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1. INTRODUCTION

The finite element discretization of a vibration problem replaces the original
structure by a mass matrix, M, and a stiffness matrix K. The accuracy of the
solution depends on the quality of both the stiffness and mass matrices. Clear
guidelines exist as to how K is to be derived using an energy (or variational or
virtual work) principle. Early attempts to deal with dynamics took the simplistic
course of “lumping” the mass of the element at the element nodes. The lumped mass
matrix is diagonal and hence does not involve mass coupling between the degrees of
freedom. It was realized [1, 2] that, from Hamilton’s principle, a non-diagonal or
“consistent” mass matrix could be derived from the kinetic energy by using the
same trial functions that were used to determine the stiffness matrix. In
a variational sense therefore, the “lumped” mass approaches are “non-consistent”;
they conserve mass but not necessarily momentum or kinetic energy of the
consistent mass matrix.

Various lumped mass approximations corresponding to different ways of
apportioning the total mass to the various nodes are possible. For many problems
the lumped mass approaches leads to the same convergence rate of eigenvalues as
the consistent mass matrix. However, this trend cannot be extrapolated to all
problems as the lumped mass matrices do not conserve kinetic energy. The
torsional eigenvalues of a beam is a typical example which is investigated in detail
in this paper. In addition to the torsional eigenvalues, convergence of flexural and
shear eigenvalues is also investigated.

2. ERROR ESTIMATES FROM THE RAYLEIGH QUOTIENT

The Rayleigh quotient approximation (of which the finite element method is
a piecewise version) can be traced to Rayleigh’s description of the fundamental
frequency as a minimum of the Rayleigh quotient [3]. Considering the discretized
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eigenvalue problem, K¢ = AM¢, the eigenvalue may be written in the Rayleigh
quotient form as

4= (0"Kd)/(¢"M¢) (1)

where /1 is the eigenvalue and ¢ the corresponding eigenvector of the discretized
system.

The Rayleigh quotient is used here to investigate the error trend of eigenvalues
by independently assessing the errors in the numerator and the denominator.
Rayleigh quotient, in conjunction with functional analysis concepts, has been used
[4] to arrive at error estimates. Recently, a simplified approach using this concept
has been used [5] effectively to understand the error trend of bar and beam
elements in free vibration.

For simplicity, let us consider the finite element formulation for one-dimensional
problems. Using trial functions for displacements complete to x", the potential
energies (where, for simplicity, the strains are assumed to be first derivatives of
the displacements) after discretization are accurate to O(h*"). Stress correspondence
paradigm [6, 7] provides an effective explanation of this fact. The kinetic energies
are, however, accurate to O(h*"*1) if a consistent mass approach is strictly
observed in formulating the mass matrix. From this, we may argue that if 4., K.,
and M, are the quantities corresponding to the unknown exact analytical solution
to the problem, then the finite element approximation of eigenvalue, A,, is
given [4] by

2 = [0 Ked, + O(P")]/[dI M. b, + O(h*" V)] (2
= )y + O(h?") — O(h2®* D), 3)

For this case, the dominating error is due to the numerator of equation (2), or, in
other words, the error in the formulation of the stiffness matrix. This explains the
well-known upper-bound nature of the eigenvalues with consistent mass matrices.
In any non-consistent or lumped mass formulation, the order of accuracy
associated with the kinetic energy would be poorer than O(h*®* V). However, if by
a judicious choice of lumping scheme it can be maintained at O(h?"), which is the
accuracy of the potential energy term in the numerator of the Rayleigh quotient,
then it will be possible that the rate of convergence of the eigenvalue is no worse
than that obtained with a consistent mass formulation. This is the idea behind the
success of many lumped mass matrices. On the other hand, if the order of accuracy
associated with kinetic energy is poorer than O(h*"), then the accuracy of
prediction of eigenvalues would be governed by the accuracy of kinetic energy
terms, or, equivalently, the mass matrix.

