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The fundamentals of active vibration control of plates are investigated
theoretically and experimentally, using active constrained layer damping (ACLD)
treatments. Particular emphasis is placed on controlling of the "rst two bending
modes of vibration of plates which are treated fully with ACLD treatments using
proportional and derivative control laws. Finite element models are developed to
describe the dynamics of the ACLD. A modi"ed version of laminated plate theory,
which is an extension of the layer-wise Kirchho! deformation relationships for
the actuator/sensor layers and the base plate layer is introduced. Also, the
Mindlin}Reissner plate theory is adopted to express the shear deformation
characteristics of the viscoelastic layer. The models are validated experimentally at
various operating conditions. The results obtained indicate the potential of the
ACLD treatments as very e!ective means for damping the structural vibrations as
compared to the conventional PCLD. ( 1999 Academic Press
1. INTRODUCTION

Passive surface treatments have been extensively utilized, as a simple and reliable
means, for damping the vibration of plain and sandwiched plates. These surface
treatments rely in their operation on the use of constrained viscoelastic damping
layers which are bounded to the vibrating structures. Higher damping ratios can
also be obtained, over a broad range of temperatures and frequencies, through the
use of multi-damping. Such performance is achieved, however, at the expense of
adding considerable weight to the vibrating plate. This poses serious limitation to
their practical use for many applications where the weight is of critical importance.
Recently, considerable emphasis has been placed on controlling the vibration of
plates using various passive and active control strategies. Important among these
strategies is the passive electro-mechanical surface damping (EMSD) approach [1]
0022-460X/99/440711#24 $30.00/0 ( 1999 Academic Press
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and the active constrained layer damping (ACLD) treatment [2, 3]. In both
strategies, the vibrating plate is treated with a viscoelastic damping layer which is
constrained by a piezoelectric "lm. The piezo"lm is utilized to generate additional
damping through the use of shunting circuits tuned to the dominant resonant
frequencies of the vibrating plate as in the EMSD approach, or through controlling
the shear deformation of the viscoelastic treatment as in the ACLD approach. The
damping mechanism is generated by only passive means in the EMSD approach,
and by a combination of active and passive means in the ACLD approach. In this
paper, the attractive attributes of the ACLD approach are utilized to control,
theoretically and experimentally, multi-bending modes of vibration of plates
treated fully with patches of the ACLD. The ACLD is envisioned to be an e!ective
means for augmenting the simplicity of passive damping with the low weight and
high e$ciency of active controls to attain high damping characteristics over broad
frequency bands.

2. THE CONCEPT OF ACTIVE CONSTRAINED LAYER DAMPING

The ACLD treatment consists of a conventional passive constrained layer
damping which is augmented with e$cient active control means to control
the strain of the constraining layer, in response to the structural vibrations
as shown in Figure 1. The viscoelastic damping layer is sandwiched between
two piezoelectric layers. The three-layer composite ACLD when bonded to
the vibrating plate acts as a SMART constraining layer damping treatment
with built-in sensing and actuation capabilities. The sensing, as indicated by
the sensor voltage <

S
is provided by the piezoelectric layer which is directly

bonded to the plate surface. The actuation is generated by the other piezoelectric
layer which acts as an active constraining layer that is activated by the control
voltage <

C
. With appropriate strain control, through proper manipulation of <

S
,

the shear deformation of the viscoelastic damping layer can be increased, the energy
dissipation mechanism can be enhanced and the structural vibration can be
damped out.

Also, the ACLD provides a practical means for controlling the vibration of
massive structures with the currently available piezoelectric actuators without the
need for excessively large actuation voltages. This is due to the fact that the ACLD
properly utilizes the piezoelectric actuator to control the shear in the soft
viscoelastic core which is a task compatible with the low control authority
capabilities of the currently available piezoelectric materials.

3. FINITE ELEMENT ANALYSIS OF PLATE/ACLD SYSTEM

3.1. OVERVIEW

A "nite element model is developed to describe the dynamics and control
of #exible plates treated fully with the ACLD treatment. The model simulates
the interaction between the base plate, the piezoelectric sensor/actuator, the
viscoelastic damping layer, and the control laws. The model accounts for the



Figure 1. Schematic drawing of the plate/ACLD system.
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behavior of the distributed piezoelectric sensor and actuator. The model
utilizes quadrilateral "nite elements each of which has four nodes with "ve
degrees of freedom per node to describe the longitudinal displacements u

0
and v

0
, the transverse de#ection w, and the slopes Lw/Lx and Lw/Ly of the de#ection

line.
In this paper, a simple quadrilateral element is used to conform with the

literature of passive constrained layer damping (PCLD) treatments, as for example
in Khatua and Cheung [4]. The properties of the element are modi"ed to account
for the e!ect of the piezoelectric controller. Hence, when the piezocontrol action
vanishes, the results converge to the conventional results of the PCLD which are
familiar to the Passive Damping Community.

