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The natural frequency and vibration mode sensitivities to system parameters are
rigorously investigated for both tuned (cyclically symmetric) and mistuned planet-
ary gears. Parameters under consideration include support and mesh sti!nesses,
component masses, and moments of inertia. Using the well-de"ned vibration mode
properties of tuned planetary gears, the eigensensitivities are calculated and ex-
pressed in simple, exact formulae. These formulae connect natural frequency
sensitivity with the modal strain or kinetic energy and provide e$cient means to
determine the sensitivity to all sti!ness and inertia parameters by inspection of the
modal energy distribution. The natural frequency sensitivity to operating speed is
calculated to estimate the impact of gyroscopic e!ects. While the terminology of
planetary gears is used throughout, the results apply for general epicyclic gears.
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1. INTRODUCTION

Dynamic analysis of planetary (epicyclic) gears is essential for the reduction of noise
and vibration in helicopters, cars, turbo-prop/turbofan engines, and other power
transmission systems. Sensitivity of the natural frequencies and vibration modes to
system parameters provides important information for tuning resonances away
from operating speeds, minimizing response, and optimizing the structural design.
In industrial practice, planetary gear design balances many objectives in selecting
component inertias and support/mesh sti!nesses. Load sharing among the planets,
avoidance of resonance, and weight reduction are three important examples. The
design process needs to balance how changes in key design parameters for these (or
other) purposes alter the modal properties and impact dynamic response. This
work identi"es remarkably compact, closed-form eigensensitivity relations that can
guide these decisions.

The in#uence of selected design parameters on planetary gear natural frequencies
was touched on in a few papers. Botman [1] and Cunli!e et al. [2] both presented
plots of natural frequencies versus planet bearing sti!ness. Botman also studied the
e!ect of carrier rotation through a numerical example. Kahraman [3] showed the
e!ects of mesh/support sti!nesses on the natural frequencies in his torsional model
022-460X/99/460109#20 $30.00/0 ( 1999 Academic Press
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of planetary gears. Saada and Velex [4] discussed the in#uence of the ring support
sti!ness on free vibration. These analyses are based on parametric studies of
example planetary gears. Systematic analysis of the eigensensitivities of general
planetary gears has not been found in the published literature. In addition, most
previous dynamic analyses assume the planetary gears to be cyclically symmetric
(tuned) systems where all planets are identical and equally spaced. In practical
applications, however, planetary gears may be mistuned by di!ering sti!nesses
at the multiple tooth meshes, manufacturing variations, and assembling errors.
Eigensensitivity analysis for a mistuned parameter can identify modes that are
especially susceptible to irregularity. Frater et al. [5] studied the vibration modes
with a single mistuned mesh sti!ness, but general conclusions were not presented.

The objective of this paper is to analytically investigate the natural frequency and
vibration mode sensitivity to the system design parameters, including mesh/
support sti!nesses, component masses, and moments of inertia. Lin and Parker [6]
rigorously characterized the highly structured natural frequency and vibration
mode properties of planetary gears. Taking advantage of these properties, exact,
simple formulae are obtained to calculate eigensensitivities when the perturbed
system is tuned or mistuned. The natural frequency sensitivities are closely related
to the modal strain and kinetic energy distributions such that eigensensitivity is
calculable by inspection of these energy distributions. The lumped-parameter
model of planetary gears is introduced "rst. The general eigensensitivity relations
for distinct and degenerate natural frequencies are then formulated and applied
to the three classes of planetary gear vibration modes. The derived results are
applicable for general epicyclic gears with any number of planets. The application
of these relations is illustrated through examples. Finally, the natural frequency
sensitivity to the operating speed is analyzed and used to estimate how gyroscopic
e!ects alter the natural frequency spectrum.

