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1. INTRODUCTION

The "nite element discretization of a vibration problem replaces the original
structure by a mass matrix, M, and a sti!ness matrix K. The accuracy of the
solution depends on the quality of both the sti!ness and mass matrices. Clear
guidelines exist as to how K is to be derived using an energy (or variational or
virtual work) principle. Early attempts to deal with dynamics took the simplistic
course of &&lumping'' the mass of the element at the element nodes. The lumped mass
matrix is diagonal and hence does not involve mass coupling between the degrees of
freedom. It was realized [1, 2] that, from Hamilton's principle, a non-diagonal or
&&consistent'' mass matrix could be derived from the kinetic energy by using the
same trial functions that were used to determine the sti!ness matrix. In
a variational sense therefore, the &&lumped'' mass approaches are &&non-consistent'';
they conserve mass but not necessarily momentum or kinetic energy of the
consistent mass matrix.

Various lumped mass approximations corresponding to di!erent ways of
apportioning the total mass to the various nodes are possible. For many problems
the lumped mass approaches leads to the same convergence rate of eigenvalues as
the consistent mass matrix. However, this trend cannot be extrapolated to all
problems as the lumped mass matrices do not conserve kinetic energy. The
torsional eigenvalues of a beam is a typical example which is investigated in detail
in this paper. In addition to the torsional eigenvalues, convergence of #exural and
shear eigenvalues is also investigated.

2. ERROR ESTIMATES FROM THE RAYLEIGH QUOTIENT

The Rayleigh quotient approximation (of which the "nite element method is
a piecewise version) can be traced to Rayleigh's description of the fundamental
frequency as a minimum of the Rayleigh quotient [3]. Considering the discretized
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eigenvalue problem, K/"jM/, the eigenvalue may be written in the Rayleigh
quotient form as

j"(/TK/)/(/TM/) (1)

where j is the eigenvalue and / the corresponding eigenvector of the discretized
system.

The Rayleigh quotient is used here to investigate the error trend of eigenvalues
by independently assessing the errors in the numerator and the denominator.
Rayleigh quotient, in conjunction with functional analysis concepts, has been used
[4] to arrive at error estimates. Recently, a simpli"ed approach using this concept
has been used [5] e!ectively to understand the error trend of bar and beam
elements in free vibration.

For simplicity, let us consider the "nite element formulation for one-dimensional
problems. Using trial functions for displacements complete to xn, the potential
energies (where, for simplicity, the strains are assumed to be "rst derivatives of
the displacements) after discretization are accurate to O(h2n). Stress correspondence
paradigm [6, 7] provides an e!ective explanation of this fact. The kinetic energies
are, however, accurate to O(h2(n`1)) if a consistent mass approach is strictly
observed in formulating the mass matrix. From this, we may argue that if j
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#O (h2n)!O (h2(n`1)). (3)

For this case, the dominating error is due to the numerator of equation (2), or, in
other words, the error in the formulation of the sti!ness matrix. This explains the
well-known upper-bound nature of the eigenvalues with consistent mass matrices.
In any non-consistent or lumped mass formulation, the order of accuracy
associated with the kinetic energy would be poorer than O(h2(n`1)). However, if by
a judicious choice of lumping scheme it can be maintained at O(h2n), which is the
accuracy of the potential energy term in the numerator of the Rayleigh quotient,
then it will be possible that the rate of convergence of the eigenvalue is no worse
than that obtained with a consistent mass formulation. This is the idea behind the
success of many lumped mass matrices. On the other hand, if the order of accuracy
associated with kinetic energy is poorer than O (h2n), then the accuracy of
prediction of eigenvalues would be governed by the accuracy of kinetic energy
terms, or, equivalently, the mass matrix.