With reference to Figure 1, the plate has length ¸, thickness h
1
, elastic

modulus E
1

and density o
1
. The sensor sheet has thickness h

2
, Young's modulus

E
2

and mass density o
2
. The piezoelectric actuator has thickness h

4
, Young's

modulus E
4

and piezoelectric constant d
31

. The viscoelastic layer has the thickness
h
3
, mass density o

3
, complex shear modulus G

3
and Young's modulus E

3
, G

3
"G@

(1#ig
3
) and E

3
"E@ (1#ig

3
), where the superscript @ indicates the elastic modulus

and g
3

is the loss factor which is frequency and temperature dependent. In the
sequel, subscripts 1 denote the base plate, 2 the sensor, 3 the viscoelastic and 4 the
actuator.

The assumptions made in the following analysis are as follows: (1) A plane
transverse to the middle plane before bending, remains plane and perpendicular
to the middle plane after bending for the constraining, the sensor and the
base plate layer. (2) The transverse displacement w at a section does not vary
along thickness. (3) Displacement are small compared with the plate thickness.
(4) The piezo-sensor/actuator layers and the base plate are assumed to be
elastic and isotropic. (5) The viscoelastic layer is assumed to be linearly visco-
elastic and characterized by a complex modulus G

3
"G

3
(1#ig

3
), where g

3
is the

viscoelastic loss factor. (6) Perfect bonding between meeting surfaces is assumed.
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3.2. MAIN PARAMETERS AND KINEMATIC RELATIONSHIPS

From the geometry of the ACLD system shown in Figure 1, the neutral axis can
be determined by considering the force balance in the longitudinal direction x:

E
1 P

~t`h1

~t

zdz#E
2 P

~t`h1`h2

~t`h1

z dz#E
3 P

~t`H~h4
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zdz#E
4 P

~t`H

~t`H~h4

zdz"0.

(1)

Equation (1) yields the expression
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where t
1

is the distance between the bottom of the base plate and the composite
neutral axis. Note also that
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The shear strains c
xz

and c
yz

of the viscoelastic core can be written as [4]

c
xz
"d/h

3
[(u

4
!u

2
)/d!(w

,x
)], c

yz
"d/h

3
[(v

4
!v

2
)/d!(w

,y
)], (5)

where d"(h
3
#h

2
/2#h

4
/2), with h

2
, h

3
, and h

4
denoting the thicknesses of the

sensor, the viscoelastic core and actuator layer respectively. The subscripts ,x and ,y
denote spatial derivatives with respect to x and y.

3.3. DEGREES OF FREEDOM AND SHAPE FUNCTIONS

The plate/ACLD elements considered are two-dimensional elements bounded by
four nodal points as shown in Figure 2. The element has length a, width b and total
thickness H. It is assumed that the origin of the Cartesian co-ordinates is at nodal
point (1) and that there are "ve degrees of freedom for each nodal point. These
degrees of freedom include the longitudinal displacements u

0
and v

0
, transverse

de#ection w, slope in the x direction h
x
and slope in the y direction h

y
. It is assumed

that the local element longitudinal displacements u, v are given in the following
layer-wise displacements [5, 6] using the Kirchho! deformation relationships for
the actuator/sensor layers and the plate layer:

u
j
"u

0
#z

j
h
x
, v

j
"v

0
#z

j
h
y
, j"1, 2, 4, (6)



Figure 2. Finite element model of a plate treated with ACLD: (a) co-ordinate system, (b) main
con"guration, (c) unde#ected plate cross-section, (d) de#ected plate cross-section.
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where h
x
"Lw/Lx and h

y
"!Lw/Ly. The Mindlin}Reissner plate theory for the

viscoelastic layer [7] gives

u
3
"u

0
#z

3
/

x
, v

3
"v

0
#z

3
/

y
, /

x
"c

xz
#h

x
, /

y
"c

yz
#h

y
, (7)

where z
j
is the z co-ordinate of the mid-plane of the jth layer measured from the

neutral axis of the composite plate/ACLD; u
0

and v
0

are the in-plane longitudinal
displacements of the neutral plane. /

x
and /

y
are the rotational variables for the

viscoelastic core along x and y directions.
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The spatial distributions of the longitudinal displacements, u
0

and v
0
, and the

transverse displacement w are given in the following form in terms of the local
co-ordinates x and y:

u
0
"a

1
#a

2
x#a

3
y#a

4
xy, v

0
"a

5
#a

6
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7
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8
xy , (8, 9)
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The above equations can be combined and written in matrix form as

