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In Part I of the present paper a parameter analysis showed that the most e$cient
model to describe viscothermal wave propagation is the low reduced frequency
model. In order to demonstrate the wide range of applicability of the low reduced
frequency model, a number of examples from the literature are discussed in Part II.
An overview of fundamental solutions and general applications is given. Because
the models are all written in terms of dimensionless parameters and solutions
for various co-ordinate systems are given, this paper also serves as a solution
overview.
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1. INTRODUCTION

In Part I of the present paper an overview of theories for viscothermal
wave propagation was presented. As a next step, the theory is applied to present
solutions for the behaviour of spherical resonators, the propagation of sound in
tubes, the behaviour of miniaturized transducers and squeeze "lm damping
between #exible plates or membranes. Analytical solutions for the full model were
obtained for a spherical geometry, a circular tube geometry and a layer geometry.
The results of these models are compared with the results from simpler models, like
the low reduced frequency model. All solutions are written in terms of
dimensionless parameters. The use of these parameters leads to some interesting
observations.

The author would like to stress that it is not his intention to give an extensive and
very detailed description of all the aspects for each application. The present range
of applications covers the general application "eld of linear viscothermal models.
Furthermore, solutions are presented for a range of geometries. Thus, the main aim
of this paper is to present an application overview and a solution overview of linear
viscothermal models. The theory and the solutions are quite general and can easily
be applied to other situations, because the expressions are all written in terms of
dimensionless parameters.
0022-460X/99/430587#23 $30.00/0 ( 1999 Academic Press
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2. SPHERICAL RESONATOR

2.1. INTRODUCTION

Spherical resonators are used to determine the properties of gases, such as the
speed of sound, with a high degree of accuracy, see e.g. the paper by Moldover et al.
[1]. In Figure 1, a schematic drawing is presented of a spherical resonator.

The sphere consists of two parts that are bolted together. The acoustic
eigenfrequencies of the enclosed volume are used to determine the properties of the
gas under di!erent conditions. Because of the spherical geometry, an analytical
solution can be obtained for the full linearized Navier}Stokes model as will be
described in sections 2.2}2.5. However, the resonator contains a number of small
disturbances: vent holes, transducers, transducer holes and a source. Although both
parts of the shell are "rmly bolted together, a small seam can remain between
the two parts. In order to account for the presence of these disturbances, some
suggestions to extend the model are introduced in section 2.6. Finally, an example
with argon as a gas will be presented in section 2.7.

The derivation of the equations is based on the work by Moldover et al. [1]. The
spherical resonator was also described by Bruneau et al. [2, 3], and Mehl [4}6].
The models were rewritten in terms of dimensionless quantities for the present
study.

2.2. BASIC EQUATIONS

In order to solve the full linearized Navier}Stokes model, two scalar wave
equations and one vector wave equation have to be solved (see Part I of the present
paper). In a spherical co-ordinate system (r, h, /)
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A list of nomenclature is given in the Appendix.

2.3. SOLUTION OF THE SCALAR WAVE EQUATIONS

The solution of the scalar wave equations can be obtained by a straightforward
separation of variables,
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function. The spherical Bessel function is related to the fractional Bessel function
according to Abramovitz and Stengun [7]:
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The solution for the temperature is
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Figure 1. Schematic drawing of a spherical resonator.
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The solenoidal velocity can be obtained from
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The pressure is

p"C
c

c!1DCAaC1!
ik2

a
s2p2D j

n
(k

a
r)#A

hC1!
ik2

h
s2p2D j

n
(k

h
r)DY

mn
(h, /). (7)

2.4. SOLUTION OF THE VECTOR WAVE EQUATION

The solution for the vector wave equation can be obtained from the solution of
the scalar wave equation. For the present case the solution is (see the book by
Morse and Feshbach [8])
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where=
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and=
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are constants that remain to be determined from the boundary
conditions. After some algebra one obtains
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2.5. RIGID SPHERE WITH ISOTHERMAL WALLS

The boundary conditions for the present case for r"1 are
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The following equation for the spherical resonator is obtained:
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The eigenfrequencies of the gas in the resonator can be calculated from this
equation. In experiments, a frequency response function is measured. The frequency
response of the resonator is calculated by expressing the internal acoustic "eld in
terms of the acoustic eigenmodes. The participation factors can then be calculated;
see e.g. reference [1].

