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An e$cient method is presented in this paper for predicting the re#ection and
transmission coe$cients of acoustic waves in ducts at the location of a continuous
variation in cross-sectional area. Conventional numerical methods yield high
dimensionality in the resulting numerical problem due to segmentation of the
non-uniform section into a number of subsections. This paper shows that an
ingenious application of spherical coordinates according to the geometry of the
non-uniform section enables us to determine analytically the system of
characteristic functions for various pro"les of the non-uniform portion. This
system of characteristic functions can be used as a complete set to express the
solution over the non-uniform region, so that the numerical problem to be solved is
of a much lower dimension than that yielded by conventional numerical methods.
A technique to render the characteristic functions independent of the frequency is
also explained to keep the computation time short. The present method is
applicable to non-plane wave modes of propagation by virtue of the use of
standard three-dimensional curvilinear co-ordinates. ( 1999 Academic Press
1. INTRODUCTION

Calculation of re#ection and transmission coe$cients in ducts with a change in
cross-sectional area is an important topic in acoustics. There are many practical
situations where sound is propagated in such non-uniform ducts. For ducts having
discontinuous changes in cross-sectional area, an analytical method can be applied
[1], since analytical expressions for the characteristic functions constituting
a solution to the wave equation are available over the region under consideration.
The remaining work uses conventional Fourier expansion techniques to satisfy the
condition of continuity at the discontinuities for the sound pressure and the #uid
particle velocity. However, for ducts with continuously varying cross-sectional
area, such an analytical solution is not available except for the case of the plane
wave mode of propagation through linearly tapered ducts. In such cases, numerical
methods have to be used, such as the method of weighted residuals [2}4] and the
"nite element method [5, 6], as well as perturbation methods like the ones
described in the reference material [7, 8]. An alternative approach is a computation
scheme used in the reference material [9}11]. This method represents a non-
uniform duct with a series of stepped uniform ducts and systematically accounts for
0022-460X/99/440735#14 $30.00/0 ( 1999 Academic Press
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the re#ection and transmission process which occurs at the intersection of
the stepped elements. These conventional methods yield a high dimensionality
in the resulting numerical problem due to segmentation of the duct into many
subsections or require an iterative calculation to obtain reasonably accurate
results.

The purpose of this paper is to report a more e$cient analytical method, which
requires neither segmentation nor iterative calculation. Basically, we applied
spherical co-ordinates according to the geometry of the non-uniform section, thus
enabling us to determine analytically the system of characteristic functions for
various pro"les of the non-uniform portion of the duct. This system of
characteristic functions can be used as a complete set to express the solution over
the non-uniform region, so that the resulting numerical problem is of much lower
dimension than that yielded by conventional numerical methods. Furthermore, the
present method is applicable to non-plane wave modes of propagation by virtue of
the use of standard three-dimensional curvilinear co-ordinates.

2. SOLUTION METHOD

2.1. COMPUTATIONAL MODEL

The geometry is de"ned in Figure 1, where two semi-in"nite uniform duct
sections are joined by a non-uniform transition section of length ¸. The side wall of
Figure 1. Computational model and co-ordinate systems (diverging (a) and converging (b) tapered
transition sections).
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the duct is assumed to be rigid for all the sections. The cylindrical co-ordinates r,
u and z are used to express the solution in the uniform sections z)0 and ¸)z,
while the spherical co-ordinates R, h and u are introduced to determine analytically
the characteristic functions for the non-uniform portion 0)z)¸. The origin O of
the spherical co-ordinates is chosen as the apex of the cone whose side wall is
tangent to the duct wall at the location having the largest cross-section. Such a use
of the spherical co-ordinates is e!ective for geometries of the non-uniform portion
satisfying the following conditions:

(1) The cross-sectional area increases or decreases monotonically with z.
(2) The side wall is not parallel to the z-axis at z"¸ or z"0 for the diverging

(Figure 1(a)) or converging (Figure 1(b)) cases respectively.
(3) The region 0)h)hM absorbs completely the non-uniform portion.

If condition (2) is not satis"ed, the origin O tends towards minus or plus in"nity
and hM P0. This problem can be solved by slightly changing the position from
which the tangent of the duct wall is drawn, such that hM is a small non-zero value,
i.e., 13.