3. ERROR ESTIMATE FOR TORSIONAL EIGENVALUES

Considering the free torsional vibration of a uniform rod, the eigenvalue may be
written in Rayleigh’s quotient form as

Jtor = (P10, Kror) /(D10 M), ()
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where ¢,,, is the modeshape vector corresponding to the torsional mode. In general,
the accuracy of the strain energy (or, equivalently, the numerator of Rayleigh
quotient) depends on the mesh refinement along both the longitudinal and
transverse directions of the rod. The higher the number of elements along the
longitudinal axis, the better the representation of variation of twist along the length
of the rod. Similarly, the higher the number of elements across the cross-section, the
better the representation of rotation and warping of sections. In the absence of
warping, however, the cross-sections simply rotate as a rigid body about the
longitudinal axis, and hence the exact displacement field across the cross-section
can be captured even if the displacement model (element shape functions) is
complete only upto linear terms.

In this paper, we limit ourselves to the study of the effect of mesh refinement
across the cross-section. Hence, we assume that the mesh density along the length is
sufficiently high so that it has no effect on our study. Under such conditions, the
element with a linear displacement field has no difficulty in representing the
cross-sectional rotation, and hence involves no error in the potential energy and
hence in the numerator of Rayleigh quotient. The denominator also will not involve
any error if the kinetic energy due to the rigid body rotation can be represented
accurately by the element. The consistent mass matrix conserves the kinetic energy
inherently. Hence, the use of an element with at least a linear displacement model
together with the consistent mass matrix should yield exact torsional eigenvalues.
The lumped mass matrix does not conserve kinetic energy and the denominator of
Rayleigh quotient involves an error. Hence, the lumped mass matrix cannot yield
exact eigenvalues. The example problem considered in a later section verifies these
predictions.

We now develop an error model to predict the convergence (with respect to the
mesh refinement across the cross-section) of torsional eigenvalues for the case of
lumped mass matrix. Consider a typical finite element mesh of n x n elements of
a square cross-section of side a as in Figure 1. Considering a lumped mass matrix
where the total mass is simply apportioned amongst the nodes, the polar mass
moment of inertia of the lumped masses of a typical element (i, j) about its own
centroidal axis parallel to the longitudinal axis of the beam is given by

IV = (No. of nodes) x (mass associated with each node)
x (distance of each node from the centroidal axis)? (5)
= pla*/(2n*), (6)
where [ is the length of the element along the longitudinal axis. The polar mass

moment of inertia of the element about the centroidal longitudinal axis of the
cross-section is given by

IY = IV 4 (mass of the element) x (r/)? (7)

= IV + (pla®/n?) x (r')?, ®)
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Figure 1. Finite element mesh across the cross-section.

where 7 is the distance of the centroid of the element (i, j) from the centroidal
longitudinal axis of the cross-section given by

(r)* = [a(2i — 1 —n)/2n]* + [a(2j — 1 — n)/2n]%. ©)

The sum of polar mass moment of inertia of all the elements in the cross-section is
given by

L.=YY1T1. (10)
i

After substitution for IY from equation (8), and considerable algebraic
simplification, the expression for I, is obtained as

I.. = pla*(1 + 2/n?)/6. (11)

This is the polar mass moment of inertia based on lumped mass approximation.
The exact polar mass moment of inertia of a square cross-section rod, I, is given by

I, = pla*/6. (12)
Therefore, the error in lumped mass eigenvalues is given by

(tor/ 2or = 1) = (Le/ Iz = 1) = = 2/(2 + n?), (13)

tor “tor
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where 2}, and ¢, are the lumped mass approximation and the exact eigenvalues

respectively. Equation (13) may be written in terms of the size of the element, h, as
(Rtor/ 2o — 1) = = 2/[2 + (a/h)*]. (14)

It may be recalled that this error estimate is based on the assumptions that the
mesh refinement along the length is sufficiently high, and there is no warping of
cross-sections.