3. ERROR ESTIMATE FOR TORSIONAL EIGENVALUES

Considering the free torsional vibration of a uniform rod, the eigenvalue may be
written in Rayleigh's quotient form as

j
tor
"(/T

tor
K/

tor
)/(/T

tor
M/

tor
), (4)



LETTERS TO THE EDITOR 669
where /
tor

is the modeshape vector corresponding to the torsional mode. In general,
the accuracy of the strain energy (or, equivalently, the numerator of Rayleigh
quotient) depends on the mesh re"nement along both the longitudinal and
transverse directions of the rod. The higher the number of elements along the
longitudinal axis, the better the representation of variation of twist along the length
of the rod. Similarly, the higher the number of elements across the cross-section, the
better the representation of rotation and warping of sections. In the absence of
warping, however, the cross-sections simply rotate as a rigid body about the
longitudinal axis, and hence the exact displacement "eld across the cross-section
can be captured even if the displacement model (element shape functions) is
complete only upto linear terms.

In this paper, we limit ourselves to the study of the e!ect of mesh re"nement
across the cross-section. Hence, we assume that the mesh density along the length is
su$ciently high so that it has no e!ect on our study. Under such conditions, the
element with a linear displacement "eld has no di$culty in representing the
cross-sectional rotation, and hence involves no error in the potential energy and
hence in the numerator of Rayleigh quotient. The denominator also will not involve
any error if the kinetic energy due to the rigid body rotation can be represented
accurately by the element. The consistent mass matrix conserves the kinetic energy
inherently. Hence, the use of an element with at least a linear displacement model
together with the consistent mass matrix should yield exact torsional eigenvalues.
The lumped mass matrix does not conserve kinetic energy and the denominator of
Rayleigh quotient involves an error. Hence, the lumped mass matrix cannot yield
exact eigenvalues. The example problem considered in a later section veri"es these
predictions.

We now develop an error model to predict the convergence (with respect to the
mesh re"nement across the cross-section) of torsional eigenvalues for the case of
lumped mass matrix. Consider a typical "nite element mesh of n]n elements of
a square cross-section of side a as in Figure 1. Considering a lumped mass matrix
where the total mass is simply apportioned amongst the nodes, the polar mass
moment of inertia of the lumped masses of a typical element (i, j ) about its own
centroidal axis parallel to the longitudinal axis of the beam is given by

Iij"(No. of nodes)](mass associated with each node)

](distance of each node from the centroidal axis)2 (5)

"ola4/(2n4), (6)

where l is the length of the element along the longitudinal axis. The polar mass
moment of inertia of the element about the centroidal longitudinal axis of the
cross-section is given by

Iij
zz
"Iij#(mass of the element)](rij)2 (7)

"Iij#(ola2/n2)](rij)2, (8)



Figure 1. Finite element mesh across the cross-section.
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where rij is the distance of the centroid of the element (i, j) from the centroidal
longitudinal axis of the cross-section given by

(rij)2"[a (2i!1!n)/2n]2#[a(2j!1!n)/2n]2. (9)

The sum of polar mass moment of inertia of all the elements in the cross-section is
given by

I
zz
"+

i

+
j

Iij
zz

. (10)

After substitution for Iij
zz

from equation (8), and considerable algebraic
simpli"cation, the expression for I

zz
is obtained as

I
zz
"ola4(1#2/n2)/6. (11)

This is the polar mass moment of inertia based on lumped mass approximation.
The exact polar mass moment of inertia of a square cross-section rod, I

e
, is given by

I
e
"ola4/6. (12)

Therefore, the error in lumped mass eigenvalues is given by
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where jl
tor

and je
tor

are the lumped mass approximation and the exact eigenvalues
respectively. Equation (13) may be written in terms of the size of the element, h, as

(jl
tor

/je
tor
!1)"!2/[2#(a/h)2]. (14)

It may be recalled that this error estimate is based on the assumptions that the
mesh re"nement along the length is su$ciently high, and there is no warping of
cross-sections.