2. SYSTEM MODEL

The lumped-parameter model of a planetary gear derived in reference [6] is the
basis for this study. Figure 1 shows a planetary gear with N planets. Each of the
carrier, ring, sun, and planets has two translational and one rotational degree of
freedom, so the system has ¸"3(N#3) degrees of freedom. The system equation
for free vibration is
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where M is the inertia matrix, K
b
is the support (bearing) sti!ness matrix, and K

m
is

the mesh sti!ness matrix, which is taken to be time invariant. The gyroscopic
matrix G and centripetal sti!ness matrix KX result from carrier rotation. M, K
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, K
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and KX are symmetric and G is skew-symmetric. x
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n
, g

n
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PLANETARY GEARS 111
tangential translations of planet n. u
h
"r

h
h
h
, h"c, r, s, 1,2, N are rotational

co-ordinates, where h
h

is the rotation angle of component h; r
h

is the base circle
radius for the sun, ring and planets, and the radius of the circle passing through the
planet centers for the carrier. All co-ordinates are with respect to a basis "xed to the
carrier and rotating with the constant carrier rotation speed X

c
. Appendix A lists

the nomenclature used throughout.
The associated eigenvalue problem of (1) is obtained from the separable solution
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where j"J!1 and K"K
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. The eigensensitivity analysis calculates natural

frequency and vibration mode derivatives with respect to sti!nesses, masses, mo-
ments of inertia, and operating speed. Eigensensitivity to sti!ness and inertia
parameters are examined in the absence of gyroscopic e!ects (X
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"0), where

equation (2) reduces to

(K!j
i
M)/

i
"0 (3)

and j
i
"u2

i
. Gyroscopic e!ects are important in high-speed applications, and

eigensensitivity with respect to X
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is studied later in this paper. The eigensensitivity

for problems in form (3) has been investigated in references [7}12] and the
necessary results are introduced below. The unique modal properties of planetary
gears are then invoked to reduce these general results to simple expressions speci"c
to planetary gears.

3. CALCULATION OF EIGENSENSITIVITY

Let ( )@ and ( )@@ denote the "rst and second derivatives with respect to a model
parameter (i.e., mesh/support sti!ness, component mass, or moment of inertia). For
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For the case of degenerate eigenvalues, consider a system having a group of
eigenvalues j

1
"2" j
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with multiplicity m. We select an arbitrary set of
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The m solvability conditions cT
1
f"2"cT

m
f"0 of equation (7) yield the symmet-

ric m]m eigenvalue problem
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The "rst order eigenvalue derivatives j@
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are the eigenvalues of equation (8). For the
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It remains to calculate c
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of equation (9). Denoting C"[c

1
,2, c

m
], the diagonal

terms are obtained by di!erentiation of the mass normalization equation
UTMU"Im]m and use of equation (9):
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where C
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is the (i, j)th element of C. From the second derivative of equation (3), the
o!-diagonal terms of C and the second order eigenvalue derivatives are [9}11]
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For the case when all j@
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obtained from equation (8) are degenerate (i.e., the
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where V"[v
1
,2, v

m
] is determined by equations (11) and (12). These j@@

i
are not

a!ected by the selection of U.
The foregoing development is used subsequently to derive general, closed-form

eigensensitivity relations for j@
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, /@
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for planetary gears. These expressions

yield eigensolution approximations according to
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where o represents any system parameter with nominal value o
0

and multiple
parameter perturbations are permitted. Eigensolutions j, / are for a nominal set of
model parameters referred to as the unperturbed system, and the derivatives are
evaluated for this unperturbed system. Eigensolutions jJ , /J are for the perturbed
system with varied parameters. Two types of systems are considered. ¹uned systems
are those where all planets are identical and equally spaced, all sun}planet mesh
sti!nesses are equal, and all ring-planet mesh sti!nesses are equal. Mistuned
systems are those where one or more planet parameters violate this cyclic
symmetry. The unperturbed system is taken to be tuned in this study. Note that
this does not meaningfully restrict the results because parameter variations leading
to both tuned and mistuned perturbed systems are examined. The remarkable
simplicity of the derived eigensensitivity expressions results because of the
unique, highly structured natural frequency and vibration mode properties of tuned
planetary gears [6]. These properties result from the cyclic symmetry and are
outlined below.
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with summation over n"1,2, N. There are exactly three groups of planet modes,
each having multiplicity m"N!3. The m degenerate vibration modes in a group
have the same p

1
but m di!erent sets of w

n
.

