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A re-examination is made of the two-dimensional interaction of a plane, time-
harmonic sound wave with a rectilinear vortex of small core diameter at low Mach
number. Sakov [1] and Ford and Smith [2] have independently resolved the
&&in"nite forward scatter'' paradox encountered in earlier applications of the Born
approximation to this problem. The "rst order scattered "eld (Born
approximation) has nulls in the forward and back scattering directions, but the
interaction of the wave with non-acoustically compact components of the vortex
velocity "eld causes wavefront distortion, and the phase of the incident wave to
undergo a signi"cant variation across a parabolic domain whose axis extends
along the direction of forward scatter from the vortex core. The transmitted wave
crests of the incident wave become concave and convex, respectively, on opposite
sides of the axis of the parabola, and focusing and defocusing of wave energy
produces corresponding increases and decreases in wave amplitude. Wave front
curvature decreases with increasing distance from the vortex core, with the result
that the wave amplitude and phase are asymptotically equal to the respective
values they would have attained in the absence of the vortex. The transverse
acoustic dipole generated by translational motion of the vortex at the incident
wave acoustic particle velocity, and the interaction of the incident wave with
acoustically compact components of the vortex velocity "eld, are responsible for
a system of cylindrically spreading, scattered waves outside the parabolic domain.

( 1999 Academic Press
1. INTRODUCTION

It has been conjectured that the Born (or "rst order scattering) approximation leads
to an ill-posed problem when applied to the two-dimensional interaction of sound
with a rectilinear vortex of non-zero total circulation [3}7]. Direct numerical
simulations for an incident plane wave at low Mach numbers [6, 9] yield estimates
of the scattered sound that are "nite in all radiation directions and in good
qualitative agreement with experiment [10}12], whereas scattering theory
apparently predicts in"nitely intense &&forward'' scattered sound. The same
approximation gives "nite scattered sound levels when the vorticity distribution
has zero net circulation [1, 13}17].

O'Shea [3] correctly attributed the di$culty to the long range convection (or
refraction) of sound by the mean velocity "eld of the vortex, which decays slowly
like 1/r, where r is distance from the vortex axis. Scattering theory imposes
0022-460X/99/451003#15 $30.00/0 ( 1999 Academic Press
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a radiation condition that, at large distances, scattered waves must radiate away
from the vortex axis. However, when the interaction region is very extensive, some
of the scattered waves will themselves radiate through the vortex core, and great
care must therefore be exercised to extract this behavior from a solution expressed
in terms of cylindrical harmonics centered on the core. This di$culty was resolved
by Sakov [1] and by Ford and Smith [2]. The correct behavior of the scattered
sound in the near "eld can be ensured by imposing causality rather than an
outgoing wave condition. Careful asymptotic evaluation of the corresponding
integral representation supplies a scattered "eld that is "nite in all directions and, in
particular, predicts a null in the forward direction, in accordance with predictions
for scattering by acoustically compact (low Mach number) turbulence eddies
[18}20]. Sakov [1] showed that the scattered sound had di!erent representations
depending on whether the "eld point was within or outside a parabolic domain
whose axis extends from the vortex in the direction of forward scatter. Outside the
parabola, scattering is dominated by waves that have constant strength along
rectilinear rays radiating out from the vortex; in addition there exist much weaker,
cylindrically spreading waves of the type normally associated with an outgoing
wave"eld. Within the parabola both of these components are of comparable
magnitudes and cancel in the direction of forward scatter.

The length scale of the vortex velocity (the inverse of its fractional rate of change
with distance) increases with distance from the vortex. Ultimately, at su$ciently
large distances, the incident wave will therefore propagate according to ray theory
[21}23], and a complete description of the vortex}wave interaction should
arguably quantify the roles of the refracted incident wave and the cylindrically
scattered waves. Ford and Smith [2] used the method of matched asymptotic
expansions, and their solution is actually valid to a higher order than the usual
approximation of "rst order scattering theory. Detailed predictions are in broad
agreement with the numerical results of Colonius et al. [ 6]. In both of these
investigations the importance of long-range &&refraction'' by the weakly decaying
rotating #ow induced by the vortex is fully emphasized, although no attempt is
made to exhibit it explicitly by incorporating the refractive component of scattering
into a &&renormalized'' incident wave whose evolution as it propagates across the
vortex #ow can then be examined.

