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The propagation of vibration generated by a harmonic or a constant load
moving along a layered beam resting on the layered half-space is investigated
theoretically in this paper. The solution to this problem can be used to study the
ground vibration generated by the motion of a train axle load on a railway track. In
this application, the ground is modelled as a number of parallel viscoelastic layers
overlying an elastic half-space or a rigid foundation. The track, including the rails,
rail pad, sleepers and ballast, is modelled as an in"nite, layered beam structure. The
modal nature of propagation in the ground for a chosen set of ground parameters is
discussed and the results of the model are presented showing the characteristics of
the vibration generated by a constant load and an oscillatory load at speeds below,
near to, and above the lowest ground wave speed.
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1. INTRODUCTION

It is well known that railway operations produce vibrations propagating in the
ground which are perceptible in properties at signi"cant distances [1]. Vibrations
in the frequency range relevant to the whole-body perception (approximately
4}80 Hz) from tracks onto the ground surface, propagate parallel to the ground
surface via Rayleigh wave modes with low rates of attenuation with distance.
Observations of high levels of vibration in this frequency range are most commonly
associated with heavy axle-load freight operations. However, in recent years,
concern has developed over high levels of vibration induced by trains running at
high speeds close to or even exceeding the phase velocities of waves propagating in
the track structure and the ground [2, 3]. Large increases of vibration level with
speed have been predicted [2] and some observations of the e!ects close to the
track have been reported in the literature [3, 4].
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Analysis of these e!ects requires realistic models of ground vibration generation
and propagation. In particular, it has been shown that it is important to include the
e!ects of both the railway track structure and the layered structure of the ground
[5, 6]. Here the term &&track structure'' is used to encompass the rails, rail supports,
the sleepers, the ballast and, when applicable, an embankment.

Jones and Block [7] divided the vibration observed at the track during the
passage of a train into two parts. The "rst consists of the time history of the
quasi-static deformation pattern due to successive axles as the train passes a "xed
point, and the second is the response to the dynamic loads caused by the acceleration
of the masses of the train over the combined irregular pro"le of the wheels and the
track. For the propagation of vibration in the ground, reference [7] used a model of
wave propagation from a "xed-point harmonic load on the track. The e!ect of the
movement of the train was introduced as phase terms in the summation of
vibration contributions from di!erent sleeper positions along the track. Results of
this model were compared with the measurements of vibration from freight trains
at a particular site. For these trains, moving at speeds well below the velocities of
waves in the track and ground structure, the "xed-point load model satisfactorily
represented the propagation of the vibration.

Takemiya and Goda [8] divide the source of vibration excitation from a single
axle into three components. The "rst, similarly to reference [7], is a moving
non-harmonic load, the second, a "xed-point dynamic loading at the track, and the
third, a moving harmonic load to represent the dynamic vehicle forces. It is proper
to model the second of these components as a harmonic load at a "xed point on the
track [6] but for trains moving at signi"cant speeds compared to the waves in the
track and ground, the "rst and the third of these components require a model of
a moving load.

Reference [6] illustrates the existence of a wave of the combined track and
ground propagating along the direction of the track with a speed controlled by, but
lower than, the lowest propagating wave in the free, layered ground structure. In
soft soil types this wave speed can be lower than the speed of the travel of some
passenger trains and it is known by track engineers that the track design must take
account of this. In reference [3] large amplitudes of displacement at the track have
been measured as the speed of the train is increased towards the critical speed, at
the measurement site, of about 50 m s~1 (180 km/h).

For the study of the propagation of vibration away from the track for high-speed
trains a moving load model is required. The theory of the generation of vibration
under the action of moving loads has received considerable attention in the past.
Alabi [9, 10] modelled moving loads on a half-space but implemented no model of
the track. In reference [11] the ground vibration generated by a moving harmonic
rectangular load acting directly on the ground surface with the ground modelled as
a half-space is studied. In reference [12] de Barros and Luco present a model with
a moving point load on a layered ground. The latter uses the layer transfer matrix
approach for the layered ground, "rst presented by Haskell [13] and Thomson
[14], and which is similar to the approach used in the present work. Each of these
models is used to study the generation of vibration from trains but does not include
the track structure.
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Recently, Dieterman and Metrikine [15] used a model of a point harmonic load
moving along an elastic layer resting on a rigid foundation to study the existence of
critical speeds in the ballast layer. The same authors [16] also produced a model of
a constant load moving on a beam on a half-space to study the steady state
displacements in the beam at speeds below, near, and exceeding the Rayleigh wave
speed.

Krylov [2] studied ground vibration from the whole set of moving loads of
a train on a track structure, but taking only a single Rayleigh wave type into
account in the ground part of the model. In reference [4] Krylov includes some of
the e!ects of a layered ground into the same modelling approach by using a fre-
quency-dependent Rayleigh wave speed.

Along with their presentation of measurements in reference [3] Madshus and
Kaynia report the development of a model which includes a moving load on
a railway/embankment structure modelled using "nite elements which is then
coupled at a series of points, to a layered ground model via Green's functions which
are calculated using the dynamic sti!ness matrix theory developed by Kausel and
RoeK sset [17].