4. NUMERICAL EXAMPLE

This section deals with a numerical example to verify our prediction of error
model. A cantilever beam of 10 units length and 1 x 1 cross-section is modelled with
an 8-node hexahedral element. All the nodes are so constrained that no axial
motion and hence no warping is possible. All the nodes of the fixed end are
restricted in all the three degrees of freedom. The material properties, Young’s
modulus, density and the Poisson ratio, are taken as 2-1x 10!, 7860 and 0-3
respectively. The first two torsional eigenvalues computed using the lumped and
consistent mass matrices are listed in Table 1 for various mesh refinements. The
lumping scheme used for the present investigation is that proposed by Hinton et al.
[8]. For a square element as used in our investigation, this scheme simply

TABLE 1

Eigenvalues for the first two torsional modes without warping effects — 8-node
hexahedral element

Eigenvalues with consistent Eigenvalues with lumped mass
Mesh mass matrix for 20 and 40 matrix for 20 and 40 number
across  number of elements along length of elements along length
Cross-
section 20 40 % diff. 20 40 % diff.
First 1x1 2536799 2535849  —0-037 844724 845052 0039

mode 2x2 2536799 2535849 —0-037 1689485 1690105 0-037
3x3 2536799 2535849 —0-037 2073425 2074226 0039
4x4 2536799 2535849 —0-037 2252634 2253469  0-037
5x5 2536799 2535849 —0-037 2346455 234736:8  0-039
6x6 2536799 2535849 —0-037  240082-0 2401744  0-038

Theory 2535496

Second 1x1 22925654 2284581-0  —0-349 7571755 7598021-1 0-346
mode 2x2 22925654 2284581-0  —0-349 15142824 15195447 0-346
3x3 22925654 2284581-0  —0-349 18583139 18648292 0-349
4x4 22925654 2284581-0  —0-349 20188986 2026047-1 0-353
5x5 22925654 2284581-0  —0-349 21031439 2110439-8 0-346
6x6 22925654 2284581-0  —0-349 21518991 21592790 0-342

Theory 2281922-7
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apportions the total mass equally amongst the nodes. The first observation from
Table 1 is that mesh refinement along the length from 20 to 40 elements results in
marginal improvement in eigenvalues, typically 0-037% for the first eigenvalue,
0-349% for the second, indicating sufficient convergence has already been reached
with respect to mesh refinement along the length of the beam. Thus, we can now use
the finite element results to verify our error prediction given by equation (14).

Next, the predicted error in eigenvalues is calculated using equation (14), and the
actual error observed in finite element is calculated using the eigenvalues listed in
Table 1 (corresponding to 40 eclements along the length). The results are
summarized in Table 2. Good agreement is seen between the predicted and
observed errors thus validating the error model developed.

Interestingly, we observe from equation (13) that for reducing the error to about
1%, a 14 x 14 mesh is required for the case of lumped mass matrix whereas a 1 x 1
mesh produces near exact eigenvalues in the case of consistent mass matrix. As
pointed out in section 3, this difference is due to the inability of the lumped mass
matrix to conserve the polar mass moment of inertia of the cross-section. This
clearly demonstrates the need for conserving the polar mass moment of inertia of
cross-sections in order to have faster convergence.

Next, the error in the lumped and consistent mass eigenvalues is investigated in
the presence of warping of cross-sections. The eigenvalues are re-computed without
restraining the cross-sectional planes to move in a plane. The results are
summarized in Table 3. The first observation from Table 3 is that for the meshes
40 x 1 x 1 as well as 40 x 2 x 2, the eigenvalues are no different from those listed in
Table 1. This only suggests that 1 x 1 and 2 x 2 meshes across the cross-section are
not able to pick the warping deformations. For computing the error in eigenvalues,
the theoretical values of ecigenvalues considering the warping effects are not
available. Hence, alternatively, the average of the consistent and lumped mass

TABLE 2

Validation of error model for lumped mass eigenvalues of torsional mode—S8-node
hexahedral element