The present paper has two objectives. First, the scattering problem is recast using
the equation of vortex sound. This isolates unambiguously a term describing
scattering by the vortex, which appears as a dipole source, and that accounting for
refraction by the mean #ow, which occurs in the wave operator applied to the
acoustic variable. A zeroth order approximation to the refracted wave can be
written down from this equation by inspection. This approximation fails in the
parabolic region bounding the forward scattering direction. Second, the zeroth
order approximation is corrected by consideration of the full Born approximation.
The full solution can be represented as a combination of a transmitted incident
wave, modi"ed by refraction by the moving medium, and cylindrically scattered
waves. The zeroth order solution develops a phase shift when the incident wave
passes through the vortex core, with a &&phase jump'' along the forward scattered
ray from the vortex. This phase jump is eliminated in the full Born approximation,
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which predicts a smooth transition across the parabolic domain, such that the
phase shift relative to the undisturbed incident wave vanishes along the forward
scattered ray. The parabola expands to "ll all the space at large distances to the rear
of the vortex, and the transmitted incident wave ultimately relaxes to its
undisturbed form.

The scattering problem is formulated in section 2. The zeroth order solution
and the full Born approximation are discussed in section 3. The solution is
interpreted in section 4 in terms of refracted and cylindrically propagating scattered
waves.

2. THE GOVERNING EQUATIONS

A small amplitude, plane sound wave of radian frequency u propagates in the
positive direction of the x-axis of the rectangular co-ordinate system (x, y, z) in
a uniform, homogeneous #uid of density o

0
and sound speed c

0
. The wave impinges

on a line (or &&point'') vortex of circulation C lying along the z-axis, as illustrated
schematically in Figure 1. It is required to calculate the secondary sound waves
produced during the interaction.

Thermal and viscous dissipation will be ignored, and the #uid motion regarded
as homentropic. The exact, non-linear equation of vortex sound theory may then be
cast in the form [4, 20]

A
D
Dt A

1
c2

D
DtB!

1
o

+ ) (o+ )BB"

1
o

div(ox'v), (1)

where v is the #uid velocity, x"curl v the vorticity, and o,o(x, t), c,c(x, t) are,
respectively, the #uid density and sound speed, both of which depend on position
and the time t. B is the stagnation enthalpy which, for homentropic #ow, is given in
Figure 1. Time harmonic plane wave incident on a line vortex of strength C. The z-axis is directed
out of the plane of the paper.
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terms of the pressure p, density o,o(p) and velocity by

B"P
dp
o
#

1
2

v2 . (2)

In those regions where x"0, the motion can be expressed in terms of a velocity
potential u, say, and Bernoulli's equation implies that B"!Lu/Lt. Thus, we can
take B"0 in the absence of sound, when the #uid is in a state of steady circulatory
#ow induced by the vortex.

The linearized equation describing small amplitude #uctuations about this
steady state produced by the impinging sound is deduced from equation (1) by
replacing all variable coe$cients in the wave operator on the left hand side by their
respective mean values. The characteristic Mach number M of the mean #ow is
assumed to be su$ciently small that variations in the mean density and sound
speed (which are of order M2 relative to their undisturbed values) can be neglected,
and we therefore set c"c

0
, and o"o

0
on the left-hand side of equation (1).

Although this condition on M is violated in the immediate neighborhood of the
vortex, where the mean velocity is inde"nitely large, the solution obtained for this
case can be interpreted as an &&elementary solution'' from which the solution of the
general problem involving distributed vorticity x with "nite-induced velocity v can
be derived by convolution. We shall not discuss this extension, but it may also be
noted that, when the wavelength of the incident wave is large compared with the
vortex core, the precise details of the core vorticity can have no material in#uence
on the properties of the scattered sound, even in the presence of a singular (but
integrable) velocity at the core.

The Born approximation determines the scattered "eld correct to terms that are
linear in both the incident wave amplitude and the amplitude of the scattering
inhomogeneity. Consider time harmonic motion, and let the incident wave be

B
i
"B

0
e*(i0x~ut), B

0
"constant, (3)

where i
0
"u/c

0
is the acoustic wavenumber and, without loss of generality, it may

be assumed that u'0. In the absence of this wave, the vortex is at rest and B"0.
Therefore, in equation (1) we can take

B"B
i
#B

s
, x"Ckd(x)d(y), (4)

where B
s
is the scattered "eld and k is a unit vector parallel to the vortex (the z-axis).