2.6. MODEL EXTENSIONS

As stated before, the derivation of the equations is based on the work by
Moldover et al. [1]. The spherical resonator was also described by Bruneau et al.
[2, 3] and Mehl [4}6]. The models were rewritten in terms of dimensionless
quantities for the present study.

2.6.1. Shell motion

As a boundary condition, a zero velocity was imposed for the gas at the shell
wall. The shell however can deform under the applied pressure. Mehl [4] developed
a model which describes the shell behaviour in terms of an impedance. The e!ect of
shell motion can thus be incorporated in the model by imposing the shell
impedance as a boundary condition for the radial velocity and the pressure at the
shell wall.

2.6.2. Holes in the shell

The holes will a!ect the acoustic "eld inside the resonator. One can distinguish
several types of holes, depending on the type of termination. For vent holes, the
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circular tube is terminated by a radiation or pressure release condition. For the
transducer holes, the tube is terminated by the e!ective impedance of the
transducer itself. The propagation of sound waves in a circular tube is governed by
the dimensionless parameters. With these parameters, the most e$cient model can
be identi"ed. The acoustic impedance of the tube with its termination can be
calculated and thus the impedance at the entrance of the tube is known. As
a consequence, there is a non-uniform boundary impedance condition for the gas in
the resonator.

2.6.3. Seam

A small gap at the junction between the two hemispheres can a!ect the acoustical
properties of the resonator. In this case, one deals with the propagation of
sound waves between parallel surfaces. Again, based on the dimensionless
parameters for this layer geometry one can easily identify the model that should be
used. The e!ective impedance of the gap between the hemispheres can then be
calculated.

2.7. EXAMPLE: EIGENFREQUENCIES OF SPHERICAL RESONATOR

The properties of the argon gas and the spherical resonator are (according to the
case described by Moldover et al. [1])

c
0
"319 m/s, o

0
"1)60 kg/m3, C

p
"528 J/kgK, c"5/3,

j"16)7]10~3 W/mk, k"22)7]10~6 Ns/m2,

m"0, R"0)0635 m. (12)

The bulk viscosity is zero and the ratio of speci"c heats is equal to 5
3

for
a monatomic (ideal) gas like argon. The eigenfrequencies of the resonator were
calculated with a simple numerical procedure. The eigenfrequencies can be divided
into groups. For each value of n there are several solutions to the equation. The
solutions are denoted here as &&ns'', where n is the order of the spherical Bessel
function and s is the sth root. The roots are arranged in ascending order. The results
for the n"0, 1 and 2 modes are given in Table 1.

The table shows that the eigenfrequencies for the full model are complex.
The imaginary part however is very small compared to the real part. The real
part of the frequency is almost equal to the frequency that is obtained with the
wave equation. The viscous and thermal e!ects seem to have only a small e!ect
on the acoustical eigenfrequencies of the resonator. However, the shifts in frequency
have to be related to the accuracy of the experiment. In fact, according to
the literature a frequency shift of several Hz can be denoted as &&signi"cant''.
The resonance half-width, which is equal to the imaginary part of the
eigenfrequency, is measured in the experiments. The viscous and thermal e!ects
partly determine the imaginary component of the frequency. For a good model,
however, the motion of the shell wall must be included, for example by using the
impedance approach.



TABLE 1

Eigenfrequencies of a spherical resonator

&&ns11 Eigenfrequency (Hz)

Wave equation Full model

01 0 0
02 3593 3592#0)802i
03 6177 6175#1)073i
04 8718 8717#1)305i
11 1664 1663#1)587i
12 4750 4748#1)054i
13 7360 7359#1)246i
14 9918 9916#1)449i
21 2630 2628#1)988i
22 5817 5816#1)363i
23 8482 8481#1)460i
24 11069 11067#1)623i
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3. CIRCULAR TUBES

3.1. INTRODUCTION

The propagation of sound waves in tubes was already investigated by Kirchho!
and Rayleigh; see, e.g. reference [9]. A large amount of literature is available on this
subject, dealing with full linearized Navier}Stokes models, simpli"ed models and
low reduced frequency models. For an overview of models in terms of
dimensionless parameters the reader is referred to the paper by Tijdeman [10], in
which also numerical results for the fundamental mode (m"0) were presented
which took into account the in#uence of thermal e!ects. The theory, presented in
Part I of the present paper, will now be applied to describe the propagation of
sound waves in circular tubes. A solution for the full linearized Navier}Stokes
model is given. Extending the work of Tijdeman, the present solution includes
circumferential harmonic waves of integer order m and the e!ects of bulk viscosity.
The results for the case of m"0 and zero bulk viscosity are compared with the
results presented by Tijdeman.