In this paper the model of reference [6] is extended to encompass the e!ects of
a load moving on a track on the layered ground. The model deals with both loads
that are constant and also those that have a non-zero frequency in the moving
frame of reference. The ground is modelled as a structure of the three-dimensional
viscoelastic layers overlying either a half-space or a rigid foundation. The track is
modelled by a single rail beam, rail pad and a sleeper mass layer supported by
a viscoelastic ballast layer. In section 2, the di!erential equations of motion of the
railway and the Navier's equations for the ground are presented. Section 3, outlines
the calculation of the ground dynamic #exibility matrix making use of the theory
presented by the authors in reference [6]. In section 4, the railway and the ground
are coupled, rendering it possible to calculate the Fourier-transformed response of
the ground surface. These are used for calculating the displacements and velocities
as a function of Cartesian co-ordinates either through a two-dimensional inverse
FFT, or a Fourier transform implemented through a specialized quadrature.
Although the load is applied with a single non-zero frequency or at zero frequency,
the ground vibration is a transient with a broad band of frequency content because
of the movement of the load. The spectra of the transient ground vibrations are
important in practice and are therefore investigated in section 5. Section 6 presents
a number of results of the model to investigate the e!ects of the moving load on the
generation of vibration.

2. THE DIFFERENTIAL EQUATIONS OF MOTION
OF THE RAILWAY}GROUND SYSTEM

A diagram of the model is presented in Figure 1. The railway is in"nite in length
and is aligned in the x direction. It has a contact width 2b with the ground. The rails
are modelled as a single Euler beam with mass per unit length of track m

R
and

bending sti!ness EI. The sleepers are modelled as a distributed mass m
S

per unit



Figure 1. Diagram of the model of track on layered ground.
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length of track. The rail pads are represented as a distributed vertical spring
sti!ness k

P
between the rail beam and the sleeper mass. The ballast is modelled as

a viscoelastic layer with a width 2b and a mass per unit length m
B
. For the ballast

layer, only the vertical sti!ness K
B

is taken into account. All track components are
attributed damping properties by the use of complex sti!ness parameters, i.e., each
of the sti!ness parameters de"ned above are complex being derived from a real
sti!ness value and an associated loss factor, for example, g

p
sgn (u) for the rail pads

where sgn(u) means the sign of the frequency u.
The moving load is assumed harmonic with an angular frequency ), and an

amplitude P
0
. When X is set to zero, the load becomes a moving constant load. At

time t, the distance from the load to the point O' (see Figure 1) is ct, where c is the
speed of the moving load. The vertical displacements of the rail beam and the
sleeper mass are denoted by w

1
(x, t), w

2
(x, t), respectively, and the vertical displace-

ment at the centreline in the contact plane (i.e., the x-axis) by w
3
(x, t). Furthermore,

it is supposed that the contact force in the contact plane is normal and is evenly
distributed in the y direction from y"!b to y"b, the per-length value of which
in the x direction is F

3
(x, t).

The plane Oxy represents the ground surface, below which the ground consists of
a number, n, layers. The nth layer overlies a half-space or a rigid foundation, which
is termed the layer number n#1. The material constants of layer j are the Young's
modulus, E

j
, Possion ratio, l

j
, density, o

j
, loss factor, g

j
sgn (u), and thickness, h

j
. If

layer n#1 is a half-space, its material constants are E
n`1

, l
n`1

,o
n`1

and
g
n`1

sgn (u).
The di!erential equations of motion of the railway are as follows.
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For the rail beam,
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where d(.) is the Dirac-delta function.
For the sleeper mass,
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and for the ballast layer a linear spring sti!ness with a consistent mass approxima-
tion is used so that
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where F
2
(x, t) is the force per unit length of track between the sleeper mass and the

ballast.
The di!erential equations of motion of the ground are Navier's equations. For

the jth layer, they are
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where, j
j

and k
j

are the LameH constants of the jth layer, determined from the
Young's modulus and the Poisson ratio by

j
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The displacements in the x, y, z directions of a point (x, y, z) in the layer (where
z3[0, h

j
]), are u

j
"u

j
(x, y, z, t ), v

j
"v

j
(x, y, z, t ) and w

j
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(x, y, z, t ),

D
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(6)

and $2 is the Laplace operator.
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Now applying the single spatial Fourier transform pairs

fM (b)"P
=

~=

f (x) e~*b9dx, f (x)"
1
2nP

=

~=

fM (b) e*bx db (7)

to equations (1)}(3), and double spatial Fourier transform pairs
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to equations (4), yields
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where the bar notation is used to represent the quantities transformed into the wave
number domain, e.g.,

wN
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(b, t )"P

=
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w
1
(x, t ) e~*bxdx, uN

j
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Equations (9)}(12) are the Fourier transformed di!erential equations of motion
of the railway}ground system. By taking into account the right-hand term in
equation (9) and including the damping by using the complex moduli and sti!ness
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parameters, steady state solutions of equations (9)}(12) may be found, i.e.,
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If the inverse Fourier transform of uJ
j
(b, c, z) is denoted by u*

j
(x, y, z), from

equation (13) the inverse Fourier transform of uN
j
(b, c, z, t ) is given by

u
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j
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Equation (14) shows that the time-varying displacement "eld u
j
(x, y, z, t) is just the

propagation of the wave "eld u*
j
(x, y, z) eiXt in the x direction at the load speed c.