MDN"Mu
0
, v

0
, w, h

x
, h

y
NT"[X] [a]. (11)

The constants Ma
1
, a

2
,2 , a

8
N and (b

1
, b

2
,2 , b

12
) are determined in terms of the 20

components of the nodal de#ection vector MD
i
N of the ith element which is bounded

by the nodes 1, 2, 3 and 4. From Figure 2, the nodal co-ordinates are

Node1: (0, 0), Node2: (a, 0), Node3: (a, b), Node4: (0, b).

Substituting these nodal co-ordinate values into equation (11) and solving for MaN,
the following equation is obtained:

MD
i
N"MD

1
, D

2
, D

3
, D

4
NT"[A] MaN, (12)

where MD
k
N"Mu

0k
, v

0k
, w

k
, h

xk
, h

yk
NT for k"1,2 , 4. From equation (12), MaN can

be obtained, MaN"[A]~1MD
i
N. Substituting MaN into equation (11), the de#ection

MDN at any location (x, y) inside the ith element can be determined from
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0
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0
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x
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where MN
1
N, MN

2
N, MN

3
N, MN

4
N and MN

5
N are the spatial interpolating vectors

corresponding to u
0
, v

0
, w, h

x
and h

y
respectively. The in-plane displacements shape

function of the each layer are obtained as

[N
j
]
u
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1
]#z

j
[N

3,x
], [N

j
]
v
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2
]#z

j
[N

3,y
], (14)

where the subscript, j, represents the actuator/sensor and the base plate layer and
,x and ,y denote the spatial derivatives with respect to x and y. Using the
strain}displacement relationships, the strain vector is obtained as

MeN"[d] MDN"[d] [N] MD
i
N"[B] MD

i
N, (15)

where [d] is the linear di!erential operator of the classical plate theory.
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3.4. EQUATION OF MOTION

Applying the principle of virtual work to a "nite element of the plate/ACLD
system yields

d MD
i
NTPPP

V

[B]T [E] [B] d< MD
i
N"d MD

i
NT PPP

V

[N]T Mb(x, y, t)Nd<

#dMD
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V

[N]T MFNd<!d MD
i
NTPPP

V

o[N]T[N] d< MDG
i
N, (16)

where dMD
i
N is the virtual nodal de#ection vector, [E] is the rigidity operator

matrix, Mb(x, y, t)N is the external body force vector and MFN is the external force
vector. Also, o and < denote the density and volume of element. Factoring out
d MD

i
N, the sti!ness matrix and the consistent mass matrix are de"ned as

[K]"PPP
V

[B]T[E] [B] d<, [M]"PPP
V

o[N]T[N] d<. (17)

When ignoring the equivalent nodal loads due to the body force b, the dynamics
of the ACLD-treated plate element can be described by the equation of motion,

[M
i
] MDG

i
N#[K

i
] MD

i
N"MF

c
N, (18)

where [K
i
] and [M

i
] denote the sti!ness and mass matrices of the plate/ACLD

element which are described in detail in Appendix A. In equation (18). MF
c
N is the

vector of control forces and moments generated by the piezoconstraining layer on
the treated plate element. It is expressed as

MF
c
N"MF

1
, F

2
, F

3
, F

4
NT, MF

k
N"MF

pxk
, F

pxk
, 0, M

pxk
, M

pxk
NT for k"1,2 , 4,

(19, 20)

where F
pxk

, F
pyk

, M
pxk

and M
pyk

denote the control forces and moments generated
at node k.

Equation (18) describes the dynamics/control of a single plate/ACLD element.
Assembly of the corresponding equations for the di!erent elements and applying
the proper boundary conditions yields the overall equation for the entire
plate/ACLD system.