The sound pressure p in the uniform sections must satisfy the wave equation
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where c is the speed of sound. The solution to equations (1)}(3) can be
obtained by mathematical procedures described in references [1, 12] and are
expressed as
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where p(I), p(R) and p(T) represent the incident, re#ected and transmitted waves
respectively; C
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are de"ned such that equations (4)}(6) include the plane wave mode, for which
sound pressure is constant throughout the cross-section of the duct.

The resulting task, then, is to determine the re#ection and transmission
coe$cients for a prescribed mode (m, l) of the incident wave, so that p(I)
(equation (4)) includes the mode (m, l) alone. However, p(R) and p(T) are expressed in
terms of the superposition of many modes (n"n

min
,2, n

max
) to satisfy the

condition of continuity at z"0 and z"¸ by the Galerkin method later. Note that
summation for the circumferential wave number m is not necessary here since the
three sections z)0, 0)z)¸ and ¸)z are coaxial. The summation over n in
equations (5) and (6) can be physically explained by the fact that the divergence or
convergence, under a model excitation with mode (m, l), will generate re#ections
and transmissions following a series of radial modes having the same
circumferential index m.

The sound pressure P in the non-uniform portion satis"es the wave equation
expressed in spherical co-ordinates:
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The solution of equation (11) must be expressed by a linear combination of
characteristic functions whose orthogonality is satis"ed within the range 0)h)hM .
Since hM (n/2 (see Figure 1), such orthogonality cannot be satis"ed by the widely
used Legendre polynomials. This is the reason why the characteristic functions
must be derived anew here. We assume a solution in terms of separated variables,
i.e.,

P(R, h, u, t)"F(R)H (h)cosmu e*ut . (12)

Substitution of equation (12) into equation (11) gives
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where k is the wave number given by

k"u/c (15)

and j denotes a characteristic value to be determined later. The new variables

u"kR, G(u)"u1@2F(R) (16)

transform equation (13) into the Bessel equation of order Jj#0)25 with respect to
G. Hence, the solution F can be expressed by a linear combination of the following
two independent solutions:

F
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On the other hand, equation (14) is solved for the boundary condition

dH
dh

"0 at h"hM . (18)

This can be derived by considering the limit hPhM of the boundary condition on the
duct wall
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through the following procedures. From equation (12), equation (19) can be written
as
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where N represents the outward normal of the duct wall and (a, b) denotes the angle
between directions a and b. When h approaches hM , cos(R, N) and cos(h, N) tend
towards 0 and 1 respectively (see Figure 1), so that equation (20) can be reduced to
equation (18). Thus, the boundary condition for the characteristic function H(h)
can be determined by the kinematic condition at h"hM , i.e., only (18), instead of
throughout the duct wall, i.e., (20). Therefore, for various types of the non-uniform
portion, the characteristic function H(h) can be analytically determined by solving
the boundary value problem constituted by equations (14) and (18).

Note that the origin of the spherical co-ordinates is chosen such that cos(R, N)
vanishes at h"hM for the boundary condition (20). Otherwise, the boundary
condition for H(h) is of the following frequency-dependent form
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instead of the simple frequency-independent equation (18). The frequency-
dependent function F (see equations (17) and (15)) contributes to the boundary



Figure 2. Slight change of duct pro"le to e!ect the use of spherical co-ordinates.
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condition (21) although the di!erential equation (14) for H(h) is a frequency-
independent equation. This requires repeated calculation of the characteristic
function H (h) for each frequency u, and consequently increases the computation
time and cost.

For the case shown in Figure 2(a), we encounter the problem that the region
0)h)hM cannot completely absorb the non-uniform portion. If we alter the
spherical co-ordinates to solve the problem as shown in Figure 2(b), cos(R, N)
takes a non-zero value at h"hM rendering the boundary condition (21)
frequency-dependent. To overcome these di$culties, a slight change of the duct
pro"le shown in Figure 2(c) is advisable.