3.2. FULL LINEARIZED NAVIER}STOKES MODEL

3.2.1. Basic equations

In order to solve the full linearized Navier}Stokes model, two scalar wave
equations and one vector wave equation have to be solved (see Part I of the present
paper). In a cylindrical co-ordinate system (r, h, x)
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3.2.2. Solution of the scalar wave equation

The solution of the scalar wave equations can be obtained by a straightforward
separation of variables,
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The function f
m
(h, x) consists of circumferential harmonics of integer order m that

are travelling in the #x and the !x-directions. The quantity C is the propagation
constant. The solution for the temperature is
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The solenoidal velocity can be obtained from
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The pressure is
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3.2.3. Solution of the vector wave equation

The solution of the vector wave equation is (see the book by Morse and
Feshbach [8])
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After some algebra one obtains
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3.2.4. Dispersion equation

For a rigid tube with isothermal walls, the following boundary conditions apply
for r"1:
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After some algebraic manipulations one obtains the following dispersion equation:
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For given values of the dimensionless parameters and the order m, the value of the
(complex) propagation constant C can be solved for from this equation.

3.3. LOW REDUCED FREQUENCY MODEL

For a circular tube with isothermal walls, the low reduced frequency solution for
the pressure (see Part I of the present paper) is

p"C
1
e~Cx#C

2
eCx, C"Jc/n (sp)B(s) , (25, 26)

where

n (sp)"C1#C
c!1

c DB(sp)D
~1

, B(s)"
J
2
(siJi)

J
0
(siJi)

. (27)

The propagation of waves is governed by the value of the propagation constant C.
There are two waves: one travelling in the negative x-direction and one travelling in
the positive x-direction. Note that the pressure is constant across the cross-section
of the tube in the low reduced frequency model.

3.4. EXAMPLE: PROPAGATION CONSTANT

3.4.1. m"0

Consider the case m"0, i.e., there is no pressure variation in the circumferential
direction. The full linearized Navier}Stokes model was used to calculate the value



Figure 2. Real part of C for m"0, m"0 ("rst root), k"0)025n, 0)05n, 0)1n, 0)15n, 0)2n, 0)3n and
the low reduced frequency solution.

Figure 3. Imaginary part of C for m"0, m"0 ("rst root), k"0)025n, 0)05n, 0)1n, 0)15n, 0)2n, 0)3n
and the low reduced frequency solution.
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of the propagation constant for di!erent values of k and s. When k@1 and k/s@1
the solution of the full model should converge to the low reduced frequency
solution for C. Note that the propagation constant does not depend on the value of
the reduced frequency k in the low reduced frequency model.

The calculated values for m"0 and m"0)6 for air under atmospheric conditions
(c"1)4 and p"J0)71) are given in Figures 2}5. The basic assumptions are valid
only for k/s(0)3n and s'2)24k/s. In the "gures the curves are truncated at the
point where these basic assumptions are violated. For each value of k and k/s there
are several solutions of the dispersion equation, corresponding to di!erent radial
wave numbers. In all "gures the "rst root is given. The results for the case m"0 are
identical to the results presented by Tijdeman [10]. The "gures show that the bulk



Figure 4. Real part of C for m"0)6, m"0 ("rst root), k"0)025n, 0)05n, 0)1n, 0)15n, 0)2n, 0)3n and
the low reduced frequency solution.

Figure 5. Imaginary part of C for m"0)6, m"0 ("rst root), k"0)025n, 0)05n, 0)1n, 0)15n, 0)2n,
0)3n and the low reduced frequency solution.
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viscosity has only a small in#uence on the value of the propagation constant for low
shear wave numbers. For small values of k and k/s the solution of the full linearized
Navier}Stokes model converges to the low reduced frequency solution for C. Thus,
for air under atmospheric conditions the low reduced frequency model is accurate.
Under more extreme conditions, however, the results could be less accurate and the
full linearized Navier}Stokes model must be used.