Then, to "rst order in C equation (1) becomes

A+ 2#
2ii

0
c
0

+U )+#i2
0BB"!

L
LyA

CB
0

c
0

d(x)d(y)B , (5)

where the exponential time factor e~*ut is here and henceforth suppressed.
In this equation, B

0
/c

0
is the acoustic particle velocity of the incident wave

(which is parallel to the x-axis) evaluated at the undisturbed position of the vortex,
and U is the velocity potential of the mean velocity "eld of the vortex, which we take
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in the form

U"

!Csgn(y)
2 AH(x)!

sgn(x)
n

arctan K
y
x KB , (6)

where H(x) is the Heaviside step function ("0, 1 according as xk0). Because this
term occurs in the wave operator its principal e!ect is to refract the incident sound,
at least for x(0 before the wave reaches the singularity at the vortex core.

In general, the velocity potential of the vortex is not single valued, but increases
by nC for a "eld point that traverses a path encircling the vortex n times in the
anticlockwise direction [24], although the velocity is continuous. Our de"nition (6)
restricts U to lie in the range (!1

2
C,#1

2
C), with a discontinuity along a radial &&cut''

in the forward scattering direction (x'0, y"0). This is a convenient analytical
prescription which, of course, does not imply that the scattered sound is
discontinuous across the cut.

By substituting from the "rst of equation (4) into equation (5), and noting that
(+2#i2

0
)B

i
"0, the equation determining the scattered "eld B

s
in the Born

approximation is found to be

(+2#i2
0
)B

s
"!

L
LyA

CB
0

c
0

d(x)d(y)B#
2i2

0
B

0
c
0

LU
Lx

e*i0x . (7)

The "rst term on the right is a dipole concentrated at the vortex core, arising
from the induced translational motion of the vortex at the acoustic particle velocity
of the incident wave. The second term is distributed over the whole of the #ow, and
includes components with length scales that are both large and small compared
with the wavelength of the incident wave, and therefore accounts for both refraction
and scattering of the sound.

3. SOLUTION OF THE SCATTERING PROBLEM

3.1. ZEROTH ORDER APPROXIMATION

A preliminary indication of the in#uence of the mean circulatory #ow produced
by the vortex is obtained by noting that, correct to ,rst order in

e"
i
0
C

c
0

, (8)

a solution of the homogeneous form of equation (5) (when the dipole source is
discarded) can be cast in the form [4, 20, 25]

B"B
0
e*i0(x~U(x)@c0) . (9)

This will be called the zeroth order approximation; it is uniformly valid in those
regions where M2,D+UD2/c2

0
@1, and reduces to the incident wave (3) as xP!R,

where U(x)P0. However, because U(x) is discontinuous across x'0, y"0, the
solution (9) is physically unacceptable in the vicinity of the forward scattering
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direction, across which it exhibits a phase jump equal to

!

i
0

c
0

[U(x, y)]`0
y/~0

"

i
0
C

c
0

,e, x'0.

But this phase discontinuity gives an accurate representation of the dominant e!ect
of the vortex on the sound: the phase of waves in the &&upper'' region y'0 is
advanced by the #ow, and that of waves in the lower region (y(0) is retarded. This
is illustrated in Figure 2 for e"n, which shows the evolution of successive &&wave
crests'' (curvilinear lines of constant phase di!ering by 2n) de"ned by

x
j
#

e
4n

sgn(y)AH(x)!
sgn(x)

n
arctan K

y
x KB"n, n"0,$1,$2, 2 , (10)

where j"2n/i
0

is the wavelength of the incident sound.
Because of the phase jump across the forward scattering ray (x'0, y"0), wave

crests in y(0 are half a wavelength ahead of those in y'0. Careful inspection of
Figure 2 reveals a progressive and smooth distortion of wave fronts approaching
the vortex (from x(0) which eventually develops into a discontinuity as a front
crosses the core of the vortex. The solution of the Born approximation equation (7),
discussed in section 3.2, reveals the existence of a transition region ("rst identi"ed
by Sakov [1]) bounded by the parabola x+(i

0
/n)y2 (the broken line curve in the

"gure), across which the upper and lower families of wave crests are smoothly
joined.
Figure 2. Wave crests de"ned by equation (10) for the zeroth order approximation (9) when e"n.
For x'0 the waves in the lower region (y(0) are approximately half a wavelength ahead of those in
y'0. The solution is strictly valid outside the broken-line parabola (x+(i

