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The effect of a hydrodynamic thrust bearing on the dynamics of a rotor-bearing
system is investigated systematically in this paper. The action of a thrust bearing is
described as forces and moments in a static state and a series of dynamic
coefficients in a dynamic state which are calculated from the Reynolds equation and
its perturbed forms by using the boundary elements method. A lumped-mass model
for system motion based on the Myklestad transfer matrix method is formulated
considering the effects of thrust bearings and axial load. An interative procedure is
proposed to sovle the indeterminate problem of load-sharing among journal
bearings due to the introduction of thrust bearings. The effects of such parameters
as stiffness of shaft, static loads of journal bearings, position of lumped mass,
position of thrust bearing and arrangement of thrust bearings on the action of
thrust bearings are discussed. The nature of this action reveals that thrust bearings
not only provide stiffness and damping in a dynamic state, but also change the
static deflection of the shaft, and thereby influence the static load-sharing of journal
bearings. The present research helps to explain the variation of dynamic
characteristics of a machine due to the introduction of thrust bearings, and also
provide theoretical basis for the dynamic design considering the effect of thrust
bearings.

© 1999 Academic Press

1. INTRODUCTION

Rotordynamics has gone through stages such as characteristics of shaft (critical
speed, unbalance response, etc.), rotordynamic characteristics of key parts or
components (hydrodynamic journal bearings, seals, couplings, etc.), stability
analysis, active and passive vibration control and non-linear dynamics, etc. [1-11].
The investigations have already advanced beyond the shaft itself. The components,
which can show effects on characteristics of rotor systems, may be considered as
study objects. Hydrodynamic bearings are regarded as the best sources of damping.
A lot of interest has been paid to the rotordynamic characteristics of hydrodynamic
journal bearings [12]. In contrast, the effect of thrust bearings has not been given
adequate attention. In most cases, thrust bearings are treated as axial supports, and
hence existing investigations are mostly concerned with their static characteristics
and the axial motion of rotors [ 13-15]. Mittwollen et al. in 1991 [16] pointed out

0022-460X/99/440833 4 40 $30.00/0 © 1999 Academic Press



834 P. L. JIANG AND L. YU

the effect of hydrodynamic thrust bearings on the lateral vibration of rotor system.
They defined a series of dynamic coefficients to describe the dynamic action of
a hydrodynamic thrust bearing, and the effect of a thrust bearing on the lateral
vibration of a single-mass rotor system was investigated thereafter. The effect was
also shown by an experiment in their paper. But this effect has not yet been given
the attention it deserves. In rotor systems, hydrodynamic thrust bearings as well as
journal bearings are the only parts capable of being designed to control the
vibrations of rotors, and therefore it is necessary to investigate this effect
thoroughly and systematically.

There are many cases when thrust bearings greatly change the dynamic
characteristics of rotating machinery in industrial practice [17]. But as this effect
has not been studied sufficiently, when dynamic analysis and design of rotor
systems are undertaken, attention is frequently paid to journal bearings, which
have two consequences. On the one hand, inherent defects may be introduced
into the system. As the action of thrust bearings is not sufficiently estimated, the
drift of critical speeds caused by thrust bearings is certain to affect the normal
operation of the machine. On the other hand, the action of thrust bearings to
enhance stability and control vibration cannot have sufficient effect. Thrust
bearings are frequently placed in positions where their actions are not strong. Their
parameters such as oil-film thickness are chosen in order that it does not give full to
this kind of effect. Consequently the effects of thrust bearings in many machine are
not obvious.

In rotating machinery, the dynamic responses of the shaft depend to a large
extent on damping provided by all sorts of hydrodynamic bearings including thrust
bearings. Therefore, as a kind of damping source, thrust bearings must be treated
with the importance accorded to journal bearings. Most rotating machines are
equipped with double-facet thrust bearings to balance the axial loads. As the axial
clearance between the runner and the collar can be adjusted conveniently, and the
oil-supplying system can be designed along with that of journal bearings, the
dynamic design of thrust bearings is expected to be a measure to enhance the
stability of system.

The introduction of thrust bearings changes the boundary condition of a
system, and therefore changes the static equilibrium state. Even for a single-mass
rotor system supported by two journal bearings at both ends and a thrust
bearing in the axial direction, the load-sharing between journal bearings becomes
a static indeterminate problem, and therefore the static coupling must be
considered.

It is pointed out by vibration theory that the axial force can influence the critical
speeds of a shaft to some degree [ 18]. Therefore, the effect of the static force which
thrust bearings balance on the lateral vibration must be accounted for.

In this paper, the effect of a hydrodynamic thrust bearing on the lateral vibration
of a rotor-bearing system is investigated systematically. Effects such as influence of
axial force on lateral vibration, offset-load effect in journal bearings and static
coupling between the thrust bearing and the rotor system, etc., are considered. The
nature of the effect of thrust bearings on rotor-bearing systems and the factors
affecting this effect are discussed in detail.
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2. ROTORDYNAMIC MODELLING OF A HYDRODYNAMIC
THRUST BEARING

A hydrodynamic thrust bearing in operation is shown in Figure 1. The runner
of the thrust bearing translates in the axial direction and rotates around the x- and
y-axis, and therefore the thrust bearing provides five actions to the system, namely
W,, Wy, W,, M{ and M%, as shown in the figure, which are due to the normal
pressure produced by the oil film. The thrust bearing is supposed to work under
isothermal conditions. Accordingly, the normal pressure on the jth pad satisfies the
following Reynolds equation:

o ( h* op o ( h®dp\ wodh oh
Nt =+t = (1)
Ox \ 12u 0x Oy \12u oy 200 ot

Oil thickness & is not only a function of the pad parameters, but also that of the
motional parameters of rotor ¢ and . It can be written from Figure 2 as

h = h, + oorsin(0, — 0) — y;rcos 0 — ¢;rsin0, (2)

where
@; = @cosa; — sina;, 3)
Y = @sino; + Y cosa;.