3.4.2. m"1

In this case there is a harmonic variation of the pressure in the circumferential
direction. The low reduced frequency model is not able to describe this &&spiralizing''
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type of wave because the pressure is assumed to be constant on a cross-section. In
the acoustic non-dissipative case there is a cut-on frequency. For frequencies below
the cut-on frequency the solution for C is purely real and the wave will die out
exponentially in the axial direction. When the frequency exceeds the cut-on
frequency, the solution for C is purely imaginary and the wave starts to propagate.
The cut-on frequency increases with increasing radial wavenumber. The lowest
cut-on frequency is calculated from k"1)84. For air under atmospheric conditions
the basic assumptions require k/s(0)3n. Thus, the shear wave number must be
larger than 2, which suggests that viscothermal e!ects will usually only be of minor
importance for these waves. The solution for higher order circumferential modes
including viscothermal e!ects can be calculated with the full linearized
Navier}Stokes model. A detailed analysis of this topic, however, is not within the
scope of the present study; see e.g. references [11}15].

4. MINIATURIZED TRANSDUCER

Consider a vibrating membrane, backed by a rigid electrode (see Figure 6). The
membrane and the electrode entrap a thin layer of air. The air layer is surrounded
by a large reservoir at the periphery.

The displacement of the membrane is zero at the edges, i.e., at rN"R. The layer
thickness is 2h

0
. Because the layer is surrounded by a large reservoir the condition

p"0 is imposed at rN"R. The membrane is excited by a plane wave with
magnitude pN

i
at z"h

0
. Only the rotatory symmetric case will be considered in the

present analysis. Typical operating ranges for this type of transducer are a layer
thickness of the order of 10~5 m, a radius R"10~2 m and a frequency range of up
to 100 kHz.
Figure 6. Miniaturized transducer.
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4.1. FULL LINEARIZED NAVIER}STOKES SOLUTION

The basic equations for the problem are two scalar wave equations, one vector
wave equation and the equation of motion for the membrane:
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where t
m
, ¹

m
and o

m
represent the thickness, the tension and the density of the

membrane.

4.1.1. Solution of the scalar wave equation

After extensive algebra the following expressions for the temperatures are found:
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where the di!erent wave numbers are given by

k2
aq
"k2

a
!k2

q
, k2

hq
"k2

h
!k2

q
, k2

vq
"k2

v
!k2

q
. (33)

The values of k
q
are the roots of the equation
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The pressure is
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4.1.2. Solution of the vector wave equation

The rotational velocity is given by

v
v
" +

q/1,2,2

k
vq
k
q

J
1A

k
q

k
rB [A

vq
sin (k

vq
z)!B

vq
cos (k

vq
z)]e

r

# +
q/1,2,2

J
0 A

k
q

k
rB [B

vq
sin (k

vq
z)#A

vq
cos (k

vq
z)]e

z
. (36)

4.1.3. Solution of the problem

There are six constants that remain to be determined: A
aq

, A
hq

, A
vq

, B
aq

, B
hq

, and
B
vq

. The following conditions can be used to determine the values of these
constants:

¹"0 for z"$1, p"0 for r"k
r
,

[v
l
#v

v
] ) e

r
"0 for z"$1, [v

l
#v

v
] ) e

z
"v

m
for z"1.

The velocity of the membrane is

v
m
"!i

X2ek
ck2

r

p
i
k2
r

k2X2 C
J
0
((X/k

r
)r)

J
0
(X)

!1D
!i

X2ek
ck2

r

+
q/1,2,2

J
0
((k

q
/k)r)

[(k2X2/k2
r
)!k2

q
]

MK
a
[A

aq
cos(k

aq
z)#B

aq
sin (k

aq
z)]N

!i
X2ek
ck2

r

+
q/1,2,2

J
0
((k

q
/k)r)

[(k2X2/k2
r
)!k2

q
]

MK
h
[A

hq
cos(k

hq
z)#B

hq
sin (k

hq
z)]N, (37)

where the following symbols were used:

K
a
"C

c
c!1DC1!