The nth characteristic function determined from equations (14) and (18) is
given by

H
mn
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Refer to Appendix A for the derivation of equation (22).
Expressing H

mn
(h) in terms of the Gaussian hypergeometric series,

F
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(a, b, c;x) [13] is helpful for examining the convergence of the solution series.
The Gaussian hypergeometric series F

GAUSS
(a, b, c; x) converges for abritrary

values of a, b and c, provided that Dx D(1 [13]. Hence, solution (22) converges for
0)h)n. In the present analysis, we have 0)h)hM , where hM is a small angle, as
can be seen from Figure 1. Therefore, the convergence of solution (22) is assured.

By superposing the characteristic functions, the sound pressure in the
non-uniform section can be expressed as
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The solutions in the uniform and non-uniform sections (equations (4)}(6) and
(23)) must satisfy the condition that the sound pressure and the particle velocity are
continuous at the interface between the uniform and non-uniform portions:
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Furthermore, solution (23) must satisfy the boundary condition (19). These
conditions can be expressed in the form of the Galerkin method for diverging ducts
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By substituting equations (4)}(6) and (23) into equations (28)}(31), we obtain
a system of algebraic homogeneous equations for C

1ml , C2mn
, C

3mn
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). By solving this system of equations, we can determine the
following re#ection coe$cient R
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incident mode (m, l):
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The dimension of the numerical problem for obtaining a su$ciently converging
solution is small due to the orthogonality of the characteristic functions (22), so that
the present analysis requires only a small amount of computation time and cost.

3. NUMERICAL EXAMPLES

As a test for the accuracy of the present method, numerical computation was carried
out for an identical case given in the reference material [11]. The results obtained



Figure 3. Re#ection and transmission coe$cients for incident modes (m, l)"(0, 0), (1, 1) and (2, 1);
s, present method;**, theoretical prediction in the reference material [11]; (a) Diverging linearly
tapered transition section with a

1
"0)0208 m, a

2
"0)02645 m and ¸"0)0207 m. (b) Converging

linearly tapered transition section with a
1
"0)0208 m, a

2
"0)01785 m and ¸"0)0207 m.
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by the present method are marked in the "gure cited from this reference (Figure 3).
Excellent agreement can be con"rmed between the results obtained by the present
analysis and those of the theoretical prediction in the reference material [11].

The numerical results are shown within the frequency range u*

max(ck
1ml , ck2ml), in which the mode (m, l) is an advancing wave in all portions of

the duct and hence extremely useful in engineering applications. Below this
frequency domain, both or either of the wave numbers k

1ml and k
2ml is a pure

imaginary number, as can be seen from equations (7) and (8), so that the mode (m, l)
is unpropagated. The frequencies ck

1ml and ck
2ml are the cut-on frequencies [12]

for the uniform sections with radii of a
1

and a
2

respectively.
Figure 4 shows the results for the curvilinearly tapered transition section whose

side wall pro"le is given by
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Figure 4. Re#ection and transmission coe$cients for incident modes (m, l)"(0, 0), (1, 0) and (2, 1);
**, curvilinearly tapered transition section of length ¸"0)003 m; }}}, discontinuous change in
cross-section; (a) a

1
"0)0208 m, a

2
"0)02645 m; (b) a

1
"0)0208 m, a

2
"0)01785 m.
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where the constants A and B are determined by
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Since the argument of the sine function is equal to !703 and 703 for z"0 and
z"¸ respectively, the geometry of the side wall is represented by the sine curve
A sinx within the range !70hxh703. To verify the numerical result, it is
compared with the re#ection and transmission coe$cients for the case in which the
radius of the duct discontinuously changes from a

1
to a

2
at z"0. To determine

these coe$cients, numerical calculation was carried out according to the method
presented in the reference material [1], and the results are shown by a dashed line in
Figure 4 for the sake of comparison. The same comparison was repeated for the



Figure 5. Re#ection and transmission coe$cients for incident modes (m, l)"(0, 0), (1, 1) and (2, 1);
**, linearly tapered transition section of length ¸"0)0207 m; }}}, discontinuous change in
cross-section; (a) a

1
"0)0208 m, a

2
"0)02645 m; (b) a

1
"0)0208 m, a

2
"0)01785 m.
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linearly tapered transient section formerly employed (Figure 5). For the
curvilinearly tapered transient section, the variation in the cross-sectional area is
steeper than for the linearly tapered transient section, so that the result should
approach the value shown by dashed line to some extent. The curves shown in
Figures 4 and 5 indicate the trend. This discussion serves as a veri"cation of the
present analysis.