For "xed values of y and z, if u*
j
(x, y, z) is known for a number of successive values

of x within x
0
!e)x)x

0
#e, where e is a positive number, the time history of

the displacement of point (x
0
, y, z ) is determined by equation (14). For the calcu-

lation of a large number of values u*
j
(x, y, z) to form a time history of which the

spectrum may be calculated, it is appropriate to use an FFT algorithm rather than
implementing a Fourier transform using a specialized quadrature. The latter
method is e$cient for the calculation at a single point (x, y, z) [6].

Substituting equation (13) into equations (9)}(12), and putting
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Comparing equations (17)}(20) with reference [6], it can be concluded that the
solution of equations (17)}(20) is the same as determining the Fourier transformed
responses when a harmonic load with amplitude P

0
and angular frequency u

(determined by equation (16)) acts at the head of the rail just above the origin point.
Therefore, the approach developed in reference [6], which will be brie#y
summarized in sections 3 and 4 for the analysis of the layered ground and the
coupling of the track structure to the ground model, can be applied here.

3. ANALYSIS FOR THE LAYERED GROUND IN THE WAVE NUMBER DOMAIN

3.1. FOR A GROUND LAYER

For the jth layer of the ground, the stresses are denoted by q
xzj
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q
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where MS3 N
j0

is for the top of jth layer, and MS3 N
j1

is for its bottom, it can be shown
that [6]

MS3 N
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"eaj1hj[A]
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where [A]
j1

, [A]
j0

are 6]6 matrices. The elements of these matrices and a
j1

are
determined by the parameters of the layer and u. The expressions for these matrices
are presented in reference [6].

3.2. FOR A HALF-SPACE

Putting
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similar to equation (24), one can show that [6]
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where [R] and [S] are 3]3 matrices the elements of which are determined by the
parameters of the half-space and u. Again the expressions for [R] and [S] may be
found in reference [6].

3.3. FOR THE WHOLE LAYERED GROUND

The &&transfer'' matrices relating the stresses and displacements at the top and
bottom of a layer or at the surface of a half-space may be used to model a complete
multi-layered half-space by the method "rst shown by Haskell [13] and Thomson
[14]. Noticing that
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where [T]
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etc., are 3]3 matrices, equation (27) becomes
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Three cases may be encountered:
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(1) If the (n#1)th layer is a half-space, then Mu8 N
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.
From equations (26) and (29), this yields
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(2) If the (n#1)th layer is a rigid foundation, so that Mu8 N
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equation (29), equation (30) can also be obtained with
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(3) If the ground is comprised of only a half-space (now n"0), equation (26)
gives equation (30) with

[Q]"[R][S]~1 . (33)

Equation (30) shows the relation between the Fourier transformed displacement
vector and the Fourier transformed stress vector on the ground surface. This
relation makes use of the Fourier transformed dynamic #exibility matrix of the
ground (if the load is not moving, as de"ned in reference [6], matrix [Q] gives the
Fourier transformed dynamic #exibility matrix of the ground).

The formulae developed in reference [6] for [A]
j1

, [A]
j0

, [R], [S], are valid only
when uO0. From equation (16) one can see that u is dependent on b, and u"0
when b"X/c. In this case, the formulae for [A]

j1
, [A]

j0
, [S], [R] that are

presented in reference [6] must be modi"ed to make them computable [18].
It is worth noting some properties of Q

13
, Q

23
and Q

33
namely that:

(1) Q
13

(b, c) is an even function of c; and Q
13

(0, c)"0 for any c;
(2) Q

23
(b, c) is an odd function of c;

(3) Q
33

(b, c) is an even function of c.

These and other properties of the matrix [Q] that lead to the e$cient calculation
are discussed in greater detail in reference [18].

4. COUPLING OF THE GROUND WITH THE RAILWAY AND
THE DISPLACEMENTS AND VELOCITIES OF THE GROUND SURFACE

Coupling of the ground with the railway track can be carried out by taking into
account the continuity of the displacements and the equilibrium of the stresses in
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the plane of contact between them, i.e.,

w
1
(x, 0, 0, t)"w

3
(x, t), (34)

q
zz1

(x, y, 0, t)"G
!