0
/n)y2), within which the

full solution of section 3.2 predicts a smooth transition between the upper and lower wave regions.
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3.2. THE BORN APPROXIMATION

Let the total scattered sound be written

B
s
"BC#BU , (11)

where BC and BU correspond, respectively, to the two source terms on the right of
equation (7). Since B"!(i/4)H(1)

0
(i

0
r), r"Jx2#y2 , is the solution with

outgoing wave behavior of (+2#i2
0
)B"d(x)d(y) [20], where H(1)

0
is a zero order

Hankel function, it follows that the dipole component of the radiation, BC , is given
by

BC"
iCB

0
4c

0

LH(1)
0

(i
0
r)

Ly
&

!i
0
CB

0
c
0
J8nii

0
r

y
r

e*i0r , r"Jx2#y2PR. (12)

This represents a cylindrically spreading disturbance centered on the vortex.
The component BU produced by the distributed source on the right of equation

(7) is conveniently determined by the method of double Fourier transforms, de"ned
according to the reciprocal formulae

FK (k, l)"
1

(2n)2 PP
=

~=

F(x, y)e~*(kx`ly)dxdy ,

F(x, y)"PP
=

~=

FK (k, l)e*(kx`ly)dkdl .

The Fourier transform of the source is

ii2
0
CB

0
l

2n2c
0
(l2#(k!i

0
)2N

.

A causal representation of BU is obtained by assigning to i
0

a small positive
imaginary part, which is subsequently allowed to vanish. It then follows by the
usual method [20] that

BU"
!ii2

0
CB

0
2n2c

0
PP

=

~=

le*(kx`ly)dkdl
(l2#k2!i2

0
) Ml2#(k!i

0
)2N

,

"

i
0
CB

0
sgn(y)

4nc
0

P
=

~=
Ce~DyEk!i

0
D
!e*Dy DJi2

0
!k2D

e*kx
k!i

0

dk , (13)

which is equivalent to the result given by Ford and Smith [2].
The contribution from the "rst term in the square brackets of the integrand can

be evaluated exactly, yielding !ii
0
B

0
U(x)e*i0x/c

0
, where U is the potential

function de"ned in equation (6). By setting k"i
0
cost in the second term, we can

write

BU"
!ii

0
B

0
e*i0x

c
0

MU(x)#U@(x)N , (14)
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where

U@(x)"
iC sgn(y)e~*i0x

4n Pc0cos(t/2)e*i0r#04(t~h)dt, 0)h)n , (15)

is expressed in terms of the polar co-ordinates (r, h) de"ned by (x, DyD)"
r(cos h, sinh). The integration contour c

0
in the complex t-plane is shown in Figure 3,

and consists of the three rectilinear sections t"#iR to #i0, t"0 to n, and
t"n to n!iR, together with a small indentation to pass above the simple pole at
t"0.

To evaluate the integral in the acoustic far "eld (i
0
rA1) c

0
is deformed onto the

path of steepest descent c, de"ned by

g"ln[sec(m!h)!tan(m!h)], !

n
2
(m!h(

n
2
,

where m, g are the real and imaginary parts of t. The new path passes through the
stationary phase point t"h, where it cuts the real axis at 453. The phase
ReMi

0
r cos(t!h)N"i

0
r is constant on c, and the rate of decrease in the

magnitude of the exponential of the integrand is the maximum possible as t moves
Figure 3. Integration contours in the t-plane.
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away from t"h in either direction along c. Hence, we "nd

U@(x)"
iC sgn(y)e*i0(r~x)

4n P
h`n@2

h~n@2
cos(t/2) [1!i sec(m!h)]e~i0r 4*/(m~h) 5!/(m~h) dm.