In local co-ordinate system, the load capacity of a single pad is

Wo = Wioi + Wyoj + W0k, 4
Runner
‘ W,
\ Wx
[hrugt bearing
w, .

| > 7
MX
x Rotor

\

Figure 1. A hydrodynamic thrust bearing in operation.



836 P. L. JIANG AND L. YU

Figure 2. Parameters of thrust bearing.

with
Wio sin (] Pjo
Wyo p = Wo{cos;siny; y & Woijo s
W.o COS (;COS V; 1-0
WO = ijo?’dr d@, (5)

Q;

J

where Q; refers to the surface of the jth pad.
The moment vector due to normal oil-film pressure is

Mp =M§01+M50j +M§0k, (6)
with
JJ por?cos 0drdo
Mz, %
Mpyr=| — Jpor2 sin0drdo | . (7)
MEO Q;

- Mﬁo@jo - Mﬁolﬁjo
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In the case of small perturbation, the increment of W can be expressed in the

form of stiffness and damping coefficients, i.e.,
AW = AW,i + AW, j + AWk,
where

AW, KhkY k) (4h, v, dav, dav) (h

p

AW, b =k K kWY S Ag ) 4+ dh Al dl oy
aw, )i Uy ko k)i lay )i al ay a%)i )i

(®)

; ©)

kY is the force stiffness coefficients in the i direction when the degree of freedom s is
perturbed, and d? is the force damping coefficients in the i direction when velocity
§ is perturbed (i = x, y, z; s = h,, ¢;, ). The moment dynamic coefficients can also

be defined in the same manner.
The formulae for these coefficients are given as

K Pk % d2,
k¥ b= ook, + Wo p, {de, t = @od dby, 1,
km (Pok?l/// dl‘,’,, d?n/z/
k% PokZ; v o
kyor =9 @okip 1. {dy | = @ofdz;
khy pokly, + Wy 1A A

op - op
kK = “ﬁrdrdﬂ dy, = ” ahprdrd@

Q; Q;

kY, = f@rdrda, v = fap drdo,
®j J a(PJ

Q; Q;

i

K = J@rdrde, v, = Ja—rdrdﬂ

JJ oy vy
Q; Q;
KM — J@ 2 cos 0 dr do, d%:ﬂﬁr cos 0 dr do,
JJ oh, oh
Q; Q.

J

kxMw_Jf@ cos 0drdo, dﬁf,,=ffa—l,)rzcosedrd0,
0 0;

j Q;
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dop
——r?cos0drdo, a¥ = JJ—V cos 0 drdo,
U o v ) oy

J

kM = J ——r Zsin0drd0,  d¥ = JJ —a—.przsinOdrdO,
oh,
Q;
M = J ——r 2 sin 0.dr do, d%:” fpp 2 sin 0 dr do,
vg o J
M= ——r Zsin 6 dr do, dd, = —@rz sinfdrdf. (10)
w J 61//1 w 81#1

Q.

i

The pressure and its partial derivatives in the above formulae are obtained from
the Reynolds equation and its perturbed forms by using an iterative procedure
based on the boundary element method. The details are omitted here.

In order to calculate the dynamic coefficients of forces and moments in a global
co-ordinate system, the dynamic coefficients of a single pad are transformed into
a global co-ordinate system. Therefore the dynamic coefficients in a global
co-ordinate system are

W3 =TAIW}, (M} =[4,0;{M};, {KV}; =[A.L[KY};,
{D¥}; = [A4,1;{D¥},,
(KY} = [4s1,{RY) (DY) = [4:1;{D%);, (K4} = [A:1,{KY}),
(DY} = [4:1;,{D%};. (11)
where

W= W, Wyo, Weo)j, {M}j= (Mo, Myo, Mzo)j,

{KY}j = (kI kio, kiy)is DI}y = (dih, dZ, d2y);

(K%)= (k¥ k%, K2y ks ks KNy)T s (DX} = (A, dyy Ay diny Ay )T

{ny J (kxh7 ki{pa kxl/n kyh9 k)]x!pa k )] s {ny J (dxha dﬁ{pa dxlpa dyha d%a d )] s
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coso; sina; 0O 1 0 0
[A4:];=| —sina; cosa; O, [4,];=|0 coso; sing; |,
0 0 1 0 —sino; cosa;
[45]; =
T cosa; 0 0 sin o; 0 0
0 cos? o cosoysina; 0 cosojsine;  sin?o;
0 —cosa;sing; cos? o 0 —sin*o;  cosa;sing;
— sino; 0 0 COS o 0 0
0 —cosajsina;  —sin®o; 0 cosa;  coso;sing;
i 0 sin? o —cosa;sina; 0 —cosa;sina;  cos®

The dynamic coefficients of the thrust bearing can be obtained by summing up
coefficients of all the pads in the global co-ordinate system.