F
3
(x, t )
2b

, Dy D)b,

0 elsewhere,
(35)

where

w
1
(x, 0, 0, t )"

1
4n2 P

=

~=
P

=

~=

wN
1
(b, c, 0, t) e i(bx#cy) dbdc D

y/0

"

1
4n2 P

=

~=
P

=

~=

wN
1
(b, c, 0, t) e ibx dbdc . (36)

Now Fourier transforming equation (34) with respect to x and taking into
account equation (36), yields

wN
3
(b, t)"

1
2n P

=

~=

wN
1
(b, c, 0, t ) dc . (37)

The double Fourier transform of equation (35), gives

qN
zz1

(b, c, 0, t)"!FM
3
(b, t)

sin cb
cb

. (38)

Using the reduction to steady state solutions in the moving frame of reference
that has already been expressed in equations (13) and (21), equations (37) and (38)
can be restated as

wJ
3
(b)"

1
2nP

=

~=

wJ
1
(b, c, 0) dc (39)

qJ
zz1

(b, c, 0)"!FI
3
(b)

sin cb
cb

. (40)

The simplifying assumption that only the vertical component of stress between
the track and the ground need be used, is now invoked. (Only the vertical
mechanics of the track structure are included in the model.) Thus, the stress "eld
Ms8 N

10
is described only by qJ

zz1
(b, c, 0) and equation (30) gives the transformed

vertical displacement at the track/ground interface as

wJ
1
(b, c, 0)"!Q

33
FI
3
(b)

sin cb
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and from equation (39) one gets

wJ
3
(b)"A!

1
2n P

=

~=

Q
33

sin cb
cb

dcBFI
3
(b) . (41)
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The bracketed term on the right-hand side of equation (41) represents the
#exibility of the ground that is subject to the force applied by the track. Denoting
this as HI (b) and using the fact that the integrand is an even function of c, gives

HI (b)"!

1
n P

=

0

Q
33

sin cb
cb

dc . (42)

which is calculable from the ground model presented in section 3. Now equation
(39) is restated as

wJ
3
(b)"HI (b)FI

3
(b) . (43)

Substitution of equation (43) into equations (17)}(19) allows them to be solved to
eliminate wJ

1
(b), wJ

2
(b), FI

2
(b), wJ

3
(b) and to calculate FI

3
(b). Then qJ

zz1
(b, c, 0) is known

via equation (40) and equation (30) shows
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sin cb
cb

F3
3
(b) . (44)

From equation (13) the time-varying Fourier transformed displacements of the
ground surface can be obtained.

If the inverse Fourier transforms of uJ
1
(b, c, 0), vJ

1
(b, c, 0), wJ

1
(b, c, 0) are denoted

by u*
10

(x, y), v*
10

(x, y), w*
10

(x, y), respectively, i.e.,

u*
10

(x, y)"
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4n2 P
=

~=
P

=

~=

uJ
1
(b, c, 0) e i(bx#cy) dc dc , (45)

the displacements of the ground surface, denoted by u
10

(x, y, t), v
10

(x, y, t),
w
10

(x, y, t ), are as follows:

u
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(x, y, t)"u*
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(x!ct, y) eiXt ,

v
10

(x, y, t)"v*
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w
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(x!ct, y) eiXt , (46)

and speci"cally at t"0,
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(x, y),
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(x, y) ,

w
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10

(x, y) . (47)
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The ground vibration level is often required to be presented in terms of the
vibrational velocity rather than the displacement. In this case, di!erentiating
equation (46) with respect to time t gives the vibrational velocities of the ground
surface uR

10
(x, y, t), vR

10
(x, y, t), and wR

10
(x, y, t). It can be shown that

uR
10

(x, y, t)"!c
Lu*

10
(x!ct, y)

L (x!ct)
eiXt

#iXu*
10

(x!ct, y) e iXt

the Fourier transform of which, denoted by uR M
10

(x, y, t), is

uRM
10

(b, c, t)"(!cibuJ
1
(b, c, 0)#iXuJ

1
(b, c, 0)) ei(X~bc)t"i (X!bc)uJ

1
(b, c, 0) e*(X~bc)t .

Therefore, the Fourier transforms of the vibrational velocities of the ground surface
may be calculated as

uRM
10

(b, c,t)"i(X!bc)u8
1
(b, c, 0) ei(X~bc)t ,

v51
10

(b, c, t )"i (X!bc ) v8
1
(b, c, 0) e*(X~bc)t ,

w51
10

(b, c, t)"i (X!bc)wJ
1
(b, c, 0) e*(X~bc)t . (48)

5. VIBRATIONAL DISPLACEMENT SPECTRA OF THE GROUND SURFACE

Since the load moves, a load of a single frequency in the moving frame of
reference will produce a transient response at a "xed point in the ground which has
a spectrum containing a range of frequency components, i.e., a Doppler e!ect takes
place based on the speeds of wave propagation in the ground. In order to calculate
the spectrum of response of the ground to the moving load of single angular
frequency X, equation (46) is Fourier transformed with respect to time t. Now
denoting the frequency domain functions corresponding to

u
10

(x, y, t), v
10

(x, y, t), w
10

(x, y, t) by S
u
(x, y, f ), S

v
(x, y, f ), S

w
(x, y, f ),

where f is the frequency on the ground, gives, for example,
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u
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Putting x!ct"m, then dt"!1/c dm, gives

S
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1
c P
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"

1
c

e~*(2nf~X)x@c P
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~=

u*
10

(m, y) e*(2nf~X)m@c dm .