Error in eigenvalues

Observed (finite element results)
Predicted (r.h.s of

Mesh equation (14)) First eigenvalue Second eigenvalue
Ix1 —0-6667 —0-6667 —0-6670
2x2 —0-3333 —0-3334 —0-3341
3x3 —0-1818 —0-1819 —0-1828
4x4 —0-1111 —0-1112 —0-1121
5x5 —0-0741 —0-0742 —0-0752
6x6 —0-0526 —0-0527 —0-0538

*Calculated as (1,,/A¢, —1) using the lumped mass eigenvalues (/.,,) and the theoretical value (/5,,)

tor! “*tor “tor.

listed in Table 1.
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eigenvalues corresponding to the finest mesh, 40 x 15 x 15, is taken here as the
reference for computing the error. The errors (excluding the case of 40 x 1 x 1 and
40 x 2 x 2 mesh) are plotted in Figure 2 against the square of the element size, h>.
For both consistent and lumped mass matrices, the plot is seen to be essentially
straight lines, which suggests that the errors in both cases follow a similar trend, i.c.,
O(h?) although they are of opposite signs.

TABLE 3

Eigenvalues for the first two torsional modes considering warping effects—S8-node
hexahedral element

First eigenvalue Second eigenvalue
Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix
40x1x1 2535849 845052 22845810 759802-1
40x2x2 2535849 1690105 22845810 15195447
40x3x3 2336968 1911519 21058783 17183564
40x4x4 2258065 2006566 2034641-9 1803900-7
40x5x%x5 2219358 205441-3 1999661-0 1846854-2
40x6x6 2197685 208144-3 1980161-7 18713559
40x10x 10 216522-8 2122232 19507409 19079771
40x15x%x 15 2154774 2135219 19412747 1919624-6
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Figure 2. Convergence of eigenvalue with square of element size—8-node hexahedral element.
( ) % error in first eigenvalue with consistent mass matrix; (- - — —) % error in first eigenvalue
with lumped mass matrix.
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The reason for the difference in performance of the lumped mass matrix in
warping and non-warping situations is not straighforward and hence needs some
explanation. For the simpler case of non-warping situation, the lumped mass
matrix shows a poorer performance than the consistent mass matrix, whereas
for the more complex case of warping situation, its performance (convergence
rate) is as good as the consistent mass matrix. This appears rather paradoxical.
Based on the error estimation approach discussed in section 3, a qualitative
explanation to the apparent paradox is straightforward: in a non-warping
situation, an element having linear displacement terms such as the 8-node
hexahedral element does not lead to any error in the numerator of Rayleigh
quotient. However, the case with the denominator is different; the consistent
mass matrix does not lead to any significant error in the denominator whereas
the lumped mass matrix does. The error caused by the lumped mass matrix is due
to the inability of the lumped mass matrix in representing the cross-sectional
mass moment of inertia accurately, and this leads to its poor performance. In
a warping situation, however, in addition to the error in the denominator,
the numerator also has error due to incomplete representation of warping
deformations. If the error in the numerator dominates, then the error in eigenvalues
is entirely governed by the error in the numerator. Under such conditions,
the type of mass matrix used, consistent or lumped, does not influence the
convergence rate of eigenvalues. In other words, the eigenvalue convergence
rate becomes “insensitive” to the type of mass matrix used. This appears to
be the case in the present example as both the consistent and lumped mass matrices
lead to the same order of error, O(h?) (Figure 2) under the warping
situation.

4.1. PERFORMANCE OF 20-NODE HEXAHEDRAL ELEMENT UNDER TORSIONAL VIBRATION

The results presented so far are for an 8-node hexahedral element. Following
a similar approach, the performance of a 20-node hexahedral element has been
studied. The eigenvalues have been computed for the same cantilever beam as in the
case of the 8-node hexahedral element. Tables 4 and 5 list the eigenvalues for this
element for non-warping and warping cases of torsional vibration respectively.
A scrutiny of Tables 4 and 5 suggests the following conclusions:

(a) For non-warping case (Table 4), the lumped mass eigenvalues involve
significant errors which can be traced back to the inability of lumped mass
matrix to conserve the cross-sectional polar mass moment of inertia. The
consistent mass matrix, however, conserves this inertia and hence even one
element across the cross-section is able to yield theoretically correct (upto three
decimal places) eigenvalues.