3.5. PIEZOELECTRIC SENSOR

The voltage generated by the piezosensor due to plate vibration can be
determined from the electric "eld displacement MDN and the piezoelectric
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constitutive equation,

q(t)"PP
s

Ddx dy (21)

with
MDN"[d]T M¹N#[e]T MEN, (22)

where q(t), [d], M¹N, [e] and MEN represent the charge, piezoelectric strain constant,
stress, dielectric permittivity and applied "eld strength matrix respectively [8].
When piezoelectric sensors are used as the strain rate sensors, the total charge can
be transformed into an output voltage,

<
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where C is the capacitance of the distributed "lm sensor of speci"ed dimensions
given by
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2
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where A is the sensor surface area and K
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is the dielectric constant. The voltage
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S
developed by the piezosensor can then be obtained as
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and where K(x, y) is a distribution shape function of the sensor [K (x, y)"1 for
uniform sensor], [Q

ij
] is the plane stress-reduced rigidity matrix. In equation (25),

the sensor is extended between elements i
sx

and i
fx

in the x direction and i
sy

and
i
fy

in the y direction.
The actuator voltage <

C
is generated by applying a proportional and derivative

control law to the piezosensor voltage <
S

<
C
"!k

p
<

S
!k

d
(d<

S
/dt), (28)

where k
p

and k
d

are the proportional and derivative control gains respectively.

3.6. CONTROL FORCES AND MOMENTS GENERATED BY PIEZOACTUATOR

The control forces and moments generated by the control voltage <
C

are
developed using the approach of reference [9]. First, consider the work done
=

PF
by the in-plane piezoelectric forces MF
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N which can be expressed as
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where Mp
4p

N and Me
c
N are the in-plane stress and strain vectors induced by the

piezoelectric actuator layer 4, and

G
F
pk
0 H"G

F
pxk

F
pyk
0 H"(k

p
#k

d
d/dt)<

S P
ai
P
bi G [B

4p
]T [D

4p
]

d
31

d
32
0 H dxdy, (30)

where node k"1,2 , 4. The constants d
31

and d
32

de"ne the piezoelectric strain
constants in the x and y directions.

Similarly, the work done =
PM

by the piezoelectric moments MM
pk

N due to the
bending of the piezoelectric constraining layer can be obtained using the same
procedure:
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where Mp
4b

N and Me
b
N are the bending stress and strain vectors induced by the

piezoelectric actuator layer 4, and
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"

D
4b11

(1!v
4
)/2, where I

4
denotes the area moment of inertia of the active

constraining layer. These factors and moments depend on the capacitance C of the
distributed "lm sensor, control gains and properties of the piezosensor and
actuator.

The "nite element model as described by equation (18) coupled with the
piezosensor equations (25) and (26) and the piezoactuator equations (19), (20), (30)
and (32) are used to predict the eigenvalues of the open-loop and closed-loop
plate/ACLD system at di!erent operating conditions. The eigenvalues being
complex yield the natural frequencies and loss factors of the entire assembly.

4. EXPERIMENTAL IMPLEMENTATION OF PLATE/ACLD SYSTEM

4.1. OVERVIEW

The theoretical predictions of the ACLD model are compared with the
experimental performance of an aluminium plate which is treated with
a viscoelastic layer (DYAD-606 from Soundcoat, Deer Park, NY) sandwiched
between treated two layers of PolyVinyliDene Fluoride (PVDF) piezoelectric "lms
(AMP, Valley Forge, PA). In this regard, a plate with full ACLD treatment is tested
at di!erent control gains while operating at various ambient temperatures (25, 35
and 453C). Hence, the e!ect of proportional and derivative control action on the
system performance is presented. The experimental work in this section aims also at
demonstrating the merits of the ACLD as an e!ective means for suppressing the
vibration of the #at plates.

4.2. MATERIAL PROPERTIES

Tables 1 and 2 list the main physical and geometrical parameters of the
aluminum sheet, DYAD-606 and polymeric "lms (Model number S028NAO).



TABLE 1
Physical and geometrical properties of the plate, viscoelastic and P<DF layer

Layer Thickness Young's modulus Density The Poisson
(m) (Pa) (kg/m3) ratio

ALUMINUM 4)064E-4 7)1E10 2700 0)33
DYAD-606 5)08E-5 * 1105 0.49

PVDF 2)8E-5 2)5E9 1780 0)3

*Depending on temperature and frequency.

TABLE 2
Main piezoelectric parameters of the P<DF ,lm (at room temperature)

d
31

d
32

k
31

k
32

k
35

g
31

g
32(m/V) (m/V) (%) (%) (Vm/N) (Vm/N)

23E-12 3E-12 12 10 12 216E-3 19E-3
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Figure 3 shows the e!ect of the frequency (1}1000 Hz) and temperatures (25, 35
and 453C) on the storage shear modulus G@ of the DYAD-606. The important e!ect
of frequency is that the shear moduli at di!erent temperatures always increase
with increasing frequency. Also, the shear modulus decreases with increasing
temperature. As far as the loss factor is concerned, it can be seen in Figure 3(b) that
it increases to a maximum and then decreases with increasing frequency when the
temperature is 253C. The position of maximum shifts to higher frequencies with
increasing temperature. These curves are used to predict the performance of the
ACLD treatment at di!erent operating temperatures and frequencies.

