTT 1974 Journal of Applied Mathematics and Physics 25, 417. The in#uence of heat
conduction on acoustic streaming.

14. P. MERKLI and H. THOMANN 1975 Journal of Fluid Mechanics 68, 567}575. Transition to
turbulence in oscillating pipe #ow.

15. G. MAIDANIK 1966 Journal of the Acoustical Society of America 40, 1064}1072. Energy
dissipation associated with gas-pumping in structural joints.

16. E. E. UNGAR and J. R. CARBONELL 1966 AIAA Journal 4, 1385}1390. On panel vibration
damping due to structural joints.

17. S. MAKAROV and M. OCHMANN 1996 Acustica 82, 579}606. Non-linear and
thermoviscous phenomena in acoustics, Part I.

18. S. MAKAROV and M. OCHMANN 1997 Acustica 83, 197}222. Non-linear and
thermoviscous phenomena in acoustics, Part II.

19. S. MAKAROV and M. OCHMANN 1997 Acustica 83, 827}846. Non-linear and
thermoviscous phenomena in acoustics, Part III.

20. G. P. J. TOO and S. T. LEE 1995 Journal of the Acoustical Society of America 97, 867}874.
Thermoviscous e!ects on transient and steady-state sound beams using non-linear
progressive wave equation models.

21. H. TIJDEMAN 1975 Journal of Sound and <ibration 39, 1}33 . On the propagation of
sound waves in cylindrical tubes.

22. K. RATHNAM and M. M. OBERAI 1978 Journal of Sound and <ibration 60,
379}388. Acoustic wave propagation in cylindrical tubes containing slightly rare"ed
gases.

23. K. RATHNAM 1985 Journal of Sound and<ibration 103, 448}452. In#uence of velocity slip
and temperature jump in rare"ed gas acoustic oscillations in cylindrical tubes.

24. M. MOLDOVER, J. MEHL and M. GREENSPAN 1986 Journal of the Acoustical Society of
America 79, 253}270. Gas-"lled spherical resonators: theory and experiment.

25. M. J. ANDERSON and P. G. VAIDYA 1989 Journal of the Acoustical Society of America 86,
2385}2396. Sound propagation in a waveguide with "nite thermal conduction at the
boundary.

26. H. S. ROH, W. P. ARNOT and J. M. SABATIER 1991 Journal of the Acoustical Society of
America 89, 2617}2624. Measurements and calculation of acoustic propagation
constants in arrays of small air-"lled rectangular tubes.

27. N. ROTT 1969 Journal of Applied Mathematics and Physics 20, 230. Damped and
thermally driven acoustic oscillations.

28. N. ROTT 1973 Journal of Applied Mathematics and Physics 24, 24. Thermally driven
acoustic oscillations, Part II: stability limit for helium.

29. N. ROTT 1975 Journal of Applied Mathematics and Physics 26, 43. Thermally driven
acoustic oscillations, Part III: second-order heat #ux.

30. N. ROTT and G. ZOUZOULAS 1976 Journal of Applied Mathematics and Physics 27, 197.
Thermally driven acoustic oscillations, Part IV: tubes with variable cross-section.

31. G. ZOUZOULAS and N. ROTT 1976 Journal of Applied Mathematics and Physics 27, 325.
Thermally driven acoustic oscillations, Part V: gas}liquid oscillations.

32. R. RASPET, H. E. BASS and J. KORDOMENOS 1993 Journal of the Acoustical Society of
America 94, 2232}2239. Thermoacoustics of travelling waves: theoretical analysis for
a inviscid ideal gas.



578 W. M. BELTMAN
33. J. KORDOMENOS, A. A. ATCHLEY, R. RASPET and H. E. BASS 1995 Journal of the Acoustical
Society of America 98, 1623}1628. Experimental study of a thermoacoustic termination
of a travelling-wave tube.

34. E. STUHLTRAG GER and H. THOMANN 1986 Journal of Applied Mathematics and Physics 37,
155. Oscillations of a gas in an open-ended tube near resonance.