(b) A comparison of Tables 4 and 5 for 40 x 1 x 1 mesh shows that the eigenvalues
with and without warping effects are the same, which would only suggest that
the warping deformations are not sensed by one 20-node hexahedral element
across the cross-section.
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TABLE 4

Eigenvalues for the first two torsional modes without warping effects—20-node
hexahedral element

First eigenvalue Second eigenvalue
Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix
40x1x1 2535496 1123054 22819227 1008501-0
40x2x2 2535496 192847-8 22819227 1730402-6
40x3x3 2535496 222433-4 22819227 1998772-5
40x4 x4 2535496 2350474 22819227 2113179-0
40x5x%x5 2535496 241389-1 22819227 2170742-9
40x 6% 6 2535496 2449771 22819227 22032643
Theory 253549-6 22819227
TABLE 5

Eigenvalues for the first two torsional modes considering warping effects—20-node
hexahedral element

First eigenvalue Second eigenvalue
Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix
40x1x1 253549-6 1123054 22819227 1008501-0
40x2x2 217993-0 165812-4 19623420 14884149
40x3x3 215471-6 1890261 1939349-2 1698482-2
40x4 x4 2149527 1992687 1934452-3 17914327
40x5x%x5 2147838 2044742 1932879-6 18386661
40x 6% 6 2147081 2074455 19323555 1865687-3

(c) For other meshes of the warping case (Table 5), the errors for consistent and
lumped mass eigenvalues are plotted in Figures 3 and 4 against h* and h*
respectively. It is seen from these figures that the error in consistent mass
eigenvalues is proportional to h* whereas that in lumped mass eigenvalue is
roughly proportional to h*.

In the case of consistent mass eigenvalues, the denominator of Rayleigh quotient
involves little error because the polar mass moment of inertia is conserved by
a consistent mass matrix. Hence, the numerator is the main source of error which
arises due to incomplete representation of warping deformations by the shape
functions. Since the 20-node hexahedral element is a quadratic element, the error in
strain values is of the order of h?, and hence the error in the strain energy and hence
the numerator of Rayleigh quotient is proportional to h*.
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Figure 3. Convergence of eigenvalue with square of element size—20-node hexahedral element.
( ) % error in first eigenvalue with consistent mass matrix; (- - — —) % error in first eigenvalue
with lumped mass matrix.
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Figure 4. Convergence of eigenvalue with fourth power of element size—20-node hexahedral
element. ( ) % error in first eigenvalue with consistent mass matrix; (- - - —=) % error in first
eigenvalue with lumped mass matrix.
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Similarly in the case of lumped mass eigenvalues, the error in the numerator is
proportional to h*. However, the error in the denominator due to non-conservation
of polar mass moment of inertia over-rides this error and hence the resulting error
in eigenvalue is predominantly proportional to h?.

4.1.1. Derivation of error estimate

For the 20-node element, the expression for the error estimate of lumped mass
eigenvalues can be derived following a procedure similar to that of the 8-node
element. Consider a cube modelled by one 20-node element as shown in Figure 5.
The lumped masses at the corner and middle nodes are M/40 and M/15,
respectively, where M is the mass of the element. We make the assumption that, for

Typical
element

Lumped mass at corner node=M/40

Lumped mass at mid-edge node=M/15

(a) Mass lumping for an element of size 1x1x1

™30 @———-@———@
|
i |

|

|
oo

Lumped mass at corner node=7M/60 i.e. (M/40 + M/15 + M/40)

2MI15 + ¢

Lumped mass at mid-side node=2M/15 i.e. (M/15 + M/15)

(b) Re-lumping of mass at the mid-plane (for error analysis)