Now, the quantity (X!2nf )/c de"nes the wave number in the direction of c (i.e.
b, the wave number in the x direction). This shows that, in calculating the frequency



142 X. SHENG E¹ A¸.
response at a point on the ground, the frequency ordinate, f, can be replaced with an
equivalent value of b and the calculation performed as

b"(X!2nf )/c (49)

then
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(x, y, f )"

1
c
eibxP
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~=

u*
10

(m, y) e~*bmdm .

From equation (45), this becomes
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eibxA
1
2 P
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uJ
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where the integration is the inverse Fourier transform of uJ
1
(b, c, 0) with respect to c.

It can be shown in the same way that
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S
w
(x, y, f )"

1
c
eibxA

1
2P

=

~=

wJ
1
(b, c, 0) e*cydcB (52)

and for the rail and the sleeper, the displacement spectra are

S
R
(x, f )"

1
c

eibxwJ
1
(b), (53)

S
S
(x, f )"

1
c
eibxwJ

2
(b) , (54)

where b is determined by equation (49), and from equation (16), u"X!bc"2nf.
Equations (50)}(54) show that the amplitudes of the spectra of the ground surface

and the rail and sleeper are independent of the value of x. This re#ects the fact that
the spectrum represents the movement through the observation point of the steady
state wave "eld associated with the load moving along the x-axis from x"!R to
#R.

It is also worth noting that the product of the amplitude of the displacement
spectrum and 2nf gives the amplitude of the velocity spectrum, and that, due to the
fact that Q

13
(0, c)"0 for any c (see section 3), and from equations (44), (49) and (50),

S
u
(x, y, f )"0 for any x and y when f"X/2n , i.e., the longitudinal spectrum

vanishes at the frequency of the harmonic moving load.

6. RESULTS FROM THE MODEL

In this section some results are presented which investigate the generation of the
vibration at di!erent load velocities below, near to, and above the wave speed of the
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"rst mode in the ground. For these calculations a simple ground structure has been
used. The ground has one layer of soil, 2 m deep which overlies a half-space of sti!er
material. A representation of the ground in this way has been shown adequately to
represent the behaviour of the real ground sites over the frequency range of interest
for the railway-induced vibration [5, 7]. The material properties of the ground vary
considerably from one location to another. Here a single set of material parameters
has been taken to be the same as the one set used in reference [19]. These
parameters represent a realistic, though arbitrary ground. In the following dis-
cussion, e!ects are shown which are a function of the load speed relative to ground
wave speeds. For sites with lower wave speeds in the ground, i.e., softer soil, these
e!ects would occur at correspondingly lower load speeds. The material parameters
chosen for the layer and the half-space are listed in Table 1. The parameters for the
railway track are presented in Table 2.

To aid the interpretation of the results, the dispersion diagram for the ground
structure (without track) is shown in Figure 2, i.e., the wave numbers of propagating
modes in the ground are plotted against frequency. In this "gure, the modes
involving coupled compression and vertically polarized shear wave motion (P-SV
modes) are marked with solid lines. The modes involving horizontally polarized
shear motion (SH modes), which is decoupled from compression, are marked with
dotted lines. Since the SH modes have no component of vertical motion and only
the vertical track dynamics are modelled, they are not excited in the model.
TABLE 1

¹he parameters for the ground

layer depth Young's The Density Loss P-wave S-wave Rayleight
(m) modulus Poisson (kg/m3) factor speed speed wave

(]106N/m) ratio (m/s) (m/s) speed (m/s)

1 2)0 60 0)44 1500 0)1 360 118 112
Half space 360 0)49 2000 0)1 1750 245 233

TABLE 2

¹he parameters for the railway

Mass of rail beam per unit length of track 120 kg/m
Bending sti!ness of rail beam 1)26]107 Nm2

Rail pad sti!ness 3)5]108 N/m2

Rail pad loss factor 0)15
Mass of sleepers per unit length of track 490 kg/m
Mass of ballast per unit length of track 1200 kg/m
Ballast sti!ness per unit length of track 3)15]108 N/m2

Loss factor of ballast 1.0
Contact width of railway and ground 2)7 m



Figure 2. Dispersion diagram for the propagating modes in the ground comprising a single layer
over a half-space (no track present) (*** P-SV modes, ) ) ) ) ) ) ) SH waves, - - - - shear wave of
half-space, - ) - ) - Rayleigh wave and shear wave of a half-space of layer material).
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Below about 15 Hz no mode of propagation exists in the layer material. In the
frequency range from 15 Hz to approximately 25 Hz a rise in the transmitted
vibration occurs due to the onset of propagation in the layer via P-SV modes. The
peak in the transfer response occurs at about 25 Hz [19]. Such a rise in the response
has been observed in measurements of transfer frequency response functions in the
ground and is important in characterizing the spectrum of vibration from trains
[5, 7].