3. FORMULATION OF THE SYSTEM EQUATIONS

The lumped-mass model, which can consider the deflection angles with ease, is
used to formulate the system equations. A lumped-mass model considering the
effect of axial force on lateral vibration of a shaft is presented in this paper. It is
based on the M yklestad transfer matrix method, in which the shaft is discretized
into several elements, and each element is simplified into a massless elastic rod and
a lumped mass at the right end of the rod. When the relation among the adjacent
elements is found, the motion equations for each element and the system are
obtained accordingly.

For element j shown in Figure 3, the equilibrium equations considering the axial
force can be written as

Mj*l+T;'(xj_-xjfl)_sjfllj:Mj—i_Mkja (12)
S;=S8;-1+ )Py, (13)
; I} I}
szxj—l+§0j—llj_Tj§0jﬁ+(Mj+Mkj)ﬁ+ Sj—Zij ﬁ’ (14)
J J J
(p~=(p-_1—T~(p-i+(M~+Mk-)L+ S;— Y Py i (15)
J J J J2EIJ J J EIJ J XJ 2EIJ7

where Y P, and M, are respectively the external force and moment including the
inertial force and bearing force, etc., S and M are respectively the force and moment
exerted on the lumped mass by the rod, x and ¢ are respectively the displacement
and angle.
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Figure 3. The jth shaft element.

For equation (15),

I l; H
Q1= (pj<1 + T’2EI > (M; + MkJ)EI —> P SEL, (16)

From equations (14) and (16),

I I I?
xj—l_xj <l +T}6E1> (M +Mk])2EI ZPXJ 6EI (17)
From equation (20),
12 Tlf Tlf’

(18)
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<1 + T_l2> _ <l + T_l3>
1 2EI 6EI
[E); =2

T 274
L Tk 2 . L T 2
12(EI) 12(E1)

From equation (20), the relation between the generalized forces exerted on the
(j — 1th mass and the generalized displacements satisfies

M R B X R B X R
{S} = [CJ; { } - [CT; 1[31,{ } e1)
i-1 ) Pj-1
therefore the equations for jth mass in the x direction are

— -1 )X * -1 ; x| My ‘
[C]j+1{(p}j+1+[C]]+1[B]j+1{ } {ZP } [D]j{(p}

j—1

+ [E],-<[C],-1 {x} - [C],~1[B],{x}R ) 0. (22
P); @ 1

J Jj—

The inertial forces and moments and the forces and moments provided by the
thrust bearing are

M, —0, 0] o 0 O] (¢ 2 a4 (e
o I 4 S RV B4 S B £

xqa_xl//jl/]'

kM kM Kk .
L8 8L e
p ) xuj J X

xh

o R R Y i R e bl

wli W)

d% dy] (¢ k& ko] fx k%, A
. > > . (24
- [d% dﬂlpl{lﬁ}j - [k% kyy } {y}j - [kw}h - [d }hp @9
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Substitution of the above matrices and forces and moments into equation (22)
gives

m 0 0 07 (%) [de dy —d¥ —d¥, %
0 m 0 O y + dyx dyy - d)lfﬂ - d;j{:, y
00 6 0 o 0 0 —dM (—d—0.0) @
00 0 0.0;W), LO 0 @¥%+0.0 dxy i\
_kxx kxy - k)lgp - KI]P X
+ kyz Yy - k;‘fo - ka"l/l/ y
0 0 — k% ]y‘f,, @
0 0 k¥ ko 1 W)
12EI 6EI i
E 0 ( - T) "
12EI 6EI x
4T
0 R ’ < P > Y
6EI 2EI
<1_2 _ T> 0 ( —S+ Tl> 0 ¢
6EI YEI ';b (G+1)
0 <_2 — T) 0 < -——+ Tl)
I l l o+
" 12EI 6EI ]
5 0 N 0
12EI 6EI x
B 0 4 0 N2 y
6EI 2EI
-2z 0 ( —S Tl> 0 ¢
w G-1)
6EI 2EI
0 - 0 ———+Tl|/cn
I l j
12EI 6EI i
P 0 7
12EI 6EI x
0 B 0 2 y
*| /6EI AEI
- =T 0 e 0 ?
! ! v ;
6EI 4EI
(#r) o
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" 12EI 6EI
B (L)
12EI 6EI X
o (L)
Tl eEr 4EI o
- 0 — 0
) / ar
6EI 4EI !
0 5 0 —
I ! ;
0 0 0 0 7
+ 0 )
y
0 0 T 1+T—l3 0
6g1 )" f;
TP G-1)
J
— k%, —d,
— k" —d4a” .
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xh xh

where k;; and d;; (i, j = x, y) are respectively the stiffness and damping coefficients of
journal bearings, k}{, df‘f ki and d]f (i = x, y;j = ¢, ) are respectively the stiffness
and damping coefficients of the thrust bearing, cn = 1 + (T}1}/12(EI})?).

For the first and last (nth) element, equation (22) is simplified into

—1)X 1 M,
—[C}3 {@}2 + [Cly [B]z{ } { P, } =0, (26)

{if"} +[D]n{x} +[E]n<[c];1{x} —[C];l[B]n{x} >:0, @7)
x Jn ?P)-1 Q) el

The above two equations are the boundary conditions in the x direction. The
equations in the y direction can also be obtained in a similar manner.
The equation for the axial motion is

N mjh, — kKhh, — dih, — k¥ o; — kKb — d¢; — diaj; = 0. (28)

Assembly of the motion equations for all the elements gives the system equation
in the matrix form

[M]{X} + [C]{X} + [K]{X} =0, (29)
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where [M], [C] and [ K] are the generalized mass, damping and stiffness matrices
respectively, and {X} is the vector for generalized displacements.