ik2
a

s2
1
p2D , K

h
"C

c
c!1D C1!

ik2
h

s2
1
p2D . (38)
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4.2. LOW REDUCED FREQUENCY SOLUTION

The low reduced frequency problem results in two coupled scalar equations:

[Dr!k2C2]p"!1
2
ikn(sp)C2v

m
, CDr#

k2X2

k2
r
D v

m
"!i

X2ek
ck2

r

[p!p
i
]. (39)

The solution is

p" +
q/1,2,2

A
q
J
0A

k
q
k

rB , v
m
" +

q/1,2,2

B
q
J
0A

k
q
k

rB , (40)

where the participation factors A
q

and B
q

are given by

A
q
"

ikn(sp)C2

2[k2
q
#k2C2]

B
q
,

B
q
"!i

]
X2ek
ck2

r

!2p
i

k
q
k
r
[(k2X2/k2

r
)!k2

q
#

(kn(sp)C2

2[k2
q
#k2C2]

)
X2ek
ck2

r

J
1
(k

q
/k)k

r
)
. (41)

4.3. EXAMPLE: MEMBRANE IMPEDANCE

As a test case, the impedance of the system is calculated. This test case was
described by Plantier and Bruneau [16]. They used a full linearized Navier}Stokes
model with simpli"ed wave numbers. In the present analysis, however, the full
expressions for the wave numbers are used, since the simpli"cation of the wave
numbers actually eliminates the need for a full model (see Part I of the present
paper). The real and the imaginary parts of the impedance are de"ned in terms of
the incident pressure pN

i
and the average membrane velocity Sv

m
T :

ZM
r
"1010 logC

(Re(ZM ))2
ZM 2

0
D , ZM

i
"1010 logC

(Im(ZM ))2
ZM 2

0
D ,

Sv
m
T"

1
nR2 P

R

0

vN
m
2nrN drN , ZM "

pN
i

SvN
m
T

, ZM
0
"1]104Ns/m3. (42)

The following properties were used (according to Plantier and Bruneau [16]):

R"1)37]10~2 m, o
m
"4)5]103 kg/m3, ¹

m
"6)2]103 N/m,

t
m
"12)7]10~6 m, 2h

0
"25)4]10~6 m, o

0
"1)2 kg/m3,

j"25)6]10~3 W/mK, C
v
"716 J/kgK, C

p
"1004 J/kgK,

c
0
"340 m/s, k"18)2]10~6 Ns/m2, m"0)6. (43)

The results for the full linearized Navier}Stokes model and the low reduced
frequency model are plotted in Figure 7.



Figure 7. Impedance for full model (e,#) and low reduced frequency model (*).
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It is evident from Figure 7 that both models give the same results for the
impedance of the membrane. The other quantities, like velocity and pressure,
are also nearly identical. The pressure, for example, does not vary much across the
layer thickness: the maximum deviation in the pro"le is less than 0)1% for
frequencies up to 100 kHz. The assumption of constant pressure is reasonable. This
is not too surprising when analysing the values of the dimensionless parameters.
The conditions k@1 and k/s@1 hold for the entire frequency range up to 100 kHz:
k(10~1 and k/s(10~2. This indicates that the low reduced frequency model will
give reliable results, even in the high-frequency range.

In fact, to the author's knowledge, all problems concerning miniaturized
transducers that have been presented in the literature could have been solved with
the simple low reduced frequency model. None of these cases required the use of the
full model. For gases under atmospheric conditions the low reduced frequency
model is su$cient and clearly the most e$cient.

5. SQUEEZE FILM DAMPING BETWEEN PLATES

As a fourth application, a squeeze "lm damping problem is analyzed. Consider
a #exible plate, located parallel to a "xed surface (see Figure 8). A thin layer of air is
trapped between the vibrating plate and the rigid surface. This problem was solved
by Trochidis using a simpli"ed Navier}Stokes model. An uncoupled approach was
used: the vibrational behaviour of the plate was imposed as a boundary condition
for the #uid. The results of this model will now be compared with the results from
a low reduced frequency model.

The plate properties are: thickness t
p
, density o

p
and Young's modulus E

p
. The

problem to be considered is two dimensional: there is no variation in
the y-direction. The de#ection of the plate is imposed as a boundary condition for
the #uid. The velocity, imposed by Trochidis, can be written as

vN
p
"c

0
v
p
cos(k

p
x)e*ut, (44)



Figure 8. Squeeze "lm damping problem.