At high frequency, the "rst P-SV mode has a short wavelength compared with
the depth of the layer and its wave number converges towards that of a Rayleigh
wave in a half-space of the layer material. This is shown in the dispersion diagram
(Figure 2) where the Rayleigh wave and shear wave speeds of a half-space of the
upper layer material are indicated. It can also be seen that the "rst SH mode
converges towards the wave number of shear waves in the layer material. For the
ground parameters chosen, the P-wave speed in the layer is greater than the shear
wave speed in the half-space.

From the dispersion diagram it can be seen that at about 24 Hz a second P-SV
mode arises and a third appears just above 50 Hz. Figure 3 plots the mode shapes of
the two P-SV modes at 40 Hz. The "rst P-SV mode is tied to deformation of the
layer material while the second mode has a higher component of deformation of the
substratum material.

6.1. NON-HARMONIC MOVING LOAD RESULTS

Figure 4 shows the response of the surface of the ground for the model with the
track and a constant vertical unit load moving at 83 m/s. The response is plotted as



Figure 3. The two P-SV mode shapes at 40 Hz (undamped solution), (a) wave number"2)1/m, (b)
wave number"1)145/m (*** lateral and, - - - - vertical displacements plotted at n/4 phase from
t"0).

Figure 4. The vertical response of the layered ground surface for a constant load on the track
moving at 83 m/s.
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a function of distance from the track (y) and the distance from the load along
the track in the moving frame of reference (x!ct). The direction of movement is
to the right of the "gure. In this representation the vertical axis shows downward
displacement as positive. For this and subsequent similar plots, the phase
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information is retained by showing the displacement at an instant in time. For this
speed, which is below the wave speeds in the ground, the displacement forms
a simple dip in the surface of the ground localized under the load. The e!ect of the
bending sti!ness of the track can be seen as an upward displacement ahead of and
behind the load. The deformation pattern is said to be quasi-static, i.e., although it
is not quite symmetric in (x!ct), it still resembles the deformation pattern under
a static load on the track.

Figure 5 shows the deformation for a speed of 112 m/s, i.e., at the Rayleigh wave
speed of the upper layer material. In this case, a greater amplitude of displacement
occurs at the loading point and a displacement is observable at greater distances
along the track than for the lower speed of load. A small &&bow wave'' can be seen at
the load position which extends a little distance to the side of the track. For
comparison with Figure 5, Figure 6 shows the &&bow wave'' for the load moving at
the same speed for the track resting on a half-space of the layer material. In this case
the increase in amplitude is much greater and the e!ect of the bow wave extends
a long way to the side of the track. This demonstrates that the layered structure of
the ground is important in determining the occurrence and the amplitude of the
e!ects associated with the loads moving at critical velocities of the ground.

The e!ects of a further increase of speed to 150 m/s, for the layer on half-space
ground, are shown in Figure 7. At this speed, in excess of the Rayleigh wave speed of
the layer material, a number of waves are created in the track behind the load.
These create propagating waves in a &&Mach cone'' behind the moving load. Waves
are also generated in the track ahead of the load because of the bending sti!ness of
the rails. This phenomenon can also be seen in an analysis of a moving load on
a beam with an elastic foundation (see for example reference [20]). The peak
de#ection of the track for the 150 m/s load is greater than that at 112 m/s and it has
Figure 5. The vertical response of the layered ground surface for a constant load on the track
moving at 112 m/s.



Figure 6. The vertical response of the ground surface for a constant load on the track moving at
112 m/s where the ground is modelled only as a half-space of the layer material.

Figure 7. The vertical response of the surface of the layered ground for a constant load on the track
moving at 150 m/s.
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been found that the de#ection of the track under the loading point goes through
a maximum at around this load speed.

For a "xed-point load of "nite frequency, the propagating modes of the ground
that are excited by the load are simply the modes existing at that frequency as
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indicated by the dispersion diagram (Figure 2). For a moving load, modes are
excited via the velocity of the load according to the Doppler e!ect. From equation
(16) it can be seen that the line b"D(X!2nf )D/c, where c is the load speed, indicates
that the wave numbers excited (here the modulus is used to make the line indicate
the excitation of both the directions of the wave propagation in the ground with
respect to the direction of the movement of the load whilst still only plotting the
positive wave numbers). For a constant load X"0. Figure 8 therefore shows the
P-SV modes of Figure 2 overlaid with the lines b"2nf/c for c"83, 112, 150, 180
and 230 m/s. Figure 8 therefore indicates the modal wave numbers that are excited.

At the load speed of 150 m/s, the load speed line intersects the "rst P-SV mode at
about 25 Hz at which the response function of the layered ground is at its
maximum. Therefore the amplitude of response of the ground goes through
a maximum at this load speed.

When the load travels at a speed near to the Rayleigh wave speed of the
half-space substratum (230 m/s), Figure 9, two angles of Mach cone can be seen,
one for the waves in the layer, the other for the waves more closely associated with
the half-space. The latter propagate to greater distances than the waves in the layer.