The above quadratic eigenvalue problem is solved by using the generalized
inverse interation method proposed in reference [19]. The Gaussian elimination
method is used to calculate the unbalance responses.

4. STATIC EQUILIBRIUM EQUATIONS

The dynamic coefficients of bearing, which must be determined before dynamic
analysis, depend on the static working point of system. The involvement of thrust
bearings makes the problem more complex. Let us take a single-mass rotor systems
for example, which is supported by two journal bearings at both ends and
a self-balancing double-facet thrust bearing in the axial direction. If the effect of
thrust bearing is not considered, the load-sharing between the two journal bearings
can be determined just by solving the force- and moment-balance equations. But
when the thrust bearing is included, as the static boundary conditions are changed
thereby, the Reynolds equations which determine the forces and moments of the
thrust bearing and the journal bearings must be solved simultaneously with the
above two balance equations. As the moments and forces are non-linear functions
of the journal displacements or the runner displacement and tilting angles, an
iterative procedure is inevitable.

The static equilibrium equations are obtained by substituting the following
equations into equation (22):

My = — Mg,
ZPx:F{co_ Wan
N = Mo,

$h=H

yO_Pg_VV;JOS (30)
where M%), and M?%, represent the moments on the xz and yz planes at the jth mass
respectively, Wyo and W, represents the force in the x and y directions respectively,
and FJ, and FJ, are respectively the forces produced by the journal bearings in the
x and y directions, and F, is the weight of lumped mass.

When the equations for all the elements are obtained, and all the static forces and
moments are substituted into the above equations, the static equilibrium equations
in matrix form are

[S1{x} = {F} — {P7}, (31)

where [S] is the stiffness matrix of shaft, {F} is the vector for generalized forces
including the forces and moments produced by the thrust bearing, and { P’} is the
vector of oil-film forces produced by the journal bearings.
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Consider the balance in the axial direction
W.o + Fn =0, (32)

where W, represents the oil-film force in the axial direction produced by the thrust
bearings, F;, is the external force exerted in the axial direction.

Denoting the translational displacements where the journal bearings act as {x,},
the other translational displacements and all the angular displacements as {x;}, the
generalized forces corresponding to {x};, {x,} are {F}, {F,} respectively, and
equation (31) is rewritten as

St S | x4 _ Fy 0
[521 522} {xz} - {Fz} {PJ}’ >
where {F;}, {F,} and {x,} are known, i.e., all the forces and the static positions of

the journals except the oil-form forces produced by journal bearings are known.
{x;} and {P’} can be obtained from the following equations:

STt —Si{'S F
=l s —saesssa it e o
P — 821811 — S22+ 821811 S12 (X2 13

|: Sl_l1 _SI_IISIZ j| _|:b11 b12j|‘

— 55181 — 82+ 821811 S12 byi by |

the iterative procedure is given below. The increments of variables in each step
satisfy the following formulae:

Ax, (k) X (k) by bis F, (k) AF, (k) 0)® 0 )W
R - + + , (39)
AP’ P’ b21 b22 X2 AXZ F2 AF2

W+ AW + F,=0. (36)

Let

The rotordynamic coefficients are used to obtain the first order approximation of
{AF,} {AF,}, {AP’} and AW,,. When the displacements {x;}, {x,} and z are
increased by {4x,}, {4x,} and Az respectively, the increments of the generalized
force are

AR) [SL 0 st
Axl
AF, S2 0 S
= Axz ¢, (37)
AP, 0 S 0
Ah,
AWZO S;(/) O Szh
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where {S;}, {S2}, Si, Si, {S},} and S_; are composed of the stiffness coefficients of
the thrust bearing, ki and k¥ (i = x, y, z;s = @, ¥, h,); {S;} consists of the stiffness
coefficients of the journal bearings, k;; (i, j = x, y).

Substitution of equation (37) into equations (35) and (36) gives

{ Axy }"‘) N {Xl}“‘) B |:b11 b12:|<{F1}(k) N {Sq;l Axy + S,}Ahp}(’”) N {0 }"‘)
SjAXZ Pj N b21 bzz X2 AXZ FZ

0 (k)
+ , 38
{S¢2Ax1 + S,%Ah,,} (38)
W% + SEOAXE + S ARY + F, = 0. (39)

Therefore, the increments in the kth step can be obtained from the following equation:

bllS‘}’ — b1z —by1 S | ¥ (4xy biy by |® F)®
— by SL—S2 S;—by,,  — S} Axy b =| by by {Fl}
Szléf’ 0 Szh Ahp 0 2
0)® Xy (k)
0 (W.o + Fy)

The load sharing when the rotor is simply supported is determined initially to
provide the initial values of the journal positions and forces. The axial force-balance
equation is solved solely to give the initial value of the film thickness of the pitch line of
the thrust bearing. As the stiffness coefficients are directly used to obtain the first-order
approximation of the changes of static forces, this iteration converges very fast.