4. NUMERICAL EXAMPLE

This section deals with a numerical example to verify our prediction of error
model. A cantilever beam of 10 units length and 1]1 cross-section is modelled with
an 8-node hexahedral element. All the nodes are so constrained that no axial
motion and hence no warping is possible. All the nodes of the "xed end are
restricted in all the three degrees of freedom. The material properties, Young's
modulus, density and the Poisson ratio, are taken as 2)1]1011, 7860 and 0)3
respectively. The "rst two torsional eigenvalues computed using the lumped and
consistent mass matrices are listed in Table 1 for various mesh re"nements. The
lumping scheme used for the present investigation is that proposed by Hinton et al.
[8]. For a square element as used in our investigation, this scheme simply
TABLE 1

Eigenvalues for the ,rst two torsional modes without warping e+ects 2 8-node
hexahedral element

Mesh
across
cross-
section

Eigenvalues with consistent
mass matrix for 20 and 40

number of elements along length

Eigenvalues with lumped mass
matrix for 20 and 40 number

of elements along length

20 40 % di!. 20 40 % di!.

First 1]1 253679)9 253584)9 !0)037 84472)4 84505)2 0)039
mode 2]2 253679)9 253584)9 !0)037 168948)5 169010)5 0)037

3]3 253679)9 253584)9 !0)037 207342)5 207422)6 0)039
4]4 253679)9 253584)9 !0)037 225263)4 225346)9 0)037
5]5 253679)9 253584)9 !0)037 234645)5 234736)8 0)039
6]6 253679)9 253584)9 !0)037 240082)0 240174)4 0)038

Theory 253549)6

Second 1]1 2292565)4 2284581)0 !0)349 757175)5 7598021)1 0)346
mode 2]2 2292565)4 2284581)0 !0)349 1514282)4 1519544)7 0)346

3]3 2292565)4 2284581)0 !0)349 1858313)9 1864829)2 0)349
4]4 2292565)4 2284581)0 !0)349 2018898)6 2026047)1 0)353
5]5 2292565)4 2284581)0 !0)349 2103143)9 2110439)8 0)346
6]6 2292565)4 2284581)0 !0)349 2151899)1 2159279)0 0)342

Theory 2281922)7
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apportions the total mass equally amongst the nodes. The "rst observation from
Table 1 is that mesh re"nement along the length from 20 to 40 elements results in
marginal improvement in eigenvalues, typically 0)037% for the "rst eigenvalue,
0)349% for the second, indicating su$cient convergence has already been reached
with respect to mesh re"nement along the length of the beam. Thus, we can now use
the "nite element results to verify our error prediction given by equation (14).

Next, the predicted error in eigenvalues is calculated using equation (14), and the
actual error observed in "nite element is calculated using the eigenvalues listed in
Table 1 (corresponding to 40 elements along the length). The results are
summarized in Table 2. Good agreement is seen between the predicted and
observed errors thus validating the error model developed.

Interestingly, we observe from equation (13) that for reducing the error to about
1%, a 14]14 mesh is required for the case of lumped mass matrix whereas a 1]1
mesh produces near exact eigenvalues in the case of consistent mass matrix. As
pointed out in section 3, this di!erence is due to the inability of the lumped mass
matrix to conserve the polar mass moment of inertia of the cross-section. This
clearly demonstrates the need for conserving the polar mass moment of inertia of
cross-sections in order to have faster convergence.

Next, the error in the lumped and consistent mass eigenvalues is investigated in
the presence of warping of cross-sections. The eigenvalues are re-computed without
restraining the cross-sectional planes to move in a plane. The results are
summarized in Table 3. The "rst observation from Table 3 is that for the meshes
40]1]1 as well as 40]2]2, the eigenvalues are no di!erent from those listed in
Table 1. This only suggests that 1]1 and 2]2 meshes across the cross-section are
not able to pick the warping deformations. For computing the error in eigenvalues,
the theoretical values of eigenvalues considering the warping e!ects are not
available. Hence, alternatively, the average of the consistent and lumped mass
TABLE 2

<alidation of error model for lumped mass eigenvalues of torsional mode28-node
hexahedral element