4. EIGENSENSITIVITY TO MESH AND SUPPORT STIFFNESSES

The sti!nesses under consideration include mesh sti!nesses (k
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, k
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), transverse
support sti!nesses (k
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), and rotational support sti!nesses (k
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(Figure 1). The natural frequency sensitivity to a certain sti!ness is found to be
uniquely associated with the modal strain energy occurring in that spring. To
demonstrate the procedure, let the sun}planet mesh sti!ness k

sn
be the varied

parameter.

4.1. TUNED SYSTEM
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where all submatrices of LK/Lk
sn

are zero except the four that involve k
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.
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. Their details are given in reference [6].
For a rotational mode, the eigensensitivities are obtained by substitution of

equation (21) into equations (4)}(6):

Lj
i

Lk
sp

"

N
+
n/1

(di
sn

)2, (22)

L/
i

Lk
sp

"

L
+

k/1,kOi

N
+
n/1

dk
sn
di
sn

j
i
!j

k

/
k
, (23)

L2j
i

jk2
sp

"

L
+

k/1,kOi

2
j
i
!j

k
A

N
+
n/1

dk
sn
di
snB

2
, (24)

where di
sn

is the spring deformation of the sun}planet n mesh in mode /
i
given by

di
sn
"y

s
cos(t

n
!a

s
)!x

s
sin(t

n
!a

s
)!g

n
cos a

s
!f

n
sin a

s
#u

s
#u

n
. The algebraic

relation

/T
i

LK
Lk

sp

/
k
"dk

sn
di
sn

, n"1,2,N (25)

is used in obtaining equations (22)}(24). The rotational mode property (18) dictates
that all sun}planet mesh deformations are equal, i.e., dj
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In equation (23), /@
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is expressed as a modal expansion of the eigenvectors, and the
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the eigenvalues of matrix E with elements
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Planet modes are also degenerate and the procedure is similar to that for
translational modes. For planet modes U"[/
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Equation (31) allows one to obtain the natural frequency sensitivity to sun}planet
mesh sti!ness by inspection of the modal strain energy distribution.

As an example, consider a planetary gear used in the transmission of a U.S. Army
OH-58 helicopter. The nominal model parameters are listed in Table 1. The natural
frequencies from equation (3) are shown in Figure 2(a) for a range of k

sp
. The

strain energies of each spring are calculated according to equation (30) and their
distribution in mode 16 (a translational mode) is shown in Figures 2(b,c) for two



TABLE 1

Parameters of an example system with four planets

Sun Ring Carrier Planet

Mass (kg) 0)4 2)35 5)43 0)66
I/r2 (kg) 0)39 3)00 6)29 0)61
Base diameter (mm) 77)4 275)0 176)8 100)3
Mesh sti!ness (N/m) k

sp
"k
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"5]108

Bearing sti!ness (N/m) k
p
"k

s
"k

r
"108

Torsional sti!ness (N/m) k
ru
"109 k
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"k
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"0

Pressure angle a
s
"a

r
"24)63
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cases: k
sp
"70 N/lm and k

sp
"500N/lm. The associated vibration mode /
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is

also shown for these two cases. Little strain energy is stored in the sun}planet
meshes ;

sn
for case I, while substantial strain energy results in case II. Conse-

quently, u
16

is more sensitive to k
sp

in case II than in case I. This conclusion is
consistent with the larger slope of the u

16
locus for case II in Figure 2(a). In fact,

natural frequency sensitivities to all sti!nesses can be obtained quantitatively
directly from the strain energy distribution using equation (31) and analogous
relations (32) and (33) below.

When other system sti!nesses are changed such that the system remains tuned,
analogous calculations lead to compact relations similar to equations (22) and (31):
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These relations apply for all three types of vibration modes. Expressions for /@
i
and

jA
i

for all of the sti!ness parameters are collected in Appendix B. Recalling the
special properties of the vibration modes, equations (31)}(33) imply the following.