Because the static tilting angles of the runner on the xz and yz planes can result in
static forces and moments in both the x and y directions, the journal bearings must
bear the load in the x direction in addition, i.e., the offset-load effect occurs on the
journal bearings. Since, the loads are not applied vertically to the journal bearings,
and the forces and moments by the journal bearings are variable in the above
iteration, the static and dynamic characteristics of journal bearings must be
recalculated according to the magnitude and direction of the resultant force, except
for 360° cylindrical bearing whose characteristics can be obtained directly through
co-ordinate transform. The offset-load effect is considered in this paper.

5. EFFECT OF A THRUST BEARING ON THE STATICS AND
DYNAMICS OF A ROTOR-BEARING SYSTEM

In order to reveal the nature of the action of thrust bearings on rotor-bearing,
a numerical example is used to investigate the influence of a thrust bearing on
a single-mass rotor-bearing system as shown in Figure 4.
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Figure 4. A rotor-bearing system with a hydrodynamic thrust bearing.

The rotor is supported by two identical 360° cylindrical journal bearings at both
ends. A double-facet fixed-pad thrust bearing is attached at the left end, and is
integrated with the left journal bearing to form a combined bearing. The
parameters of the journal bearing are: diameter D, = 50 mm; ratio of length to
diameter L/Dy = 0-5; clearance ratio ¥ = 0-001. The parameters of the thrust
bearings are: width of pad B = 50 mm; film thickness on pitch line h, = 0-05 mm;
angular extent of pad 0, = 40°; angular position of pitch line 0, = 0,/2; inner
radius r; = 50 mm; wedge angle of pad a, = 0-02 rad.

The dimensionless oil-film thickness is defined as i = h/h, and the reference film
thickness h, = 0-05 mm. The dynamic viscosity of oil u = 0-027 N's/m? and the
axial load F,;, = 0-0. The moments of inertia of the disk are assumed to be zero.

The thrust bearing and journal bearings are assumed to work under isothermal
laminar conditions. The static and dynamic characteristics of journal bearings are
calculated based on the short-bearing model.

5.1. INFLUENCE ON STATICS

Table 1 gives the displacements and angles at both ends of the disk. When the
effect of the thrust bearing is not taken into account, there are no relative deflection
angles among the elements on the xz plane, and the relative deflection angles on the
yz plane are constant. This results from the fact that the journal bearings provide
forces only, and the deflection angles are solely due to the distribution of weight.
Although the oil-film forces of journal bearings are functions of rotating speed, the
rotating speed only influences the journal positions. The static deflection of shaft is
changed by the static moments of thrust bearing, and therefore the relative
deflection angles among elements on the yz plane vary with rotating speed. The
offset-load effect in journal bearings due to the thrust bearing leads to the relative
deflection angles which vary with the rotating speed. From the table, when the
rotating speed is 3000 r/min and the thrust bearing is included, the displacement at
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the disk in the y direction decreases by 71%, and the deflection at this point on the
yz plane decreases by 97%.

Table 2 gives the variations of the working parameters of journal bearings due to
the thrust bearing. The attitude angles and eccentricities change greatly when the
thrust bearing is included. As the static moments of thrust bearing make the left
journal go up and the right journal down, the eccentricity of the left journal bearing
increases while that of the right decreases.

Figure 5 shows the variations of journal positions due to the thrust bearing.
Figure 6 gives the variation of the dynamic coefficients of journal bearings versus
the rotating speed. When the rotating speed is 3000 r/min, the thrust bearing makes
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Figure 5. Variations of journal positions of both journal bearings versus rotating speed. (a) left
journal bearing; (b) right journal bearing —O— x/Dy NT, —3— y/Do NT, —@— x/D, T and —l—
y/Do T.



852 P. L. JIANG AND L. YU

0-14 g
012 k

010 |

008 |

Stiffness coefficients

Q L L L L L L I L L I I L L I I I I L L L I I
3000 4000 5000 6000 7000 8000 9000

[E))] N (r/min)

1-61

1-60

1-59

Damping coefficients

157 b w0 0 0 0 0 e b Vo T ST
3000 4000 5000 6000 7000 8000 9000

(b} N (r/min)
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the direct stiffness of the left journal bearing increased by 20% and that of right
decrease by 40%.

5.2. INFLUENCE ON DYNAMICS

The eigenvalues of the system at various rotating speeds can be obtained by
solving equation (29), and the first critical speed and the stability threshold speed
are calculated from these eigenvalues by interpolation. The numerical results show



DYNAMICS OF A ROTOR-BEARING SYSTEM 853

that when the thrust bearing is not considered, the first critical speed
N, = 5545 r/min, while when the thrust bearing is considered, N% = 11 143 r/min
and is 2:01 times that of N,.. The thrust bearing increases the first critical speed
remarkably. The first simply supported critical speed of the shaft is 5533 r/min.
When the thrust bearing is included, the critical speeds may exceed the simply
supported critical speed. But for a rotor supported by journal bearings only, the
critical speeds cannot exceed the simply supported critical speeds. Since the simple
supports only restrians the displacements at both ends, while the thrust bearing
influences the shaft stiffness at the deflection angles in addition, the simply
supported case is the limit for a shaft supported solely by journal bearings.

Table 3 shows the variations of the real part of the first dimensionless eigenvalue
versus the rotating speed. When the rotor is supported solely by journal bearings,
the stability threshold speed of system is 9367 r/min. When the thrust bearing is
included, it becomes 13511 r/min. The thrust bearing increases the stability
threshold speed by 44%.