Error in eigenvalues

Observed ("nite element results)
Predicted (r.h.s of

Mesh equation (14)) First eigenvalue Second eigenvalue

1]1 !0)6667 !0)6667 !0)6670
2]2 !0)3333 !0)3334 !0)3341
3]3 !0)1818 !0)1819 !0)1828
4]4 !0)1111 !0)1112 !0)1121
5]5 !0)0741 !0)0742 !0)0752
6]6 !0)0526 !0)0527 !0)0538

*Calculated as (jl
tor

/je
tor
!1) using the lumped mass eigenvalues (jl

tor
) and the theoretical value (je

tor
)

listed in Table 1.
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eigenvalues corresponding to the "nest mesh, 40]15]15, is taken here as the
reference for computing the error. The errors (excluding the case of 40]1]1 and
40]2]2 mesh) are plotted in Figure 2 against the square of the element size, h2.
For both consistent and lumped mass matrices, the plot is seen to be essentially
straight lines, which suggests that the errors in both cases follow a similar trend, i.e.,
O(h2) although they are of opposite signs.
Figure 2. Convergence of eigenvalue with square of element size*8-node hexahedral element.
(***) % error in "rst eigenvalue with consistent mass matrix; (} } } }) % error in "rst eigenvalue
with lumped mass matrix.

TABLE 3

Eigenvalues for the ,rst two torsional modes considering warping e+ects28-node
hexahedral element

First eigenvalue Second eigenvalue

Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix

40]1]1 253584)9 84505)2 2284581)0 759802)1
40]2]2 253584)9 169010)5 2284581)0 1519544)7
40]3]3 233696)8 191151)9 2105878)3 1718356)4
40]4]4 225806)5 200656)6 2034641)9 1803900)7
40]5]5 221935)8 205441)3 1999661)0 1846854)2
40]6]6 219768)5 208144)3 1980161)7 1871355)9

40]10]10 216522)8 212223)2 1950740)9 1907977)1
40]15]15 215477)4 213521)9 1941274)7 1919624)6
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The reason for the di!erence in performance of the lumped mass matrix in
warping and non-warping situations is not straighforward and hence needs some
explanation. For the simpler case of non-warping situation, the lumped mass
matrix shows a poorer performance than the consistent mass matrix, whereas
for the more complex case of warping situation, its performance (convergence
rate) is as good as the consistent mass matrix. This appears rather paradoxical.
Based on the error estimation approach discussed in section 3, a qualitative
explanation to the apparent paradox is straightforward: in a non-warping
situation, an element having linear displacement terms such as the 8-node
hexahedral element does not lead to any error in the numerator of Rayleigh
quotient. However, the case with the denominator is di!erent; the consistent
mass matrix does not lead to any signi"cant error in the denominator whereas
the lumped mass matrix does. The error caused by the lumped mass matrix is due
to the inability of the lumped mass matrix in representing the cross-sectional
mass moment of inertia accurately, and this leads to its poor performance. In
a warping situation, however, in addition to the error in the denominator,
the numerator also has error due to incomplete representation of warping
deformations. If the error in the numerator dominates, then the error in eigenvalues
is entirely governed by the error in the numerator. Under such conditions,
the type of mass matrix used, consistent or lumped, does not in#uence the
convergence rate of eigenvalues. In other words, the eigenvalue convergence
rate becomes &&insensitive'' to the type of mass matrix used. This appears to
be the case in the present example as both the consistent and lumped mass matrices
lead to the same order of error, O(h2) (Figure 2) under the warping
situation.

4.1. PERFORMANCE OF 20-NODE HEXAHEDRAL ELEMENT UNDER TORSIONAL VIBRATION

The results presented so far are for an 8-node hexahedral element. Following
a similar approach, the performance of a 20-node hexahedral element has been
studied. The eigenvalues have been computed for the same cantilever beam as in the
case of the 8-node hexahedral element. Tables 4 and 5 list the eigenvalues for this
element for non-warping and warping cases of torsional vibration respectively.
A scrutiny of Tables 4 and 5 suggests the following conclusions:

(a) For non-warping case (Table 4), the lumped mass eigenvalues involve
signi"cant errors which can be traced back to the inability of lumped mass
matrix to conserve the cross-sectional polar mass moment of inertia. The
consistent mass matrix, however, conserves this inertia and hence even one
element across the cross-section is able to yield theoretically correct (upto three
decimal places) eigenvalues.