(1) Rotational modes are independent of the transverse support sti!nesses of the
carrier, ring, and sun because these components have no deformation of, and
hence no modal strain energy in, their transverse support springs. Thus, use of
a &&#oating'' sun, ring, or carrier (i.e., low sti!ness support) has no impact on
rotational modes.

(2) Translational modes are similarly independent of the rotational support
sti!nesses of the carrier, ring, and sun,

(3) Planet modes are insensitive to all carrier, ring, and sun support sti!nesses.

4.2. MISTUNED SYSTEM

In practical planetary gears, mistuning may be caused by di!ering mesh sti!nesses
between planets due to di!ering numbers of teeth in contact, manufacturing



Figure 2. (a) Natural frequency versus the sun}planet sti!ness k
sp

. The strain energy distribu-
tions and vibration modes of /

16
are shown in (b) for case I and (c) for case II. All ; are de"ned

in equation (30). The natural frequency sensitivity is associated with ;
sn

by relation (31). The
carrier movement is not shown in the vibration modes. Dashed lines are the equilibrium positions and
solid lines are the de#ected positions. Dots represents the component centers. Parameters are taken
from Table 1.
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variations, and assembly errors. To study the e!ects of mistuning on the free
vibration, we now examine the eigensensitivity to parameter variations that di!er
between the planets. Consider an example with only the "rst sun}planet mesh
sti!ness k

s1
varying from the nominal (unperturbed) value k

sp
. The derivatives of the

mass and sti!ness matrices with respect to k
s1

are M@"MA"KA"0, K@"LK/Lk
s1

.
The eigensensitivities of the rotational modes are obtained from equations (4)}(6)

and (25):
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(34}36)

Equation (34) relates j@
i
to the modal strain energy in the "rst sun}planet mesh.

Equations (34)}(36) are similar to (22)}(24) without the summation over n because
the varying parameter is located only at the "rst sun}planet mesh.

For translational modes, we begin with an arbitrary pair of orthonormal,
unperturbed vibration modes C"[c

1
, c

2
] and use equation (8) to calculate eigen-

value derivatives. The notation Di
s1

is introduced to represent the sun}planet
1 mesh spring deformation in mode c

i
; this de"nition is analogous to di

s1
for /

i
. The

matrix D and its eigenvalues (i.e., j@
i,2

) are
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j@
1

can be further simpli"ed if the arbitrary modes C"c
1
, c

2
in equation (37)

are replaced by the speci"c modes U"[/
1
, /

2
]"CA, where A consists

of the eigenvectors of D and ATA"I2]2. Thus, equations (37) and (38) are replaced
by
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From equations (9)}(15), the eigenvector and second eigenvalue derivatives
are
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The behavior of /
1

and /
2

is shown in Figure 3 for the example of Table 1. A pair
of translational mode natural frequencies separate as a disorder e"k

s1
/k

sp
!1

is introduced. The modal strain energy distributions in the four sun}planet



Figure 3. In#uence of the disorder e"k
s1

/k
sp
!1 in the "rst sun}planet mesh sti!ness on the

natural frequencies. The strain energy distributions in the four sun}planet meshes are shown in bar
plots for e"0, !0)1. Linear (2) and quadratic (} }) approximations agree well with the exact loci
(**). Parameters are taken from Table 1.
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meshes are shown for e"0, !0)1. /
1

is sensitive to k
s1

because of the high strain
energy in the "rst sun}planet mesh. /

2
has no strain energy in the "rst sun}planet

mesh and is independent of k
s1

. The linear (u
2
#ek

sp
u@

2
) and quadratic

(u
2
#ek

sp
u@

2
#1

2
e2k3

sp
uA

2
) approximations of the loci are shown in Figure 3 and

agree well with the exact loci. These two loci intersect at e"0 when there is only
one disorder in the perturbed system. If one more disorder e

2
"k

s2
/k

sp
!1"0)1 is

added at the second mesh (Figure 4), the two loci suddenly change direction and
veer away. For an initially tuned (cyclically symmetric) system, two independent
varying parameters (e.g., k

s1
and k

s2
) are necessary to break the symmetry of both

/
1

and /
2

and cause frequency loci veering [15].
If the number of planets N"4 or 5, the planet modes have multiplicity m"1, 2

and their eigensensitivities can be obtained from equations (34)}(36) or (40)}(42).
When N'5, eigensolutions of matrix D in equation (8) are di$cult to achieve in
closed form, but can be obtained numerically.