4.3. EXPERIMENTAL SET-UP AND PROCEDURES

Figure 4 shows a photograph of the experimental set-up used in testing the
e!ectiveness of the Active Constrained Layer Damping in attenuating the vibration
of the test plate as compared with conventional passive constrained layer damping.
The plate/ACLD system which is 25)4 cm long and 12)7 cm wide is mounted in
a cantilevered con"guration inside a temperature-controlled chamber (Model 5900,
Delta Design, Inc.). A uniformly distributed piezoactuator is used to control the
"rst two bending modes of the plate/ACLD system.

Figure 5 shows a schematic drawing of the set-up indicating that the internal
function generator of the spectrum analyzer (Model CF910, ONO SOKKI) is used
to generate a sine-wave sweep linearly from 0 to 35 Hz with a sweep rate 0)025 Hz/s.
This sine wave is used to acoustically excite the plate/ACLD system through a loud
speaker powered by power ampli"er (Model 6260, Urel Electronic Co.). The tip



Figure 3. Frequency dependence of (a) shear modulus and (b) loss factor for DYAD-606. Temper-
atures: *, 253C; - - -, 353C; ) ) ), 453C.
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displacement signal is measured by laser sensor (Model MQ-Aeromat Corp.,
Providence, NJ) at the middle-end of the test plate and is fed to the spectrum
analyzer to determine its frequency content. The laser sensor has an accuracy of
20 lm over a frequency band between 0 and 1000 Hz. The magnitude ratio (dB) and
the phase shift (deg) of the system response are automatically displayed and stored
in the analyzer. Thus, the transfer function between the input and output can be
obtained. Figure 5 also shows that another spectrum analyzer (Model CF-350,
ONO SOKKI) is independently used to obtain the transfer function between the
piezoactuator and piezosensor. The signal from the piezoelectric sensor is ampli"ed
using a charge ampli"er (Model AM-5, Wilcoxon Research, Rockville, MD). An



Figure 4. Experimental set-up for plate/ACLD system.

Figure 5. Schematic drawing of the experimental set-up.
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analog circuit is used to generate a proportional and derivative control law. An
analog "lter (Model 432, Waveteck Co.) is then used to "lter out the high-frequency
content to avoid observation spillover. The resulting control action is sent via an
analog power ampli"er (Model PA7C, Wilcoxon Research) to the piezoelectric
actuator layer and the spectrum analyzer to determine the frequency content and
the amplitude of vibration.

4.4. EXPERIMENTAL RESULTS AT DIFFERENT OPERATING TEMPERATURES

The experimental results are presented at three di!erent temperatures (25, 35 and
453C). Comparisons are shown in this section between the amplitudes of vibration
when the ACLD is unactivated (i.e., it acts as a Conventional Passive Constrained
Layer Damping*PCLD) and when it is activated using three di!erent
proportional control gains at a "xed temperature.
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A comparison between the natural frequencies, loss factors and attenuations
of the untreated plain plate and plate treated with the PCLD (with k

p
"0 and

k
d
"0) at temperature 253C is shown in Tables 3 and 4. It is evident that the PCLD

treatment has been very e!ective in attenuating the structural vibration of the plate
over the considered frequency range. Tables 5}10 show that activating the ACLD
treatment has resulted in e!ective attenuation of the plate vibrations at di!erent
operating temperatures. Also, it is evident that increasing the control gain has
resulted in improving the vibration attenuation characteristics of the plate with the
ACLD treatment. The performance is obtained using di!erent proportional and
derivative control gains (k

p
"30 with k

d
"50, k

p
"60 with k

d
"130 and k

p
"120

with k "220). The maximum attenuations obtained are 81)4, 81)1 and 83)9% for

d

TABLE 3
¹he natural frequencies, loss factors and attenuations of the ,rst bending mode for

plain plate and PC¸D at temperature 253C

First bending mode
T:253C Frequency Loss factor Attenuation (%)

Plate 4)72 0)034
PCLD 4)48 0)042 62)86

TABLE 4
¹he natural frequencies, loss factors and attenuations of the second bending mode for

plain plate and PC¸D at temperature 253C

Second bending mode
T:253C Frequency Loss factor Attenuation (%)