Figure 10 shows the spectrum of vertical displacement at y"0 m (i.e., under the
track) for the load passing by. For speeds greater than the Rayleigh wave speed of
the layer material, a rise occurs in the spectrum between 15 and 25 Hz correspond-
ing to the onset of modal propagation in the layer. A peak is observed at
a frequency close to which the load-speed line intersects the dispersion curve for the
"rst P-SV mode (Figure 8). (Recall that the dispersion diagram does not take into
account the modi"cation of the "rst P-SV mode wave number by the presence of
the track.) The peak occurs at a slightly lower frequency for the higher load speeds
Figure 8. Dispersion diagram for the P-SV modes of the layered ground (no track present) with
load speed lines overlaid for a constant load.



Figure 9. The vertical response of the surface of the layered ground for a constant load on the track
moving at 230 m/s.

Figure 10. Spectrum of vertical displacement at a "xed point under the track (y"0 m) during the
pass-by of a unit constant vertical load at various load speeds (*** 83 m/s, - ) ) - ) ) - 112 m/s, - - - -
150 m/s, ) ) ) ) ) ) 180 m/s, - ) - ) - 230 m/s).
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than for the lower wave speeds. Peaks at higher frequencies corresponding to the
intersections with higher order modes can also be seen. These peaks are broad
because of the level of damping in the ground. For the 83 m/s load speed, the
spectrum shape is smooth representing the passage of the quasi-static de#ection



Figure 11. Spectrum of vertical displacement at a "xed point 10 m from the track centre-line during
the pass-by of a unit constant vertical load at various speeds (*** 83 m/s, - ) ) - ) ) - 112 m/s, - - - -
150 m/s, ) ) ) ) ) ) 180 m/s, - ) - ) - 230 m/s).
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curve through the observation point and no excitation of the modes occurs. For
this reason the level of the response to this speed of load is lower than for the higher
load speeds. The fact that the highest level of response is at 150 m/s can be seen in
this "gure.

Figure 11 shows the spectrum of vertical displacement for a "xed point of the
ground surface at y"10 m from the track centreline. Comparison with Figure 10
shows a greater attenuation over the 10 m distance from the track for the 83 m/s
load speed than for the higher speeds that excite propagating modes. The e!ects of
summation of contributions of vibration from points along the track give the
spectra for the higher load speed cases a more complicated frequency content than
for the point under the track.

6.2. RESULTS FOR A HARMONIC MOVING LOAD

Attention is now given to some results for a non-zero frequency load. For this
purpose a frequency of 40 Hz at which two P-SV modes exist, has been chosen. The
mode shapes have already been presented in Figure 3. Results for a number of
frequencies, covering some variations in the ground properties and track structure
have been presented in a previous paper [19]. For this reason a limited set of results
is presented in this section.

Figure 12 shows the response of the ground to a unit amplitude load of 40 Hz
frequency, moving at 83 m/s. By plotting the results for an instant in time at which
the sinusoidal load is at its maximum, rather than as amplitude, the propagating



Figure 12. Vertical response of the ground surface to a 40 Hz load moving along the track at 83 m/s
in the moving frame of reference.
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waves can be seen. At this speed, the e!ect of the movement of the load is evident in
the asymmetry of wave propagation and in the fact that the waves under the track
trail more behind the load than in the front. Waves in the ground propagate with
concentric wave fronts.

The situation at 150 m s, being faster than the Rayleigh wave speed in the upper
layer, is shown in Figure 13. The 40 Hz frequency can be seen to result in a longer
wavelength along the track (in x!ct) because of the higher load speed. In this case
also, waves can be seen propagating ahead of the load under the track because of
the bending sti!ness of the rails (cf. Figure 7 for the constant moving load). In this
case however, the wave fronts that can be seen, which are due to the two propagat-
ing modes, are con"ned to a Mach cone behind the load. Two di!erent angles of
this can be discerned relating to the two modes of propagation. Despite the fact that
Figure 12 is for a train speed below the Rayleigh wave speed and that Figure 13 is
for a train speed above it, the displacement amplitude of waves at this frequency,
shown in Figures 12 and 13 are of similar order of magnitude. (This is also true for
load speeds of 40 and 112 m/s which are presented in reference [19].)

The spectrum of response at a "xed point 10 m from the track due to the pass-by
of a single frequency load of 40 Hz at a speed of 83 m/s is presented in Figure 14.
Unlike the presentation of results hitherto, this "gure shows the amplitude of all the
three components of displacement. Amplitudes of the vertical, lateral and longitudinal
components of the response are of the same order of magnitude.

The fact that a single-frequency load moving along the track produces a transient
with a broad band spectrum at a "xed point in the ground is a manifestation of the
Doppler e!ect. In the simple case of a single propagating wave speed, the e!ect of
a moving source is to produce a pass-by spectrum with frequency content bounded