35. J. H. M. DISSELHORST 1978 Ph.D. Thesis, ;niversity of ¹wente, ¹he Netherlands.
Acoustic resonance in open tubes.

36. M. P. VERGE 1995 Ph.D. Thesis, ¹echnical ;niversity of Eindhoven, ¹he Netherlands,
Aeroacoustics of con"ned jets.

37. U. INGARD 1967 Journal of the Acoustical Society of America 42, Acoustic non-linearity
of an ori"ce.

38. J. H. M. DISSELHORST and L. VAN WIJNGAARDEN 1980 Journal of Fluid Mechanics 99,
293}319. Flow in the exit of open pipes during acoustic resonance.

39. C. A. M. PETERS, A. HIRSCHBERG, A. J. REIJEN and A. P. J. WIJNANDS 1993 Journal of
Fluid Mechanics 256, 499}534. Damping and re#ection coe$cient measurements for an
open pipe at low Mach and low Helmholtz numbers.

40. M. BRUNEAU, Ph. HERZOG, J. KERGOMARD and J. D. POLACK 1989 =ave Motion 11,
441}451. General formulation of the dispersion equation in bounded visco-thermal #uid.

41. J. B. MEHL 1985 Journal of the Acoustical Society of America 78, 782}788. Spherical
acoustic resonator: e!ects of shell motion.

42. G. PLANTIER and M. BRUNEAU 1990 Journal d1Acoustique 3, 243}250. Heat conduction
e!ects on the acoustic response of a membrane separated by a very thin air "lm from
a backing electrode.

43. M. BRUNEAU, A. M. BRUNEAU, and P. HAMERY 1993 Acustica 1, 227}234. An improved
approach to modelling the behaviour of thin #uid "lms trapped between a vibrating
membrane and a backing wall surrounded by a reservoir at the periphery.

44. P. HAMERY, M. BRUNEAU and A. M. BRUNEAU 1994 Journal de Physique I< 4,
C5}213}C5}216. Mouvement d'une couche de #uide dissipatif en espace clos sous
l'action d'une source eH tendue (in French).

45. C. KARRA, M. B. TAHAR, G. MARQUETTE and M. T. CHAU 1996 Inter Noise 96 (F. Allison
Hill, R. Lawrence, editors) 3003}3006, Liverpool, United Kingdom. Boundary element
analysis of problems of acoustic propagation in viscothermal #uid.

46. C. KARRA and M. BEN TAHAR 1997 Journal of the Acoustical Society of America 102,
1311}1318. An integral equation formulation for boundary element analysis of
propagation in viscothermal #uids.

47. C. KARRA 1996 Private communication.
48. A. TROCHIDIS 1982 Acoustica 51, 201}212. Vibration damping due to air or liquid layers.
49. A. TROCHIDIS 1977 Ph.D. Thesis, I¹A, Berlin. KoK rperschalldaKmpfung durch

ViscositaK tsverluste in Gasschichten bei Doppelplatten (in German).
50. M. MOG SER 1980 Acustica 46, 210}217. Damping of structure born sound by the viscosity

of a layer between to plates.
51. W. M. BELTMAN, P. J. M. VAN DER HOOGT, R. M. E. J. SPIERING and H. TIJDEMAN

1996 ISMA 21 Conference on Noise and <ibration Engineering (P. Sas, editor),
1605}1618, ¸euven, Belgium. Energy dissipation in thin air layers.

52. W. M. BELTMAN, P. J. M. VAN DER HOOGT, R. M. E. J. SPIERING and H. TIJDEMAN

1998 Journal of Sound and <ibration 216, 159}185. Implementation and experi-
mental validation of a new viscothermal acoustic "nite element for acousto-elastic
problems.

53. R. M. S. M. SCHULKES 1990 ¹echnical Report 90-46, Delft ;niversity of ¹echnology,
Faculty of ¹echnical Mathematics and Informatics, Delft, ¹he Netherlands. Interactions
of an elastic solid with a viscous #uid: eigenmode analysis.