Plate 30)375 0)012
PCLD 27)58 0)035 83)01

TABLE 5
¹he natural frequencies, loss factors and attenuations of the ,rst bending mode for full

AC¸D treatment at temperature 253C

T:253C First bending mode
k
p
, k

d
Frequency Loss factor Attenuation (%)

k
p
"00, k

d
"00 4)48 0)042

k
p
"30, k

d
"50 4)65 0)075 44)4

k
p
"60, k

d
"130 4)75 0)147 75)3

k
p
"120, k

d
"220 4)94 0)182 81)4



TABLE 6
¹he natural frequencies, loss factors and attenuations of the second bending mode for

full AC¸D treatment at temperature 253C

T:253C Second bending mode
k
p
, k

d
Frequency Loss factor Attenuation (%)

k
p
"00, k

d
"00 27)58 0)035

k
p
"30, k

d
"50 27)80 0)046 11)9

k
p
"60, k

d
"130 28)00 0)060 30)2

k
p
"120, k

d
"220 27)96 0)133 57)7

TABLE 7
¹he natural frequencies, loss factors and attenuations of the ,rst bending mode for full

AC¸D treatment at temperature 353C

T:353C First bending mode
k
p
, k

d
Frequency Loss factor Attenuation (%)

k
p
"00, k

d
"00 4)40 0)048

k
p
"30, k

d
"50 4)48 0)067 49)8

k
p
"60, k

d
"130 4)53 0)147 76)5

k
p
"120, k

d
"220 4)64 0)187 81)1

TABLE 8
¹he natural frequencies, loss factors and attenuations of the second bending mode for

full AC¸D treatment at temperature 353C

T:353C Second bending mode
k
p
, k

d
Frequency Loss factor Attenuation (%)

k
p
"00, k

d
"00 26)19 0)030

k
p
"30, k

d
"50 26)20 0)035 20)82

k
p
"60, k

d
"130 26)29 0)046 45)19

k
p
"120, k

d
"220 26)38 0)056 55)70

TABLE 9
¹he natural frequencies, loss factors and attenuations of the ,rst bending mode for full

AC¸D treatment at temperature 453C

T:453C First bending mode
k
p
, k

d
Frequency Loss factor Attenuation (%)

k
p
"00, k

d
"00 4)30 0)042

k
p
"30, k

d
"50 4)24 0)068 55)0

k
p
"60, k

d
"130 4)32 0)133 77)8

k
p
"120, k

d
"220 4)34 0)184 83)9
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TABLE 10
¹he natural frequencies, loss factors and attenuations of the second bending mode for

full AC¸D treatment at temperature 453C

T:453C Second bending mode
k
p
, k

d
Frequency Loss factor Attenuation (%)

k
p
"00, k

d
"00 25)30 0)026

k
p
"30, k

d
"50 25)72 0)036 14)6

k
p
"60, k

d
"130 26)31 0)044 40)5

k
p
"120, k

d
"220 26)40 0)052 49)7
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the "rst bending mode and 57)7, 55)7 and 49)7% for the second bending mode when
the operating temperature is set at 25, 35 and 453C respectively. At 253C, the
vibration suppression for the full ACLD treatment is found to be most e!ective as
compared to the other temperatures. It is also found that the closed-loop
frequencies and loss factors, at the three temperatures, increase with increasing the
control gains. However, the closed-loop frequencies are found to decrease with
increasing operating temperature. Figure 6 summarizes that the ACLD strategy
with control gains is very e!ective in attenuating the structural vibration of the
plate at its "rst two bending modes.

The performances of a plain plate, plate/PCLD and plate/ACLD system, at
control gains ko"120 with k

d
"220, are compared at di!erent operating

temperatures (25, 35 and 453C). Figure 7 indicates that the PCLD strategy
is very e!ective in attenuating the structural vibration of the plain plate.
However, these attenuations are much lower than those obtained with the ACLD
at the three di!erent temperatures. Hence, it is concluded that the ACLD treatment
is superior to the PCLD treatment particularly over wide temperature and
frequency ranges. Such superiority stems from its ability to combine the attractive
attributes of both the passive and active controls to produce lower amplitudes of
vibration.

It is important to note that the control of the "rst and second bending modes
which occur at 4)48 and 27)58 Hz did not result in control spillover or excitation of
the "rst torsion mode of the plate which occurs at 14)5 Hz. This feature is displayed
clearly in Figures 6 and 7.