Figure 7 shows the variations of the unbalance responses versus the rotating
speed. The offset of unbalance is supposed to be 0-025 mm and at the disk.
The vibration magnitudes refer to those at the disk. It can be seen from the figure
that the thrust bearing suppresses the unbalance responses at all the speeds
significantly.

The nature of the thrust bearing action can be concluded from the above two
sections. On the one hand, the static forces and moments of the thrust bearing
changes the static equilibrium state of the shaft, and thereby change the
load-sharing among journal bearings and their dynamic coefficients. On the other
hand the stiffness and damping of thrust bearing influence the dynamic of the rotor
directly. The effect of thrust bearing is the resultant action of both statics and
dynamics.

6. FACTORS AFFECTING THE EFFECT OF THRUST BEARING

6.1. FILM THICKNESS OF THRUST BEARING AND AXIAL LOAD

It has been cited that the clearance between pad and collar can be adjusted
conveniently. The film thickness is often designed according to the need of static
characteristics, and the need of dynamic characteristics is seldom considered.
Therefore, the discussion on the variation of film thickness is of great importance in
the investigation into the action of thrust bearings. The rotor-bearing system
shown in Figure 8 is studied. The parameter of the rotor are given in the figure, and
those of the bearings are similar to those used in section 5. The dimensionless film
thickness of the pitch line is changed continuously and the variations of static and
dynamic characteristics of the system are observed. Figure 9 gives the deflection
angles at both ends when the rotating speed is 3000 r/min. There are two limits for
the static deflection angles corresponding to large and small film thickness
respectively. When Ep is very large, i.e., at the lower limit, ¢, ¢, are zero, and Y4, Y/,
are equal, which resembles the case when there is no thrust bearing acting on the
system. When h, is very small, i.e., at the upper limit, the action of thrust bearing,
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Figure 8. A rotor-bearing system with a hydrodynamic thrust bearing.

which hinders the deflection of the shaft, is so large that the offset-load in journal
bearings vanishes, and ¢, ¢, and y; tend to zero.

Figure 10 shows the variations of the first critical speed ratio, N%/N,,, and the
stability threshold speed ratio, N¥/N,,, versus the dimensionless film thickness. The
asterisk denotes the case when there is no thrust bearing included. There are two
limits for the variations likewise. At the lower limit, N*/N,. and N¥/N, tend to 1,
which indicates that the effect of thrust bearing is so small that it can be neglected.
At the upper limit, N%/N.. and N%/N tend to specific values respectively, which
means that the action of thrust bearing will not strengthen. Generally speaking, the
thrust bearing always hinders the deflection of the shaft, and hence at the upper
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limit, the angular displacements at the place where the thrust bearing acts, are
eliminated, and the thrust bearing is equivalent to an end face ball bearing.

On the one hand, the axial load that the thrust bearing balances changes the
stiffness of the shaft, on the other it changes the film thickness of the thrust bearing.
Therefore, it can certainly affect the action of the thrust bearing. Figure 11 shows
the variation of the influence of the thrust bearing on the dynamic characteristics of
the system versus the axial load. The initial film thickness of the thrust bearing in
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this case is 0-05 mm. The variations of N%*/N,, and N¥/N,, are remarkable only
when the axial load is very large. It is shown by the figures that N¥%/N,. varies
monotonically, while a fluctuation occurs to N¥%/N,. The fluctuation results from
the joint action of the static forces and moments of the thrust bearing. The static
forces make the left journal go up, while is more obvious when the axial load is
minimum. When the axial load increases to a specific value, as the stiffness of shaft
increases, the deflection angles at the thrust bearing decreases, and so does this
effect. The static moments, which is related to the static deflection angle, make the
left journal go down and the right journal up. As the static loads of journal bearings
are not large, the variation of eccentricities shows little effect on the first critical
speed, but remarkable effect on the stability threshold speed.
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It must be pointed out that the aim here is to investigate the variations of the
effect of thrust bearing versus the continuous variation of parameters. Therefore,
the parameters may be beyond some restraints, for instance, the film thickness of
thrust bearing may be smaller than the allowable minimum thickness, the axial
pulling force may exceed the allowable value, and the axial pressing force may
exceed the static buckling threshold.

6.2. STIFFNESS OF SHAFT AND STATIC LOAD OF JOURNAL BEARING

Neglecting the mass of the shaft and considering its stiffness only, and by
changing the shaft diameter, variable shaft stiffness is obtained. The static loads of
journal bearings are changed by exerting similar static forces on both journals. The
results for the rotor-bearing system shown in Figure 8 when the oil-film thickness
of the thrust bearing is 0-05 mm are given in Figure 12. In this case, the effect of
thrust bearing on the first critical speed varies a little; the stiffer and shaft, the
weaker the influence of thrust bearing on the first critical speed. The effect of thrust
bearing on a flexible rotor varies significantly with the static load on journals.
When the static load is large, the thrust bearing may decrease the stability threshold
speed of a flexible rotor, which results from the static action of the thrust bearing.
The static moments of the thrust bearing are related to the static deflection angles.
The more flexible the shaft, the larger the deflection angles at the thrust bearing and
the moments of thrust bearing with the result that the static action of the thrust
bearing is more significant. When the journals are subjected to medium and large
static loads, the variation of the action of thrust bearing on the system versus the
shaft stiffness displays a trend of going from small to maximum and from maximum
to small. When the static loads are small the variation is monotonic. The above
complex variation results from the static action of the thrust bearing. The results
shown in Table 4 indicate that the smaller the stiffness and the static forces on
journals, the more significant the static action of thrust bearing on the rotor.