54. R. M. S. M. SCHULKES 1989 ¹echnical Report 89-69, Delft ;niversity of ¹echnology,
Faculty of ¹echnical Mathematics and Informatics, Delft, ¹he Netherlands. Fluid
oscillations in an open, #exible container.



VISCOTHERMAL WAVE PROPAGATION 579
55. M. R. STINSON 1991 Journal of the Acoustical Society of America 89, 550}558. The
propagation of plane sound waves in narrow and wide circular tubes, and
generalization to uniform tubes of arbitrary cross-section.

56. A. CUMMINGS 1993 Journal of Sound and <ibration 162, 27}42. Sound propagation in
narrow tubes of arbitrary cross-section.

57. A. D. LAPIN 1996 Acoustical Physics, 42, 509}511. Integral relations for acoustic modes
in a channel with arbitrary cross-section.

58. M. J. H. FOX and P. N. WHITTON 1980 Journal of Sound and <ibration 73, 279}295. The
damping of structural vibrations by thin gas "lms.

59. T. OG NSAY 1993 Journal of Sound and<ibration 163, 231}259. E!ects of layer thickness on
the vibration response of a plate-#uid layer system.

60. T. OG NSAY 1994 Journal of Sound and <ibration 178, 289}313. Dynamic interaction
between the bending vibrations of a plate and a #uid layer attenuator.

61. P. LOTTON, L. HUSNIDK, A. M. BRUNEAU and Z. S[ KVOR 1994 Journal de Physique I< 4,
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APPENDIX A: GEOMETERIES, CO-ORDINATE SYSTEMS AND FUNCTIONS

A.1. SPHERE

The basic geometrical dimensions and operators are (see Figure A.1)

l"R, x"(r, h, /), r"rN /R , h"h1 , /"/1 ,

$"e
r

L
Lr

#eh
1
r

L
Lh

#e
(

1
r sin(h)

L
L/

,
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1
r2

L
Lr Cr2 L

LrD# 1
r2 sin (h)

L
Lh Csin (h)

L
LhD# 1

r2 sin (h)
L2

L/2
. (A.1)

A.2. CIRCULAR TUBE

The basic geometrical dimensions and operators are (see Figure A.2)

l"R, x"(r, h, x), r"rN /R , h"h1 , x"ux6 /c
0

,
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Lh2
#k2

L2
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, (A.2)
Figure A.2. Geometry of circular tube.

Figure A.1. Geometry of sphere.



TABLE A.1

Expressions for circular tube

Total Low s High s

A J
0
(sri Ji)

J
0
(siJi)

!1 !

1

4
is2 [1!r2] !1

B J
2
(si Ji)

J
0
(siJi)

!

1

8
is2 !1

R
1

n P
2n

h/0

v
r
(x, 1, h)dh

Figure A.3. Geometry of rectangualr tube.
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The operators for the low reduced frequency model are

xcd"(r, h), xpd"(x), $cd"e
r

L
Lr

#eh
1
r

L
Lh

,

$pd"e
x
k
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, * cd"
L2
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1
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Lx2
. (A.3)

The functions that are used in the low reduced frequency model are given in
Table A.1.

A.3. RECTANGULAR TUBE

The basic geometrical dimensions and operators are (see Figure A.3).
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y
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TABLE A.2

Expressions for rectangular tube

Total Low s High s
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Figure A.4. Geometry of the circular layer.

TABLE A.3

Expressions for the circular layer

Total Low s High s

A cosh (sz Ji)

cosh (sJi)
!1

1

2
is2 C

1

3
z2!1D !1

B tanh(s Ji)
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The operators for the low reduced frequency model are

xcd"(y, z), xpd"(x), $cd"e
x
k

L
Lx

, $pd"e
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#e
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L
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,
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, Dpd"k2
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. (A.5)

The functions that are used in the low reduced frequency model are given in
Table A.2.