602 W. M. BELTMAN
where v
p

is the dimensionless amplitude of the velocity (a constant) and k
p

is the
wave number. According to Trochidis, the wave number is

k
p
"

c
0

u C
u2o

p
t
p

D
p
D
1@4

C1#C
o
0

o
p
t
p
D
1@4

D
1@5

, D
p
"

E
p
t3
p

12
. (45)

The second term in the expression for k
p

accounts for the fact that the free wave
number of the plate is a!ected by the gas or #uid loading on the upper side of the
plate. This term can be signi"cant when the plate is loaded with a heavy #uid. For
gases, the term can usually be neglected. For the present case the correction is wave
number is only 0)1%. Therefore, the wave number is simpli"ed to

k
p
"

c
0

u C
u2o

p
t
p

D
p
D
1@4

. (46)

5.1. SIMPLIFIED NAVIER}STOKES SOLUTION

5.1.1. Basic equations

The equations for incompressible behaviour are

Dp"0, [D!is2]v"
s2
kc

$p. (47)

5.1.2. Solution of the equations

Using separation of variables, one obtains

p"[C
1
e~kp1z#C

2
ekp1z] cos(k

p
x),

v"!

s2
c

k
p

k2
p1
!k2

p2

[C
1
e~kp1z#C

2
ekp1z] sin(k

p
x)e

x

#[C
3
e~kp2z#C

4
ekp2z] sin(k

p
x)e

x

#

s2
c

k
p

k2
p1
!k2

p2

[C
1
ekp1z#C

2
ekp1z] cos(k

p
x)e

z

#

k
p1

k
[C

3
e~kp2z#C

4
ekp2z] cos(k

p
x)e

z
, (48)
p2
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where the wave numbers k
p1

and k
p2

are given bys

k
p1
"kk

p
, k

p2
"Jis2#k2k2

p
. (49)

The four constants C
1
, C

2
, C

3
, C

4
are determined from the following boundary

conditions: v ) e
x
"0 for z"$1; v ) e

z
"0 for z"!1; v ) e

z
"v

p
cos(k

p
x) for z"1.

5.2. LOW REDUCED FREQUENCY SOLUTION

The equation to be solved is

k2
L2p
Lx2

!k2C2p"!ikn (sp)C21
2
v
p
cos(k

p
x). (50)

The solution for an in"nite plate is simply

p"
in (sp)C2

2k[k2
p
#C2]

v
p
cos(k

p
x). (51)

Note that the compressibility e!ects are accounted for in this expression.

5.3. EXAMPLE: LOSS FACTOR

Trochidis used the loss factor of the system to compare analytical and
experimental results. In order to calculate the loss factor, the di!erent forms of
energy in the system have to be identi"ed. In the case of compressible behaviour
three terms are of interest: the dissipated energy per cycle, EM

diss
, the maximum

elastic energy stored in the plate, EM
p
, and the potential energy stored in the air layer,

EM
lay

. For this problem these quantities can be written as

EM
diss

"!

np
0
c
0

u P
A

Re(pv*
p
) dA, EM

p
"

1
2

D
p
c2
0 P

A
C
L2v

p
LxN 2D

2
dA,

EM
lay

"

1
2

p2
0

o
0
c2
0
P
A
P

h0

zN /~h0

[Re(p)]2dzN dA, (52)

where A denotes the surface area of the plate and * denotes a complex conjugate.
The loss factor is then obtained from

f"EM
diss

/2n[EM
p
#EM

lay
]. (53)

The following values were used for the present test case:

E
p
"70]109 N/m2, t

p
"1]10~3 m, o

p
"2710 kg/m3,

j"25)6]10~3 W/mK, o
0
"1)2 kg/m3, C

v
"716 J/kgK,

k"18)2]10~6 Ns/m2, C
p
"1004 J/kgK, c

0
"340 m/s,

2h
0
"1)5]10~3 m. (54)
sTrochidis approximated the wave number k
p2

by sJi.