6.3. POSITION OF LUMPED MASS

The position of lumped mass shows great effect upon either simply supported
rotors or journal-bearing-supported rotors. As it can affect the static and the
dynamic deflection simultaneously, it also influences the action of the thrust
bearing on rotor systems. Figure 13 shows the variations of speed ratios versus the
position of lumped mass. The parameters, except the position of lumped mass, are
similar to those used in axial force effect analysis. It can be seen from the figure that
when the lumped mass is near the thrust bearing, the change of thrust bearing
action is significant. When the lumped mass is far from the thrust bearing, the effect
of thrust bearing on the system is weak and changes smoothly with the position of
lumped mass. The variation of stability threshold speed ratio versus the position of
lumped mass is not monotonic. Comparison between Figures 13(a) and (b) shows
that the change of deflection state due to the action of the thrust bearing leads to
the changes of the static moments of the thrust bearing which affect the static
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TABLE 4

Eccentricities of both journal bearings at 1000 r/min

D (mm) F (N) Thrust bearing LJ RJ
100 0 NT 0-86459E — 1 0-86459E — 1
100 0 T 0-93695E — 1 0-79254E — 1

100 10000 NT 0-79756 0-79756

100 10000 T 0-79779 0-79733
25 0 NT 0-86459E — 1 0-86459E — 1
25 0 T 0-11681 0-55016E — 1

25 10000 NT 0-79744 0-79744

25 10000 T 0-79795 0-79694
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journal positions, and results in the difference of the influence of lumped mass
position on the stability threshold speed ratio.

6.4. POSITION OF THRUST BEARING

If the effect of the thrust bearing on vibration modes is neglected, and from
the point of view of dynamics only, the action of the thrust bearing is related to the
deflection angles where the thrust bearing acts. The larger the deflection angles,
the stronger the action. Therefore, for a symmetric rotor system, the action is the
strongest when the thrust bearing is positioned at either end of the shaft, and it does
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not take effect when the thrust bearing is at the disk. But when the static effect of
the thrust bearing and the change of vibration modes are considered, the results
are different. From Figure 14(a), the maximum action of the thrust bearing is not at
the left end, but a certain distance from the left end. At the disk, as the deflection
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angles are zero, the thrust bearing shows no effect upon the statics and dynamics of
the system. Figure 14(d) gives the variations of eccentricities versus the position of
thrust bearing at 3000 r/min. The maximum action of the thrust bearing on the
statics is not at the left end, but about 200 mm from the left. Figure 14(e) shows
the effect of the thrust bearing on the system dynamics when the static action of the
thrust bearing is neglected. Comparison between Figures 14(a) and (¢) shows
the static action is considerable.

The effect of the thrust bearing on another two types of rotors, namely
asymmetric rotor and cantilever rotor, are shown in Figures 14(b) and (c)
respectively.

6.5. ARRANGEMENT OF THRUST BEARINGS

All the thrust bearings analysed above are double-facet thrust bearings. In
this section, two other types of thrust bearing arrangements are discussed. For
these two types of arrangements the expansion or contraction of the shaft due
to axial force is of the same order as the oil-film thickness of the thrust bearing,
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and therefore the axial deformation can certainly change the film thickness of
thrust bearings. This effect must be accounted for in the static equilibrium
equations.

The axial deformation co-ordination condition is

for arrangement (b),

hy 4+ hy = hyo + hyo + 41, (41)
for arrangement (c),
I’ll + hz == th + hzo _— Al (42)
The deformation is
v 1l
Al = ; A (43)

where T is the pulling force, and 4; is the section area.

An iterative procedure based on the proposed in section 4 is applied to solve the
static equilibrium equations considering the static axial deformation. The results
are listed in Table 5, where the static characteristics are those at 3000 r/min.

From the table, because of the axial deformation, the film thickness of the thrust
bearing in (b) and (c) is greater than that in (a), especially when the initial thickness
is small. Nevertheless, when the initial film thickness is small, the first critical speeds
in (b) and (c) are larger than those in (a), which results from the increase in degrees
of freedom restrained by the thrust bearings.

As the lateral forces produced by the thrust bearings in (b) make the journals go
up, and the eccentricities of both journal bearings decrease, the stability threshold
speed of (b) is lower than that in (c). But when the film thickness of cases (a) and (b)
is larger than that of (a), the stability threshold speeds are lower than that of (a). (see
Figure 15).