5. EIGENSENSITIVITY TO GEAR MASS AND INERTIA

The parameters of interest consist of masses (m
c
, m

r
, m

s
, m

p
) and moments of

inertia (I
c
, I

r
, I

s
, I

p
) for the carrier, ring, sun, and planets. The eigensensitivity to



Figure 4. In#uence of two disorders on natural frequencies. Another disorder e
2
"k

s2
k
sp
!1"0)1

at the second sun}planet mesh is added to the system shown in Figure 3. The frequency loci do not
intersect but veer away. Parameters are taken from Table 1.
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these parameters follows the same procedure as described previously. When the
perturbed system remains tuned, the eigenvalue derivatives for the three types of
modes are
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where ¹
h
, ¹

hu
, h"c, r, s and ¹

n
, ¹

nu
are the modal translational and rotational

kinetic energies, respectively, of the carrier, ring, sun, and planets. The total modal
kinetic energy ¹ is

¹"1
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where each term of equation (45) is de"ned implicitly in equations (43) and (44).
Expressions for /@

i
and jA

i
for all of the mass and inertia parameters are collected in

Appendix B. Figure 5(a) shows an example plot of the natural frequencies versus the



Figure 5. (a) Natural frequency versus the sun moment of inertia I
s
. The kinetic energy distribu-

tions and vibration modes of /
16

are shown in (b) for case I and (c) for case II. The ¹ are de"ned in
equation (45). The natural frequency sensitivity to I

s
is associated with the sun rotational kinetic

energy ¹
su

. The carrier movement is not shown in the vibration modes. Dashed lines are the
equilibrium positions and solid lines are the de#ected positions. Dots represents the component
centers. Parameters are taken from Table 1.
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sun moment of inertia I
s
. Most natural frequencies are insensitive to changes in I

s
.

The kinetic energy distribution and vibration modes of mode 18 (rotational
mode) are shown in Figures 5(b, c) for cases I and II. The sun has more rotational
kinetic energy ¹

su
in case I than in case II, so u

18
locus has larger slope in case I.
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Equations (43) and (44) allow quantitative calculation of natural frequency
sensitivity to all masses and moments of inertia directly from the modal kinetic
energy distributions. Considering the properties of each class of vibration modes,
some conclusions are immediate from equations (43) and (44):

(1) Rotational modes are independent of the masses of the carrier, ring, and sun
because such modes have no translations of these components.

(2) Translational modes are similarly independent of the inertias of the carrier,
ring, and sun.

(3) Planet modes are independent of both masses and inertias of the carrier, ring,
and sun.

6. EIGENSENSITIVITY TO OPERATING SPEED

In high-speed applications (e.g., aircraft engines), gyroscopic e!ects may
signi"cantly alter the system stability and dynamic behavior. Eigenvalue
derivatives evaluated for X

c
"0 are calculated to assess the in#uence of operating

speed on the natural frequency spectrum. The eigenvalue problem (2) is the
standard form for a gyroscopic system. For practical operating speeds (i.e.,
subcritical) the eigenvalues remain purely imaginary. Suppose a zero speed natural
frequency u

i
has multiplicity m and the arbitrarily chosen independent eigenvectors

are C"[c
1
,2, c

m
] with normalization CTMC"Im]m . While eigenvectors for

X
c
O0 are complex, the c

i
are real. Analogous to the derivation of equation (8),

di!erentiation of equation (2) with respect to X
c

and evaluation at X
c
"0 yield
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i
. Applying solvability and

normalization conditions results in an m]m Hermitian eigenvalue problem
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The natural frequency sensitivities u@
i
are obtained from the eigenvalues of equation

(46) for the three classes of vibration modes. Rotational mode natural frequencies
are distinct and equation (46) becomes a scalar equation. Hence u@

i
"0 because
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"0 for real c
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and skew-symmetric G. For translational modes c
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For a group of planet modes c
1
,2, c

m
, property (20) guarantees D

ij
"cT

i
Gc

j
"0

for iOj. D
ii
"0, i"1,2, m because of the skew-symmetry of G. Thus, D"0 and

all planet mode natural frequency sensitivities vanish, i.e., u@
i
"0.