A.4. CIRCULAR LAYER

The basic geometrical dimensions and operators are (see Figure A.4).
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The operators for the low reduced frequency model are
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Figure A.5. Geometry of the rectangular layer.

TABLE A.4

Expressions for the rectangular layer

Total Low s High s

A cosh(sz Ji)
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The functions that are used in the low reduced frequency model are given in Table
A.3.

A.5. RECTANGULAR LAYER

The basic geometrical dimensions and operators are (see Figure A.5).
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, (A.8)

D"k2
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. (A.9)

The operators for the low reduced frequency model are

xcd"(z), xpd"(x, y), $cd"e
z

L
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, $pd"e
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k
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y
k

L
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,

Dcd"
L2

Lz2
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. (A.10)

The functions that are used in the low reduced frequency model are given in Table
A.4.
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APPENDIX B: NOMENCLATURE

A function describing velocity and temperature pro"les
A

aq
, B

aq
, A

hq
, B

hq
constants

Acd dimensionless cross-sectional area
LAcd dimensionless area of cross-section boundary
B(s) function accounting for viscous or thermal e!ects
a"l

y
/ l

x
aspect ratio

C function describing the temperature pro"le
C

p
speci"c heat at constant pressure

C
v

speci"c heat at constant volume
c
0

undisturbed speed of sound
D function describing the temperature pro"le
e
n

unit normal vector
e
r

unit vector in the r direction
e
x

unit vector in the x direction
e
y

unit vector in the y direction
e
z

unit vector in the z direction
eh unit vector in the h direction
e/ unit vector in the / direction
h
0

half-layer thickness
i"J!1 imaginary unit
j
n

spherical Bessel function of order n
J
m

Bessel function of the "rst kind, order m
k"ul/c

0
reduced frequency

k
a

acoustic wave number
k
h

entropic wave number
k
v

rotational wave number
l characteristic length scale
l
x

half-length in the x direction
l
y

half-length in the y direction
l
z

half-length in the z direction
n(sp) polytropic constant
pN "p

0
[1#pe*ut] pressure

p
0

mean pressure
p dimensionless pressure amplitude
R radius
R squeeze term
R

0
gas constant

rN radial co-ordinate
r dimensionless radial co-ordinate
s"lJo

0
u/k shear wave number

¹M "¹
0

[1#¹e*ut] temperature
¹

0
mean temperature

¹ dimensionless temperature amplitude
¹

a
acoustic temperature

¹
h

entropic temperature
t time
v6 "c

0
ve*ut velocity vector

v dimensionless amplitude of the velocity vector
v dimensionless amplitude of the velocity
v
l

solenoidal velocity vector
v
la

acoustic part of selenoidal velocity vector
v
lh

entropic part of selenoidal velocity vector
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v
v

rotational velocity vector
v
r

dimensionless velocity component in the r direction
v
x

dimensionless velocity component in the x direction
v
y

dimensionless velocity component in the y direction
v
z

dimensionless velocity component in the z direction
vh dimensionless velocity component in the h direction
v/ dimensionless velocity component in the / direction
vcd velocity vector in the cd directions
vpd velocity vector in the pd directions
x spatial co-ordinates
xcd cross-sectional co-ordinates
xpd propagation co-ordinates
C propagation constant
c"C

p
/C

v
ratio of speci"c heats

g bulk viscosity
hM co-ordinate in the h direction
h dimensionless co-ordinate in the h direction
K

a
constant

K
h

constant
j thermal conductivity
k dynamic viscosity
m viscosity ratio
oN "o

0
[1#oe*ut] density

o
0

mean density of air
o dimensionless density amplitude
p"JkC

p
/j square root of the Prandtl number

U viscous dissipation function
/M co-ordinate in the / direction
/ dimensionless co-ordinate in the / direction
u angular frequency
$1 gradient operator
$ dimensionless gradient operator
$cd dimensionless gradient operator in the cd directions
$pd dimensionless gradient operator in the pd directions
DM Laplace operator
D dimensionless Laplace operator
Dcd dimensionless Laplace operator in the cd directions
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