(b) A comparison of Tables 4 and 5 for 40]1]1 mesh shows that the eigenvalues
with and without warping e!ects are the same, which would only suggest that
the warping deformations are not sensed by one 20-node hexahedral element
across the cross-section.



TABLE 4

Eigenvalues for the ,rst two torsional modes without warping e+ects220-node
hexahedral element

First eigenvalue Second eigenvalue

Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix

40]1]1 253549)6 112305)4 2281922)7 1008501)0
40]2]2 253549)6 192847)8 2281922)7 1730402)6
40]3]3 253549)6 222433)4 2281922)7 1998772)5
40]4]4 253549)6 235047)4 2281922)7 2113179)0
40]5]5 253549)6 241389)1 2281922)7 2170742)9
40]6]6 253549)6 244977)1 2281922)7 2203264)3

Theory 253549)6 2281922)7

TABLE 5

Eigenvalues for the ,rst two torsional modes considering warping e+ects220-node
hexahedral element

First eigenvalue Second eigenvalue

Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix

40]1]1 253549)6 112305)4 2281922)7 1008501)0
40]2]2 217993)0 165812)4 1962342)0 1488414)9
40]3]3 215471)6 189026)1 1939349)2 1698482)2
40]4]4 214952)7 199268)7 1934452)3 1791432)7
40]5]5 214783)8 204474)2 1932879)6 1838666)1
40]6]6 214708)1 207445)5 1932355)5 1865687)3

(c) For other meshes of the warping case (Table 5), the errors for consistent and
lumped mass eigenvalues are plotted in Figures 3 and 4 against h2 and h4
respectively. It is seen from these "gures that the error in consistent mass
eigenvalues is proportional to h4 whereas that in lumped mass eigenvalue is
roughly proportional to h2.
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In the case of consistent mass eigenvalues, the denominator of Rayleigh quotient
involves little error because the polar mass moment of inertia is conserved by
a consistent mass matrix. Hence, the numerator is the main source of error which
arises due to incomplete representation of warping deformations by the shape
functions. Since the 20-node hexahedral element is a quadratic element, the error in
strain values is of the order of h2, and hence the error in the strain energy and hence
the numerator of Rayleigh quotient is proportional to h4.



Figure 3. Convergence of eigenvalue with square of element size*20-node hexahedral element.
(***) % error in "rst eigenvalue with consistent mass matrix; (} } } }) % error in "rst eigenvalue
with lumped mass matrix.

Figure 4. Convergence of eigenvalue with fourth power of element size*20-node hexahedral
element. (***) % error in "rst eigenvalue with consistent mass matrix; (} } } } ) % error in "rst
eigenvalue with lumped mass matrix.
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Similarly in the case of lumped mass eigenvalues, the error in the numerator is
proportional to h4. However, the error in the denominator due to non-conservation
of polar mass moment of inertia over-rides this error and hence the resulting error
in eigenvalue is predominantly proportional to h2.

4.1.1. Derivation of error estimate

For the 20-node element, the expression for the error estimate of lumped mass
eigenvalues can be derived following a procedure similar to that of the 8-node
element. Consider a cube modelled by one 20-node element as shown in Figure 5.
The lumped masses at the corner and middle nodes are M/40 and M/15,
respectively, where M is the mass of the element. We make the assumption that, for
Figure 5. Mass lumping of 20-node hexahedral element. For a su$ciently re"ned mesh along the
length of the cantilever beam, the rotational motion of nodes, e.g. those marked A, B and C in (a),
about the axis of the beam are nearly equal, and hence the lumped masses of these nodes can be
combined and re-lumped at the mid-plane of the element as shown in (b).
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a su$ciently dense mesh along the length of the beam, all the lumped masses of an
element along an element edge parallel to the longitudinal axis of the beam undergo
the same angle of rotation about the longitudinal axis (Figure 5). For the lumped
masses of the 20-node element, the expression for Iij (equation (6)) takes the form