(16)

When i
0
r is large, the main contribution to the integral is from the vicinity of

t"m"h. Therefore, sin(m!h) tan(m!h) may be replaced by (m!h)2 in the
exponential, and the integration limits extended to m!h"$R. To estimate the
value of the integral it is necessary to consider the two cases in which the stationary
point h is near or far from the pole at t"0. In the "rst case, cot(t/2)
[1!i sec(m!h)] is replaced by 2(1!i)/t, and the integral transformed using
formulae given in reference [26] for the complex error function; in the second case it
is su$cient to make the replacement cot(h/2)(1!i). We then "nd

U@(x)+
iC sgn(y)

J2i CgAhS
i
0
r

n B#if AhS
i
0
r

n BD, h@1, (17a)

+C sgn(y) cot(h/2)S
i

8ni
0
r
e*i0(r~x) , hS

i
0
r

n
'O(1), (17b)

where g(z), f (z) are the Fresnel integral auxiliary functions de"ned in section 7.3 of
reference [26]. These functions decrease smoothly from 1

2
to 0 as z increases over the

interval (0, R), and satisfy

f (z)&
1
nz

, g(z)&
1

n2z3
, zP#R. (18)

Equation (17(a)) and the de"nition (6) of U show that U(x)#U@(x)"0 at h"0,
and this ensures that BU and B are continuous across the forward scattering
direction.

4. INTERPRETATION OF THE SOLUTION

According to equations (17(a) and (b)) the properties of the scattered "eld BU are
critically dependent on whether hjh

r
, where the critical angle

h
r
"S

n
i
0
r
, i

0
rA1. (19)

The curve h"h
r

coincides with the parabola x"(i
0
/n)y2 (plotted in Figure 2)

when i
0
rA1.

A single formula for the radiation that is applicable for all radiation directions is
obtained by "rst writing equation (14) in the form

BU"
!ii

0
B
0
e*i0x

c
0

MU(x)#F(h, h
r
)U@(x)#[1!F(h, h

r
)]U@(x)N. (20)

The function F(h, h
r
), can be chosen arbitrarily, but we shall assume that F(h, h

r
)"

1 for 0(h)h
r
, and that F(h, h

r
) decreases monotonically and rapidly to zero for
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h'h
r
. The second term in the brace brackets is therefore substantially di!erent

from zero only within the parabola x"(i
0
/n)y2, where U@(x) may be approximated

by equation (17a). The "nal term in the brace brackets is non-zero only outside the
parabola, where equation (17b) can be used to approximate U@(x).

Combining this with the dipole scattered "eld (12) and with the incident plane
wave (3), we have

B"B
1
#B

2
, (21)

where, with the shorthand notation F"F(h, h
r
), f"f (h/h

r
), g"g(h/h

r
) ,

B
1
"B

0
e*i0x G1!

ii
0

c
0
AU(x)#

Csgn(y)

J2i
F(g#if )BH

+B
0

expGii0Cx!
1
c
0
AU(x)#

Csgn(y)

J2i
F(g#if )BDH , (22)

B
2
+

!i
0
CB

0
sgn(y)e*i0r

c
0
J8nii

0
r

Msin h!(1!F) cos(h/2)N . (23)

The component B
1

describes a slowing evolving incident wave propagating
across the vortex #ow, and is the corrected form of the zeroth order approximation
(9) of section 3.1. It represents a motion that is continuous everywhere in the #uid
away from the vortex core, including along the forward scatter ray x'0, y"0.
The second component B

2
is a cylindrically spreading disturbance that represents

waves decaying like 1/Ji
0
r with distance r from the vortex.

The distortion of the wave crests of the incident sound by the mean #ow may
now be determined. From equation (22), it is seen that the corrected form of
equation (10) for the curvilinear wave crests is

x
j
#

e
4n

sgn(y)AH(x)!
sgn(x)

n
arctan K

y
x K!F(g#f )B"n, n"0,$1,$2, 2 ,

(24)

The functions f, g can be evaluated in the range 0)x(R from rational
approximations given in reference [26], section 7.3.

Figure 4 illustrates the wave crests de"ned by equation (24) for the case
considered in section 3.1 of e"n, when F is taken to be

F(h, h
r
)"G

1, 0)h(h
r
,

exp[!(h/h
r
!1)2], h*h

r
.

(25)

Outside the parabola x"(i
0
/n)y2 the wave crests are identical with the &&phase

shifted'' crests plotted in Figure 2 from the zeroth order approximation. Within the
parabola the correction F(g#f ) in equation (24), to the zeroth order phase of the
approximation (9), produces a smooth transition between crests on opposite sides
of the forward scatter ray. The scattered "eld vanishes in both the forward and back
directions (h"0, n), but the slope of the wavefront is maximal in the direction of
forward scatter. By making use of the asymptotic formulae (18), it can be shown



Figure 4. Wave crests de"ned by the Born approximation (24) when e"n.
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that the wave normal is maximally inclined at an angle &e/2Jni
0
x to the incident

wave normal (the x-axis) at large distances from the vortex in the forward scattering
direction. Ultimately, the wave crests within the parabolic domain relax back to
their undisturbed form, i.e., become parallel to the incident wave crests.