4.5. COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL MODAL PARAMETERS

The "nite element model is used to predict the theoretical natural frequencies
and loss factors of the plate/PCLD and plate/ACLD systems. In this study, the
plate/ACLD system is divided into 25 elements. The characteristic eigenvalue
equations of the plate/ACLD are obtained after assembling the corresponding
sti!ness and mass matrices of elements which is derived in Appendix A. The



Figure 6. The frequency response of normalized attenuation of vibration amplitude for full ACLD
treatment: (a) 253C, (b) 353C, (c) 453C, controlled by k

p
and k

d
: *, k

p
"00, k

d
"00; 2, k

p
"30,

k
d
"50; *, k

p
"60, k

d
"130; 2, k

p
"120, k

d
"220.
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resulting equations are

M[K]!u*2[M]N MUN"0, (34)

where u* is the system frequency (rad/s) and MUN is the corresponding eigenvector.
The eigenvalues in equation (34) are solved using the IMSL complex variables
subroutines. This yields complex eigenvalues which are expressed as

u*2"u2 (1#ig), (35)

where g is the loss factor of the system corresponding to the modal frequency u.



Figure 7. The frequency response of normalized attenuation of vibration amplitude for plain plate
(*), plate/PCLD (*), plate/ACLD (=: optimum gain); (a) 253C, (b) 353C, (c) 453C.
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The theoretical and experimental modal frequencies and associated loss factors
are compared for the "rst two bending modes when the full ACLD treatment is
controlled with di!erent proportional and derivative control gains at di!erent
operating temperatures (25, 35 and 453C). Figures 8}11 summarize these results for
di!erent control gains. Figures 8 and 9 show comparisons between theoretical and
experimental natural frequencies and loss factors of the "rst bending mode for the
full ACLD treatment system at three di!erent temperatures (25, 35 and 453C). The
results show a good agreement between theory and experiment. The discrepancy is
about 3}6% in the modal frequencies and about 4}7% in the modal damping ratios
respectively. Figures 10 and 11 show the corresponding comparisons between
theoretical and experimental natural frequencies and loss factors of the second
bending mode for the full ACLD treatment system at three di!erent operating



Figure 8. Comparison between theoretical and experimental natural frequencies of "rst bending
mode for di!erent k

p
and k

d
at (a) 253C, (b) 353C, (c) 453C for full ACLD treatment (d, k

p
"00,

k
d
"00; r, k

p
"30, k

d
"50; m, k

p
"60, k

d
"130; j, k

p
"120, k

d
"220).
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temperatures (25, 35 and 453C). Close agreement between theoretical predictions
and experimental measurements is evident. In addition, it is clear that the closed-
loop frequencies decrease with increasing operating temperature, since the shear
modulus of viscoelastic material decreases with increasing temperature as indicated
in Figure 3. It is concluded that the results for the modal parameters estimated
theoretically correlate well with the results from the experiments.

It is important here to note that the theoretical predictions presented are
obtained using a "nite element model with 25 elements. The convergence of the
model is checked using 2, 8, 16 and 25 elements. With two elements, the "rst and
second bending natural frequencies are 5)46 and 34)77 Hz, with eight elements, the
values become 4)53 and 28)51 and with 16 elements, the frequencies are 4)52 and



Figure 9. Comparison between theoretical and experimental loss factors of "rst bending mode for
di!erent k

p
and k

d
at (a) 253C, (b) 353C, (c) 453C for full ACLD treatment (d, k

p
"00, k

d
"00;

r, k
p
"30, k

d
"50; m, k

p
"60, k

d
"130; j, k

p
"120, k

d
"220).
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28)31 Hz. With 25 elements, the corresponding values converge to 4)48 and
27)58 Hz.

5. CONCLUSIONS

The theoretical predictions of a "nite element model simulating the dynamics
and control of plates treated with ACLD were compared with the experimental
measurements. Experimental results were presented at three di!erent operating
temperatures (25, 35 and 453C). It was found that activating the ACLD treatment
has resulted in e!ective attenuation of the plate vibrations. It is observed also that



Figure 10. Comparison between theoretical and experimental natural frequencies of second be-
nding mode for di!erent k

p
and k

d
at (a) 253C, (b) 353C, (c) 453C for full ACLD treatment (d, k

p
"00,

k
d
"00; r, k

p
"30, k

d
"50; m, k

p
"60, k

d
"130; j, k

p
"120, k

d
"220).
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increasing the control gain has resulted in improving the vibration attenuation
characteristics of the ACLD treatment. The theoretical and experimental modal
frequencies and associated loss factors are compared for the "rst two bending
modes. The results showed good agreement in the natural frequencies and loss
factors evaluated by two methods. Hence, the developed theoretical and
experimental techniques developed in this study constitute an invaluable tools for
designing and predicting the performance of the smart laminated structures that
could be used in many engineering applications.