Figure 5. Mass lumping of 20-node hexahedral element. For a sufficiently refined mesh along the
length of the cantilever beam, the rotational motion of nodes, e.g. those marked A, B and C in (a),
about the axis of the beam are nearly equal, and hence the lumped masses of these nodes can be
combined and re-lumped at the mid-plane of the element as shown in (b).
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a sufficiently dense mesh along the length of the beam, all the lumped masses of an
element along an element edge parallel to the longitudinal axis of the beam undergo
the same angle of rotation about the longitudinal axis (Figure 5). For the lumped
masses of the 20-node element, the expression for I/ (equation (6)) takes the form

I = 11 pla*/(30n*). (15)

Using this expression in the rest of the derivation of section 3, the expression for the
error estimate can be shown to be

(Ator/ 2or — 1) = — 6/[6 + 5(a/h)*]. (16)

Table 6 shows the errors predicted by equation (16) and the errors observed in finite
element results. We observe that the agreement between the predicted and observed
errors is quite good although it is not so close as in the case of the 8-node element,
the reason for which is not obvious.

4.2. PERFORMANCE OF CONSISTENT AND LUMPED MASS MATRICES UNDER
BENDING VIBRATIONS

The analysis presented so far is for torsional vibrations. A similar approach is
followed for studying the convergence of eigenvalues under bending vibrations.
Following equation (4), we may write

Dven = (Dpen KDoen)/(Ppey MPien). (17)

As in the case of torsional vibrations, we limit ourselves to the study of the effect of
mesh refinement across the cross-section. Hence, we assume that the mesh density

TABLE 6

Validation of error model for lumped mass eigenvalues of torsional mode—20-node
hexahedral element

Error in eigenvalues

*QObserved (finite element results)

Predicted (r.h.s of

Mesh equation (16)) First eigenvalue Second eigenvalue
Ix1 —0-5454 —0-5571 —0-5580
2x2 —0-2308 —0-2394 —0-2417
3x3 —0-1176 —0-1227 —0-1241
4x4 —0-0698 —0-0730 —0-0739
5x5 —0-0458 —0-0480 —0-0487
6x6 —0-0323 —0-0338 —0-0345

*Calculated as (1,,/A¢, —1) using the lumped mass eigenvalues (/.,,) and the theoretical value (/5,,)

tor/ ““tor

listed in Table 4.
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along the length is sufficiently high. Further, we assume, for simplicity, that
the shear deformation is negligible. Under such conditions, the sections undergo
simple rotations. As a result, an element with linear displacement field, such as an
8-node hexahedral element, has no difficulty in representing the displacement
across the cross-section, and hence involves no error in the strain energy and
therefore in the numerator of Rayleigh quotient. Hence, the error in eigenvalue is
entirely dependent on the error in the denominator, i.e., the mass matrix. For lower
modes, the rotation of cross-section is negligible and hence the kinetic energy is
mainly due to transverse motion of the beam. The translational kinetic energy due
to transverse motion can be accurately captured if the mass matrix employed
conserves at least the mass of the element. Both lumped mass matrix and consistent
mass matrix conserve the mass of the element, and hence involve no error in
representing the translational kinetic energy or in other words the denominator of
Rayleigh quotient. Thus, for lower modes, both the mass matrices are expected to
yield comparable estimates of eigenvalues. This is reflected in the results shown in
Table 7; the difference in consistent and lumped mass eigenvalues is only 0-8% for
the first mode. We observe a difference of 5 and 9-7% between consistent and
lumped mass eigenvalues for second and third modes respectively. However, for
higher modes, the rotation of cross-section is not negligible, and hence rotational
kinetic energy of the element needs to be represented accurately by the mass matrix.
The consistent mass matrix conserves the rotational kinetic energy as it conserves
the mass moment of inertia of the element. Hence, even one element across the
cross-section is able to yield accurate eigenvalues. It can be seen from Table 7 that the
consistent mass eigenvalues do not vary appreciably with mesh refinement. However,
the lumped mass matrix does not conserve the mass matrix of inertia or the
rotational kinetic energy. Hence, one element across the cross-section is not able to
produce accurate eigenvalues (Table 7). As the mesh is refined, Table 7 shows that
the difference between consistent and lumped mass eigenvalues decreases fast.
Developing an error model for bending vibration similar to that of torsional
vibration would be difficult as the kinetic energy and hence the denominator of