Figure 9. Loss factor versus frequency: Trochidis model (e), low reduced frequency model (*),
incompressible low reduced frequency model ( } } ).
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The loss factor as a function of frequency is given in Figure 9. Results are plotted for
the Trochidis model, the low reduced frequency model and the low reduced
frequency model for incompressible behaviour.

The "gure clearly shows that the Trochidis model and the low reduced frequency
model for incompressible behaviour give the same results. The loss factor shows
a decrease with increasing frequency for these incompressible models. The low
reduced frequency solution including compressibility e!ects however shows an
increasing loss factor for high frequencies.

The increase can be attributed to a coincidence e!ect. For the present case the
acoustic wavelength and the bending wavelength are equal for a frequency just
above 10 kHz. For this frequency, energy is radiated e$ciently into the layer. Both
EM
diss

and EM
lay

exhibit a peak at this frequency. The "nal result is a peak in the loss
factor. Note that incompressible models are not able to describe the coincidence
phenomenon.

The two incompressible models give the same result for the loss factor. For the
entire frequency range, the conditions k@1 and k/s@1 hold: k(1 and k/s(10~2.
Therefore, the low reduced frequency assumptions are valid. Again, there is no need
to use a more complicated model.

6. NUMERICAL TECHNIQUES

In the previous sections an overview was presented of analytical solutions for
viscothermal wave propagation, including acousto-elastic interaction. In general,
analytical solutions can be found only for simple geometries and boundary
conditions. For more complex situations numerical solution procedures are
necessary.

Recently, a boundary element formulation for viscothermal wave propagation in
thin layers was presented by Karra et al. [17] and Karra and Ben Tahar [18]. This
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model is based on the full linearized Navier}Stokes model. The boundary element
model is able to deal with coupled calculations for rotatory symmetric problems. In
part I of the present paper however it was demonstrated that the full linearized
Navier}Stokes model has to be used only under extreme conditions. In most cases,
the simple low reduced frequency model is su$cient to describe viscothermal wave
propagation.

A low reduced frequency approach was described for instance by Fox and Whitton
[19], OG nsay [20, 21] and Beltman et al. [22, 23]. Fox and Whitton adopted an
analytical approach, while OG nsay developed a transfer matrix approach. These
techniques are only suited for simple geometries. The paper by Beltman et al.
describes a "nite element approach. As a "rst step, the low reduced frequency model
was validated by means of special experiments with an oscillating solar panel [22].
A viscothermal acoustic "nite element was developed to describe the pressure
distribution in thin layers or narrow tubes. The new viscothermal acoustic "nite
element can be coupled to a structural "nite element, enabling fully coupled
acousto-elastic calculations for complex geometries. The model was experimentally
validated by means of experiments on an airtight box with a #exible coverplate [23].
The new elements were successfully used to analyze the dynamical behaviour of solar
panels during launch, to predict the damping capabilities of the double-wall panels
and to predict the dynamical behaviour of an inkjet printhead [24].

7. CONCLUSIONS

The conclusions to be drawn from the present investigations are as follows,
Analytical solutions of the full linearized Navier}Stokes model and the low

reduced frequency model were presented for various geometries. Because all the
solutions are written in terms of dimensionless parameters, the ranges of validity
can be indicated.

The low reduced frequency model is su$cient and the most e$cient to describe
viscothermal wave propagation for the majority of problems.

E$cient "nite element models, based on the low reduced frequency model, are
available to deal with fully coupled acousto-elastic calculations involving viscothermal
wave propagation, complex geometries and complex boundary conditions.
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APPENDIX: NOMENCLATURE