Iij"11ola4/(30n4). (15)

Using this expression in the rest of the derivation of section 3, the expression for the
error estimate can be shown to be

(jl
tor

/je
tor
!1)"!6/[6#5(a/h)2]. (16)

Table 6 shows the errors predicted by equation (16) and the errors observed in "nite
element results. We observe that the agreement between the predicted and observed
errors is quite good although it is not so close as in the case of the 8-node element,
the reason for which is not obvious.

4.2. PERFORMANCE OF CONSISTENT AND LUMPED MASS MATRICES UNDER
BENDING VIBRATIONS

The analysis presented so far is for torsional vibrations. A similar approach is
followed for studying the convergence of eigenvalues under bending vibrations.
Following equation (4), we may write

j
ben

"(/T
ben

K/
ben

)/(/T
ben

M/
ben

). (17)

As in the case of torsional vibrations, we limit ourselves to the study of the e!ect of
mesh re"nement across the cross-section. Hence, we assume that the mesh density
TABLE 6

<alidation of error model for lumped mass eigenvalues of torsional mode220-node
hexahedral element

Error in eigenvalues

*Observed ("nite element results)
Predicted (r.h.s of

Mesh equation (16)) First eigenvalue Second eigenvalue

1]1 !0)5454 !0)5571 !0)5580
2]2 !0)2308 !0)2394 !0)2417
3]3 !0)1176 !0)1227 !0)1241
4]4 !0)0698 !0)0730 !0)0739
5]5 !0)0458 !0)0480 !0)0487
6]6 !0)0323 !0)0338 !0)0345

*Calculated as (jl
tor

/je
tor
!1) using the lumped mass eigenvalues (jl

tor
) and the theoretical value (je

tor
)

listed in Table 4.
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along the length is su$ciently high. Further, we assume, for simplicity, that
the shear deformation is negligible. Under such conditions, the sections undergo
simple rotations. As a result, an element with linear displacement "eld, such as an
8-node hexahedral element, has no di$culty in representing the displacement
across the cross-section, and hence involves no error in the strain energy and
therefore in the numerator of Rayleigh quotient. Hence, the error in eigenvalue is
entirely dependent on the error in the denominator, i.e., the mass matrix. For lower
modes, the rotation of cross-section is negligible and hence the kinetic energy is
mainly due to transverse motion of the beam. The translational kinetic energy due
to transverse motion can be accurately captured if the mass matrix employed
conserves at least the mass of the element. Both lumped mass matrix and consistent
mass matrix conserve the mass of the element, and hence involve no error in
representing the translational kinetic energy or in other words the denominator of
Rayleigh quotient. Thus, for lower modes, both the mass matrices are expected to
yield comparable estimates of eigenvalues. This is re#ected in the results shown in
Table 7; the di!erence in consistent and lumped mass eigenvalues is only 0)8% for
the "rst mode. We observe a di!erence of 5 and 9)7% between consistent and
lumped mass eigenvalues for second and third modes respectively. However, for
higher modes, the rotation of cross-section is not negligible, and hence rotational
kinetic energy of the element needs to be represented accurately by the mass matrix.
The consistent mass matrix conserves the rotational kinetic energy as it conserves
the mass moment of inertia of the element. Hence, even one element across the
cross-section is able to yield accurate eigenvalues. It can be seen from Table 7 that the
consistent mass eigenvalues do not vary appreciably with mesh re"nement. However,
the lumped mass matrix does not conserve the mass matrix of inertia or the
rotational kinetic energy. Hence, one element across the cross-section is not able to
produce accurate eigenvalues (Table 7). As the mesh is re"ned, Table 7 shows that
the di!erence between consistent and lumped mass eigenvalues decreases fast.