7. CONCLUSION

The model proposed in this paper to investigate the coupled dynamics of
a rotor-bearing system equipped with a hydrodynamic thrust bearing can readily
take into account such effects as axial force, static coupling and offset-load in
journal bearings, etc. The formulation is not only suitable for single-disk rotors
which are used as study objects in this paper, but also for multi-disk
multi-journal-bearing rotor systems. The investigation has revealed the nature of
the action of thrust bearings sufficiently, i.e. thrust bearings couple with the system
in statics and dynamics. They not only provide stiffness and damping in a dynamic
state, but also change the static deflection of a shaft, and thereby influence the
load-sharing of journal bearings in a static state. Therefore, all the parameters
influencing the vibration modes and static deflection mode can affect the action of
thrust bearings. This effect promotes the use of thrust bearings as a measures to
alter the dynamic properties of a machine. It also helps to explain the change in
dynamic properties of some machines due to the introduction of thrust bearings.
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APPENDIX A: NOMENCLATURE

A section area

B width of pad

Dy diameter of journal bearing

E elastic module

E, external load in the axial direction

L length of journal bearing

M, N moment

M, N, external moments

M%, MY, M2 moment due to normal oil-film pressure

N,, critical speed

Ny stability threshold speed
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Superscripts

M
w
R

Wej = Wyjcosa; + Wsina;, Wy; =
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weight of lumped mass

lateral force

axial force

forces due to normal oil-film pressure
mass, damping and stiffness matrices
external lateral force

damping

oil-film thickness

oil-film thickness on pitch line
reference oil-film thickness

stiffness

length

mass

normal oil-film pressure

radial co-ordinate of point

time

Cartesian co-ordinates

base vectors of Cartesian co-ordinates
clearance ratio of journal bearing
domain of integration

wedge angle of pad

angular position of the jth pad
tilting angles

dynamic viscosity of oil

angular co-ordinate of point

angular position of pitch line
moments of inertia

pad j, shaft element j
static

moment

force

right hand

dimensionless variable

derivative with time

variable in local co-ordinate system

APPENDIX B: DERIVATIONS OF MATRIX [43];

From Figure 2,

Y =y;cosa; — @;sina;, @ = Y;sino; + @;cos o,

— Wyjsina; + W,;cosaj,

867
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therefore,
AW, = (k¥ Ah, + kN Ay + kWi Ag;) cos o
+ (k)i Ahy, + T A + k) Ag;) sin o
@y + A5+ 3065)c0s %
+ (A hy + Ay + A j)sin o
= [k Ah, + k2, (A cosa; + Agsina))

+ k2 i(— Ay sina; + Ag cos aj)] cos o

+ [k Ah, + k(A cosa; + Agsina;)

+ k) i(— Ay sina; + Ag cosa;)] sina;

+ [dxhjh + dx,,,J(lp cosa; + ¢ sino;)

+d”.

W i(—ysino; + ¢ cosa;)] cosa;
+ [dWih, + A cosa; + ¢ sina)
+dl(— ysing; + ¢ coso;)]sina;
= (k&jcoso; + k}y;sino;) Ah,
+ (kY jcos? a; — kI isinojcos o + k)Y sinojcos o — k) sin? o) Ay
+ (k2;sino;cos oy + kI cos? o + klyisin o + k)b cos o sin o) A
+ (dh;cos a; + dsina)h,

TW w ; TW in2 ]
+ (d¥,;c08? oy — dYisinojcos o + dy;cososino — dJisin? o)

+ (dfy;sino;cos o + diy;cos® o + dyy;sin® o + d)y; cos o;sin o) (p;

(B.3)
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AW, j = — (kI Ah, + kK240 + k2 A@;)sin o
+ (k)i Ahy, + & Ay + k) Ag;)cos o
— Ak + AW+ dY e sineg + (dih, + Al 4 A ) cos o
= — [kl;Ah, + kX (Ay cos o + A sina;)
+ k2 i(— A sinoj + Agp cos o;)]sin o
+ [koniAh, + k(A cos o + Agp sina)

+ k(-

voi( — AP sina; + A cos a;)]cos
— [d%h, + di(f cosa; + gsina))
+d%(— ysina; + ¢ coso;)]sin
+ [dWih, + AW cos o + ¢ sina))
+d)V(—sine; + ¢ cosa;)]cos a;
= (— klhsina; + k)i cosaj)Ah,
+ (— kl;sinajcosa; + kl;sin?o; + kJYjcos? o
— k) ;sinojcos o) A
+ (— kly;sin?o; — k2 ;sinojcos o + kY sin o cos o + k) cos? o) Agp
+ (— dl;sino + dJy;cos a;)h,
+ (—d¥;sina;cosa; + dlY ;sin? o; + dJf;cos? o
— dV;sin a; cos o
+ (— d¥,;sin?a; — dW sinocos o + doY,;sin o;cos o

+ J%jcosz OCj)(b (B4)

Matrix [A3]; can be obtained from the above two equations.
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PE A
@
1 2 3

Figure 16. Lumped mass model of a rotor-bearing system with a hydrodynamic thrust bearing.

APPENDIX C: DETAILED FORM OF EQUATION (25)

The system motion equations for a rotor-bearing system which is simplified into
a three-lumped-mass model shown in Figure 16 are

my X1
my V1
Qxl ¢1
Oy1 Uy
m, X5
m; V2
9x2 ¢2
9x2 iﬁ.z
ms X3
ms V3
0,3 ?3
9x3 ,;03
i m1+m2+m3_\ﬁp
de g —dY, —dY, — K, (m\
dyy  dyyy  —dl, —dl, —ki || V1
0 —wl, —d¥ —d¥% —ky, || @1
wl,, 0 4 a4 K| Y
0 0 00 0 Xz
s 0 0 00 0 y:z
0 —wl, 00 0 P2
wh, 0 00 0 || V2
des dy. 0 0 0 X3
dypy dys, 0 0 0 R
0 —wb,; 0 0 0 ?3
whs O 0 0 0 Vs
L0 0  —d¥ —k% o0 0 00 0 o o0 0 —k¥J\h,
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