Equation (47) can be used to approximate the frequency loci uJ
i
"X

c
u@

i
. The

result u@
i
"0 for rotational and planet modes at X

c
"0 indicates the natural

frequencies of these modes are scarcely a!ected by operating speed. Figure 6 shows
the "rst 10 frequency loci versus X

c
for the gear system in Table 1. The rotational

mode (u
4
, u

8
) and planet mode (u

5
) loci are nearly constant. Translational mode

frequencies (u
2,3

, u
6,7

, u
9,10

) split as X
c
is increased from zero. In this example,

u
2

and u
3

at X
c
"600 rad/s deviate about 10% from the zero speed value. Typical



Figure 6. In#uence of the carrier rotation speed X
c
on natural frequencies. u

1
"0 is a rigid-body

mode. Parameters are taken from Table 1.
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helicopter carrier speeds are less than 100 rad/s. For applications with high speed
(e.g., turbofan and turbprop engine systems), heavy component masses, and com-
pliant sti!nesses, the gyroscopic e!ects can be more signi"cant. If a natural
frequency locus has large slope and decreases to zero in the range of operating
speed, the stability and system behavior are dramatically impacted.

7. SUMMARY AND CONCLUSIONS

This work systematically investigates the natural frequency and vibration mode
sensitivities to key planetary gear design parameters including all support and mesh
sti!nesses, component masses, moments of inertia, and operating speed. The main
results are:

(1) The well-de"ned vibration mode properties lead to simple, exact formulae
relating eigenvalue derivatives to modal strain and kinetic energies. These
formulae allow one to obtain the natural frequency sensitivity directly from
modal energy distributions and e!ectively adjust the system frequencies. Both
tuned (cyclically symmetric) and mistuned parameter variations are considered.
The eigensensitivities help identify the parameters critical to planetary gear
vibration and assess design choices such as the use of &&#oating'' components on
low sti!ness supports.
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(2) Rotational modes are independent of the transverse support sti!nesses and
masses of the carrier, ring, and sun. Translational modes are independent of the
rotational support sti!nesses and moments of inertia of the carrier, ring, and
sun. Planet modes are remarkably insensitive to all support sti!nesses, mass,
and moments of inertia of the carrier, ring, and sun.

(3) The impact of gyroscopic e!ects are estimated by the natural frequency sensitiv-
ity to the operating speed. Rotational and planet mode natural frequencies are
insensitive to the operating speed. The degenerate zero speed translational
mode natural frequencies split into distinct ones as the operating speed in-
creases. Translational mode natural frequency sensitivity to operating speed
increases with component inertia and decreases with system sti!ness.
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APPENDIX A: NOMENCLATURE

I
h

moments of inertia, h"c, r, s, p
k
h

transverse support sti!ness, h"c, r, s, p
k
hu

torsional support sti!ness, h"c, r, s, p
k
sn

, k
rn

nth sun}planet and ring}planet mesh sti!ness
k
sp

nominal sun}planet mesh sti!ness in tuned system
¸ total number of degrees of freedom"3(N#3)
m multiplicity of eigensolution
m
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component masses, h"c, r, s, p

N number of planets
r
c

radius of the circle passing through planet centers
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gear base radii, h"r, s, p
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component rotations, h"c, r, s, p
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radial and tangential motion of the nth planet

( )@, ( )A "rst and second derivatives

APPENDIX B

The superscripts k and i in x, y, f, g, u and d indicate they are from the vibration
modes /
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numerically obtained from equation (16).
Mistuned system: Only one parameter is altered at the "rst planet. The case of
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is the same as equations (34)}(42), except subscript s1 is replaced by r1.
For other planet parameters, the rotational mode derivatives are
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