Figure 11. Comparison between theoretical and experimental loss factors of second bending mode
for di!erent k

p
and k

d
at (a) 253C, (b) 353C, (c) 453C for full ACLD treatment (d, k

p
"00, k

d
"00;

r, k
p
"30, k

d
"50; m, k

p
"60, k

d
"130; j, k

p
"120, k

d
"220).
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APPENDIX A: STIFFNESS AND MASS MATRICES OF THE
PLATE/ACLD SYSTEM

The strains can be divided into two parts, in-plane and bending. Presenting the
strain}displacement matrix of each lamina, the in-plane and bending sti!nesses
matrix [K ] of the ith element of the plate/ACLD system is obtained.
i
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The sti!ness matrix [K
i
] of the ith element of the plate/ACLD system is given by

[K
i
]"

4
+
j/1

[K
pj
]#[K

s3
]#[K

be
], (A1)

where [K
pj
] denote the in-plane sti!ness of jth layer respectively. The matrix [K

s3
]

de"nes the shear sti!ness matrix of the viscoelastic layer. Also [K
be

], is the bending
sti!ness matrix of plate/ACLD system. These sti!ness matrices can be written as

[K
pj
]"h

j P
ai
P
bi

[B
jp
]T [D

jp
] [B

jp
] dxdy, j"1,2 , 4, (A2)

[K
s3

]"G
3
h
3
/1)2 P

ai
P
bi

[B
g
]T [B

g
] dxdy, [K

be
]"P

ai
P
bi

[B
b
]T [D

b
] [B

b
] dx dy,

(A3, 4)

where G
3

denotes the shear modulus of the viscoelastic layer de"ned by G@(I#ig
3
)

and 1)2 in equation (A3) is the shear factor [10]. Also, the strain}displacement
matrices [B

jp
], [B

b
] and [B

g
] are given by

[B
jp
]"

[N
1,j

]
,x

[N
2,j

]
,y

[N
1,j

]
,y
#[N

2,j
]
,x

, [B
b
]"

![N
3
]
,xx

![N
3
]
,yy

!2[N
3
]
,xy

and

[B
g
]"d/h

3 G
([N

1,4
]![N

1,2
])/d#[N

3,x
]

([N
2,4

]![N
2,2

])/d#[N
3,y

]H, (A5)

The "rst subscript represents the shape function and the second represents the jth
layer. The inplane sti!ness [D

jp
] is given by

[D
jp
]"

D
jp11

D
jp12

0

D
jp21

D
jp22

0

0 0 D
jp33

(A6)

with D
jp11

"D
jp22

"E
j
/(1!v2

j
), D

jp12
"D

jp21
"v

j
E
j
/ (1!v2

j
) and D

jp33
"

E
j
/[2(1#v

j
)] where E

j
and v

j
denote Young's modulus and the Poisson ratio of

the jth layer respectively.
The equivalent bending sti!ness [D

b
] of ACLD for plates can be written as

[D
b
]"

4
+
j/1

[D
bj
], (A7)

where [D
b1

], [D
b2

], [D
b3

] and [D
b4

] are the #exural rigidity of the base plate,
the sensor, the viscoelastic and the actuator layer respectively. These rigidities are
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given by

[D
bj
]"C

E
j
(t3
j`1

!t3
j
)

3(1!v2
j
) D

1 v
j

0

v
j

1 0

0 0 1
2
(1!v

j
)

, (A8)

where E
j
and v

j
denote Young's modulus and the Poisson ratio of the jth layer

respectively.
The mass matrix [M

i
] of the ith element of the plate/ACLD system is given by

[M
i
]"

4
+
j/1

[M
bj
]#

4
+
j/1

[M
pj

], (A9)

where [M
bj
] and [M

pj
] denote the mass matrices due to bending and extension of

the jth layer respectively. These mass matrices can be written by

[M
bj
]"o

j
h
j CP

ai
P
bi

([N
3
]T[N

3
]) dx dyD (A10)

and

[M
pj
]"o

j
h
jCP

ai
P
bi

([N
1,j

]T [N
1,j

]#[N
2,j

]T[N
2,j

]) dx dyD, (A11)

where o
j
and h

j
represent the density and thickness of the jth layer respectively.
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