After traversing the vortex the wave fronts become concave in the upper region
(x'0, y'0) and convex in the lower region (x'0, y(0). Focusing and
defocusing of incident wave energy must therefore make the wave amplitude in
these regions, respectively, larger and smaller than that of the incident wave. This is
illustrated in Figure 5, which depicts plots of

DB
1
D

DB
0
D
+expA

e sgn(y)
2

F( f!g)B ,

as a function of y for x"j, 2j, 2 , 10j, where j"2n/i
0

is the wavelength of the
incident wave. Because f (h/h

r
)!g(h/h

r
) is positive for h'0, and attains an absolute

maximum value &0)23 at h+2
3
h
r
, the energy maxima and minima occur on the

parabola

x+
9i

0
y2

4n
,

which lies within the critical parabola h"h
r
plotted as the broken-line curve in the

"gure.
The transmitted incident wave is well approximated by the zeroth order

approximation (9) outside the critical parabola. However, there are also
cylindrically spreading &&scattered'' waves de"ned by B

2
of equation (23), which are



Figure 5. Relaxation of wave amplitude after interaction with the vortex.
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of the type normally associated with scattering from a localized disturbance.
Because of the increasing width of the parabola as xP#R (likeJjx) , within
which a progressively increasing section of the perturbed incident wavefront relaxes
to its undisturbed form, the directivity DB

2
/B

0
D of the scattered waves varies with

distance r/j, as illustrated in Figure 6. The two symmetric radiation peaks in the
forward direction always lie outside the critical parabola (see Figure 7) at h+2)4h

r
,

where DB
2
/B

0
D&0)08e (although it must be remembered that the precise values of

these estimates are dependent on the choice of the transition function F(h, h
r
)), and

therefore increase in magnitude relative to the sound scattered in other directions
as r/jPR, and, in particular, relative to the two backscatter lobes which peak in
directions &$523 from the negative x-axis. The large forward scattered lobes
account for energy released during the relaxation of the refracted transmitted wave.

5. CONCLUSION

The two-dimensional interaction of a plane, time-harmonic sound wave and the
low Mach number #ow induced by a rectilinear vortex of small core diameter are



Figure 6. Dependence on radial distance r/j of the linear directivity DB
2
/B

0
D of the cylindrically

spreading sound; each plot is normalized with respect to peak value: (a) r/j"5, (b) 10, (c) 50, (d) 100.

Figure 7. Peak scattering angle for the cylindrically spreading wave B
2
.
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dominated by a smooth distortion of the wave crests of the incident wave on
passing across the core and their ultimate relaxation to their undisturbed forms. In
the Born approximation, the scattered "eld has nulls in the forward and back
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scattering directions, but the interaction of the incident wave with non-acoustically
compact components of the vortex velocity "eld causes wavefront distortion, and
the phase of the incident wave to undergo a signi"cant variation across the region
bounded by the parabola x"(i

0
/n)y2, whose axis extends along the forward

scattering direction. Within this region the wave crests are concave and convex,
respectively, on opposite sides of the axis of the parabola, and focusing and
defocusing of wave energy leads to corresponding increases and decreases in wave
amplitude. The curvature of the wave fronts decreases like Jj/x with increasing
axial distance x from the vortex core, so that the wave amplitude and phase return
asymptotically to the respective values they would have attained in the absence of
the vortex.

Cylindrically spreading waves, whose amplitudes are &Jj/r, are scattered into
the region outside the parabola. The directivity is symmetric with respect to the
incident wave direction of propagation, and is characterized by two large lobes
close to the direction of forward scattering, and two smaller lobes in directions
&$523 to the backscatter direction. These waves can be attributed to three
sources: (1) the transverse acoustic dipole associated with the back-and-forth
translational oscillations of the vortex core at the acoustic particle velocity of the
incident wave, (2) interaction of the incident wave with acoustically compact
components of the potential #ow velocity of the vortex, and (3) the steady release of
energy by the relaxing refracted transmitted wave.
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