Developing an error model for bending vibration similar to that of torsional
vibration would be di$cult as the kinetic energy and hence the denominator of
TABLE 7

Eigenvalues for the ,rst three bending modes28-node hexahedral element

First eigenvalue Second eigenvalue Third eigenvalue

Consis. Lumped Consis. Lumped Consis. Lumped
mass mass % mass mass % mass mass %

Mesh matrix matrix di!. matrix matrix di!. matrix matrix di!.

40]1]1 2734)1 2712)5 0)8 99487)2 94559)6 5)0 700751)1 632742)7 9)7
40]3]3 2744)0 2740)7 0)1 99392)1 98538)2 0)9 696130)2 683397)7 1)8
40]6]6 2744)0 2742)0 0)1 99055)6 98601)3 0)5 691002)2 683917)2 1)0

Theory 2719)0 100066)7 677520)2
(Timoshenko)



TABLE 8

Eigenvalues for the ,rst three simple shear modes28-node hexahedral element

First eigenvalue Second eigenvalue

Consistent Lumped Consistent Lumped
Mesh mass matrix mass matrix mass matrix mass matrix

40]1]1 253584)9 253515)3 228458)1 2279265)8
40]3]3 253584)9 253515)3 228458)1 2279265)8
40]6]6 253584)9 253515)3 228458)1 2279265)8

Theory 253584)9 2251922)7
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Rayleigh quotient involves both translational and rotational motion of lumped
masses, the relative proportion of which is di$cult to assess.

4.3. PERFORMANCE OF CONSISTENT AND LUMPED MASS MATRICES UNDER SIMPLE
SHEAR VIBRATIONS

Under simple shear vibrations, the dynamic equilibrium is maintained between
strain energy due to shear deformation and kinetic energy due to transverse motion
without any rotation of cross-section. This is simulated in "nite element analysis by
restraining the axial motion of all nodes of the cantilever. The strain energy due to
shear deformation is represented exactly (by 8- or 20-node hexahedral element), and
hence there is no error in the numerator of Rayleigh quotient. The kinetic energy
due to transverse motion is also represented exactly by lumped as well as consistent
mass matrices. Hence, under simple shear vibrations, both lumped and consistent
mass matrices would be able to yield accurate eigenvalues even with one element
across the cross-section. This is con"rmed by the numerical results listed in Table 8.

5. CONCLUDING REMARKS

The convergence of eigenvalues of a cantilever beam modelled with 8- and
20-node hexahedral element with respect to mesh re"nement across the
cross-section has been investigated. The following are some of the important
conclusions:

1. When warping e!ects are suppressed, the consistent mass matrix leads to near
exact torsional eigenvalues even for one element across the cross-section
whereas the lumped mass matrix leads to signi"cant errors. The reason for this
has been observed to be the inability of the lumped mass matrix in representing
exactly the polar mass moment of inertia of the cross-section of the beam.

2. For the 8-node hexahedron element, the expression for the relative error in
lumped mass torsional eigenvalues has been derived as !2/[2#n2] for an



LETTERS TO THE EDITOR 681
n]n mesh; typically, for obtaining the eigenvalues within 1% error with lumped
mass matrix, a 15]15 mesh is required. For the 20-node hexahedron element,
the expression for error has been derived as !6/[6#5n2]. The error predicted
by this expression tallies closely with the error observed in actual "nite element
calculation for the cantilever problem considered.

3. When warping deformations are present, both consistent and lumped mass
matrices lead to the same order of error in eigenvalues, O(h2).

4. For lower modes of bending vibrations, both consistent and lumped mass
matrices lead to comparable eigenvalues. For higher modes, however, the
consistent mass matrix yields more accurate eigenvalues as the mass moment of
inertia of the elements, and hence the rotational kinetic energy of the elements, is
represented accurately.

5. In the case of simple shear vibrations, there is no rotation of cross-sections of the
beam and hence the consistent and lumped mass matrices lead to nearly exact
eigenvalues.
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