TABLE 7

Eigenvalues for the first three bending modes—S8-node hexahedral element

First eigenvalue Second eigenvalue Third eigenvalue
Consis. Lumped Consis. Lumped Consis.  Lumped
mass mass %  mass mass % mass mass %
Mesh matrix matrix diff. matrix matrix  diff. matrix matrix  diff.

40x1x1 27341 2712:5 0-8 994872 94559:6 50 7007511 6327427 97
40x3x3 27440 27407 01 99392-1 985382 09 6961302 6833977 1-8
40x6x6 27440 27420 01 990556 986013 05 6910022 6839172 10

Theory 2719-0 1000667 677520-2
(Timoshenko)
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TABLE 8

Eigenvalues for the first three simple shear modes—8-node hexahedral element

First eigenvalue Second eigenvalue
Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix
40x1x1 2535849 2535153 2284581 2279265-8
40x3x3 2535849 2535153 2284581 2279265-8
40x6%x6 2535849 2535153 2284581 2279265-8
Theory 2535849 2251922-7

Rayleigh quotient involves both translational and rotational motion of lumped
masses, the relative proportion of which is difficult to assess.

4.3. PERFORMANCE OF CONSISTENT AND LUMPED MASS MATRICES UNDER SIMPLE
SHEAR VIBRATIONS

Under simple shear vibrations, the dynamic equilibrium is maintained between
strain energy due to shear deformation and kinetic energy due to transverse motion
without any rotation of cross-section. This is simulated in finite element analysis by
restraining the axial motion of all nodes of the cantilever. The strain energy due to
shear deformation is represented exactly (by 8- or 20-node hexahedral element), and
hence there is no error in the numerator of Rayleigh quotient. The kinetic energy
due to transverse motion is also represented exactly by lumped as well as consistent
mass matrices. Hence, under simple shear vibrations, both lumped and consistent
mass matrices would be able to yield accurate eigenvalues even with one element
across the cross-section. This is confirmed by the numerical results listed in Table 8.

5. CONCLUDING REMARKS

The convergence of eigenvalues of a cantilever beam modelled with 8- and
20-node hexahedral element with respect to mesh refinement across the
cross-section has been investigated. The following are some of the important
conclusions:

1. When warping effects are suppressed, the consistent mass matrix leads to near
exact torsional eigenvalues even for one element across the cross-section
whereas the lumped mass matrix leads to significant errors. The reason for this
has been observed to be the inability of the lumped mass matrix in representing
exactly the polar mass moment of inertia of the cross-section of the beam.

2. For the 8-node hexahedron element, the expression for the relative error in
lumped mass torsional eigenvalues has been derived as —2/[2 + n?] for an
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n x n mesh; typically, for obtaining the eigenvalues within 1% error with lumped
mass matrix, a 15 x 15 mesh is required. For the 20-node hexahedron element,
the expression for error has been derived as — 6/[6 + 5n?]. The error predicted
by this expression tallies closely with the error observed in actual finite element
calculation for the cantilever problem considered.

. When warping deformations are present, both consistent and lumped mass
matrices lead to the same order of error in eigenvalues, O (h?).

. For lower modes of bending vibrations, both consistent and lumped mass
matrices lead to comparable eigenvalues. For higher modes, however, the
consistent mass matrix yields more accurate eigenvalues as the mass moment of
inertia of the elements, and hence the rotational kinetic energy of the elements, is
represented accurately.

. In the case of simple shear vibrations, there is no rotation of cross-sections of the
beam and hence the consistent and lumped mass matrices lead to nearly exact
eigenvalues.
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