A
q
, B

q
participation factors

A
aq

,B
aq

,A
hq

,B
hq

constants
B(s) function accounting for viscous or thermal e!ects
a"l

y
/l
x

aspect ratio
C

1
, C

2
, C

3
, C

4
constants

C
p

speci"c heat at constant pressure
C

v
speci"c heat at constant volume

c
0

undisturbed speed of sound
D

p
"E

p
t3
p
/12 bending sti!ness

E
p

Young's modulus of plate material
EM
diss

dissipated energy per cycle
EM
in

incident energy per cycle
EM
lay

energy stored in the air layer
e
n

unit normal vector
e
r

unit vector in the r-direction
e
x

unit vector in the x-direction
e
y

unit vector in the y-direction
e
z

unit vector in the z-direction
eh unit vector in the h-direction
e
(

unit vector in the /-direction
f
m

function describing wave propagation in tubes
h
0

half-layer thickness
i"J!1 imaginary unit
j
n

spherical Bessel function of order n
J
m

Bessel function of the "rst kind, order m
k"ul/c

0
reduced frequency

k
a

acoustic wave number
k
aq
"k2

a
!k2

q
wave number

k
ar
"Jk2

a
#k2C2 wave number

k
h

entropic wave number
k
hq
"k2

h
!k2

q
wave number

k
hr
"Jk2

h
#k2C2 wave number

k
p

plate elastic wave number
k
p1
"kk

p
wave number

k
p2
"Jis2#k2k2

p
wave number

k
q

wave number
k
r
"uR/c

0
wave number in the r-direction

k
x
"ul

x
/c

0
wave number in the x-direction

k
v

rotational wave number
k
vq
"k2

v
!k2

q
wave number

l characteristic length scale
l
x

half-length in the x-direction
l
y

half-length in the y-direction
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l
z

half-length in the z-direction
m order of circumferential harmonic waves
n(sp) polytropic constant
pN "p

0
[1#pe*ut] pressure

p
0

mean pressure
p dimensionless pressure amplitude
pN
i
"p

0
[1#p

i
e*ut] incident pressure on membrane

p
i

dimensionless incident pressure amplitude
R radius
R

0
gas constant

rN radial co-ordinate
r dimensionless radial co-ordinate
s"lJo

0
u/k shear wave number

¹M "¹
0
[1#¹e*ut] temperature

¹
0

mean temperature
¹ dimensionless temperature amplitude
¹
a

acoustic temperature
¹
h

entropic temperature
¹
m

membrane tension
t time
t
m

membrane thickness
t
p

plate thickness
v6 "c

0
ve*ut velocity vector

v dimensionless amplitude of the velocity vector
v dimensionless amplitude of the velocity
v
l

solenoidal velocity vector
v
la

acoustic part of solenoidal velocity vector
v
lh

entropic part of solenoidal velocity vector
v
v

rotational velocity vector
vN
m
"c

0
v
m
e*ut membrane velocity

SvN
m
T average membrane velocity

v
m

dimensionless membrane velocity
vN
p

plate velocity
v
p

dimensionless plate velocity
v
r

dimensionless velocity component in the r-direction
vN
ref

reference velocity
v
x

dimensionless velocity component in the x-direction
vN
xn

nozzle velocity in the x-direction
v
xn

dimensionless nozzle velocity in the x-direction
v
y

dimensionless velocity component in the y-direction
v
z

dimensionless velocity component in the z-direction
vh dimensionless velocity component in the h-direction
v
(

dimensionless velocity component in the /-direction
=

1
,=

2
constants

xN "l
x
x x-co-ordinate

x dimensionless x-co-ordinate
x spatial co-ordinates
yN "l

y
y y-co-ordinate

>
mn

spherical harmonic function
y dimensionless y-co-ordinate
zN"h

0
z z-co-ordinate

ZM membrane impedance
ZM

0
reference level for the impedance

ZM
i

imaginary part of membrane impedance
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Z
n

speci"c normal acoustic impedance
ZM

r
real part of membrane impedance

z dimensionless z-co-ordinate
C propagation constant
c"C

p
/C

v
ratio of speci"c heats

e"o
0
h
0
/o

p
t
p

ratio of mass per unit area
g bulk viscosity
hM co-ordinate in the h-direction
h dimensionless co-ordinate in the h-direction
K

a
constant

K
h

constant
j thermal conductivity
k dynamic viscosity
m viscosity ratio
l
p

Poisson's ratio of plate material
oN "o

0
[1#oe*ut] density

o
0

mean density of air
o dimensionless density amplitude
o
m

density of membrane material
o
p

density of plate material
p"JkC

p
/j square root of the Prandtl number

/M co-ordinate in the /-direction
/ dimensionless co-ordinate in the /-direction
X dimensionless frequency
u angular frequency
$1 gradient operator
$ dimensionless gradient operator
DM Laplace operator
D dimensionless Laplace operator
Dcd dimensionless Laplace operator in the cd-directions
Dr dimensionless Laplace operator in the r-direction
f loss factor
* complex conjugate
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