Some signi"cant observations may be made from Figures 4 and 5. First, the
di!erence between the results for the continuous and discontinuous change in
cross-sectional area is larger in the case of non-plane wave modes than for the plane
wave mode. This signi"es that the importance of the present method, which allows
for continuous variation in cross-sectional area, is accentuated for the non-plane
wave modes of propagation. The second point of interest is that the dependency of
the re#ection and transmission coe$cients on the frequency is much more marked
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for the non-plane wave modes than for the plane wave mode. The re#ection and
transmission coe$cients for the non-plane wave modes vary sensitively in the
vicinity of the cut-on frequencies of the non-plane modes. A quantitative discussion
can be made for this result for the case of the discontinuous change in
cross-sectional area. The discussion is useful since the qualitative trend is similar for
both continuous and discontinuous change in cross-sectional area. In the case
a
1
(a

2
, for example, the conditions of continuity for the sound pressure and the

particle velocity at the interface z"0 are given by
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Using the assured approximation that the mode n"l is predominant for the
re#ected and transmitted waves and substituting equations (4)}(6) into
equations (38) and (39) yield
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otherwise. Solving equations (40) and (41),

we determine the re#ection and transmission coe$cients as
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For the plane wave mode (m, l)"(0, 0), as can be seen from equations (7), (8) and
(10), the angular frequency u in the denominator and the numerator in
equation (43) cancel out, so that the re#ection and transmission coe$cients are
reduced to constants. For the non-plane wave modes, on the other hand, these
coe$cients vary sensitively near the cut-on frequencies. When the frequency is
increased from the cut-on frequency of each non-plane wave mode, the values in the
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brace brackets in equations (7) and (8) have their "rst terms to prevail, so that the
dependency of the re#ection and transmission coe$cients on the frequency
becomes less marked. (For the plane wave mode, the second terms are exactly zero,
as can be seen from equation (10)).

4. CONCLUSION

The re#ection and transmission coe$cients of acoustic waves in ducts at the
location of a continuous variation in cross-sectional area have been calculated for
the non-plane wave modes as well as the plane wave mode. The solution method
and numerical results can be characterized as follows.

1. The use of spherical co-ordinates enable us to determine analytically the
system of characteristic functions for various pro"les of the non-uniform
portion. The system of characteristic function can be used as a complete set to
express the solution over the non-uniform region. Since the dimension of the
resulting numerical problem is low, the present analysis requires little
computation time and cost.

2. The di!erence between the results for the continuous and the discontinuous
changes in cross-sectional area is larger for the non-plane wave modes than
for the plane wave mode. This signi"es that the importance of the present
method, which allows for continuous variation in cross-sectional area, is
accentuated for the non-plane wave modes of propagation.

3. The dependence of the re#ection and transmission coe$cients on the
frequency is more marked for the non-plane wave modes than for the plane
wave mode.
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APPENDIX A: DERIVATION OF EQUATION (22)

The new variables
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transform equation (14) to
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which can be solved using power-series expansion. Substituting

u(m)"(m!1)o
=
+
i/0

a
i
(m!1)i (A3)

into equation (A2), one obtains an equation for o, namely

o (o#m)"0 (A4)

and a recurrence relation for the coe$cients a
i
:

a
i`1

"

j!i (i#1)!m(m#1#2i)
2(i#1)(i#1#m)

a
i
. (A5)

Equation (A4) admits o"0 for the bounded solution at m"1 (h"0). The
characteristic values j"j

mn
(n"1, 2,2) must be determined such that the

solution (A3) satis"es the boundary condition (18). By introducing a parameter
a satisfying a (a#1)"j, equation (A5) can be transformed into

a
i`1

"

!(m!a#i) (a#m#i#1)
2(i#1)(m#i#1)

a
i

(A6)

using which the required characteristic function can be expressed in terms of the
Guassian hypergeometric series as equation (22).
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