Figure 13. Vertical response of the ground surface to a 40 Hz load moving along the track at
150 m/s in the moving frame of reference.
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by two peaks corresponding to the frequencies, f, de"ned by f"f
s
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0

is the velocity of propagation in the medium and u
s
, f

s
are the speed of the

movement and frequency of the source. In the case of the propagation in damped,
layered ground, a continuous function of wave speed exists with peaks at the modal
wave speeds. As already seen, the modal wave speeds correspond to the intersections
of the dispersion curves for the P-SV modes with the line de"ned by b"D(X!2nf )D/c.
Figure 15 shows load speed lines for 40 Hz loads moving at 83, 112 and 150 m/s
plotted on the dispersion diagram. For the load speed of 83 m/s, energy carried by
the "rst P-SV mode would form broad peaks around 26 and 150 Hz, and for the
second P-SV mode at approximately 29 and 62 Hz. Higher wave speeds, pertaining
to the propagation via wave speeds of the half-space, result in the energy being
spread over smaller band-widths about the 40 Hz load frequency, i.e., between these
frequencies. The frequencies indicated above can be seen to be re#ected in the shape
of the spectrum of Figure 14. The e!ect at the lower bound of observed frequency
for the two P-SV modes (26 and 29 Hz) is to form a sharp cut-o! in the spectrum
below these frequencies in Figure 14.

For load speeds at, or above, the wave speeds in the ground, the range of
frequencies excited in the ground becomes in"nite. Figure 16 shows the spectrum at
the ground point for a load speed of 150 m/s. It can be seen that the peak in
response occurs at a slightly lower frequency of about 24 Hz in this case and
a greater response level occurs at high frequencies.

Comparison of the curve for 83 m/s in Figure 11 with Figure 14 shows that at
frequencies above 20 Hz, the response to the 40 Hz load exceeds the response to the
constant load. By 30 Hz the response to the 40 Hz load is the greater by a factor of
about 100. Below 20 Hz the response at 10 m from the constant load exceeds that



Figure 14. Spectrum of the vertical (***), lateral (} } }) and longitudinal (- ) - ) -) displacement
observed at a "xed positon in the ground 10 m from the centreline of the track for a 40 Hz load
moving along the track at 83 m/s.

Figure 15. Dispersion diagram for the P-SV modes of the layered ground with load speed lines
overlaid for a 40 Hz load.
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from the 40 Hz load. Considering the load speed of 150 m/s, although the response
to the constant load is much greater than for the 83 m/s load (Figure 11) for
frequencies above 20 Hz, it is still only of the same order of magnitude as the
response to the 40 Hz dynamic load at its peak around 30 Hz.



Figure 16. Spectra of the vertical (***), lateral (} } }) and longitudinal (- ) - ) -) displacement
observed at a "xed positon in the ground 10 m from the centreline of the track for a 40 Hz load
moving along the track at 150 m/s.
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The relative magnitudes of the constant load compared to the dynamic load
applied by the wheels of a railway vehicle moving at high speed is not evaluated in
the present work. However, reference [21] provides an example of the contact force
measured on the wheel although the speed is only 20 m/s. In those measurements,
a high-pass "lter has been applied to eliminate the strong components of force due
to the modes of the vehicle on its suspension for frequencies below 10 Hz. From the
results presented, dynamic forces in the range of about 20}40 Hz can be seen to
have an amplitude of a few per cent of the static load value. This is increased
considerably in measurements on a wheel when a wheel #at is introduced. Although
the cases of reference [21] and the cases on which the comparison of Figures 11 and
14 are made are not compatible, the general conclusion may be drawn that both the
static and the dynamic forces applied by the vehicle are likely to contribute
signi"cantly, in di!erent frequency bands, to the vibration measured at points away
from the track.

7. CONCLUSIONS

A method of calculating the vibration response of a layered ground subject to
a harmonic load moving along the rails of a railway track has been proposed. The
model may be used to analyse three components of vibration generated by the
wheels of a train, namely (a) dynamic loads generated at a "xed point on the track,
(b) the moving constant axle loads, and (c) moving dynamic loads applied through
the wheels.

Calculations from the model have been used to show some characteristics of
moving-load induced vibration of a layered ground structure consisting of a single
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layer overlying a half-space of sti!er material. These have been interpreted in the
light of the dispersion curve for propagating modes in the ground.

A constant load moving at a speed below any of the wave speeds in the ground
produces only a quasi-static response pattern in the ground surface away from the
track. At load speeds higher than the Rayleigh wave speed of the upper layer
material, propagating waves are produced. In the layered ground structure no great
increase in the amplitude of the ground response is observed for a load moving at
the Rayleigh wave speed as is the case when the ground is modelled as a half-space
of this material. For higher load speeds, higher amplitudes occur at particular
speeds and waves of high amplitude propagating to large distances occur near to
the Rayleigh wave speed of the half-space substratum in the model. Calculations of
the spectrum of response to a moving constant load at the track and 10 m away
show a signi"cant increase in the response to loads travelling faster than the
Rayleigh wave speed in the layer above the frequency related to the onset of the
propagating modes in the layer. In this case, since propagating modes are excited
(as they are by the dynamic load), the rate of decay of vibration with distance away
from the track is lower than that for the quasi-static response for constant loads at
speeds below the ground wave speeds.

The model has been used to calculate the displacement spectrum at a point away
from the track due to a single-frequency component of dynamic load moving on the
track. These show that vertical, lateral and longitudinal components of the re-
sponse are of comparable order of magnitude at this distance and that, for
high-speed loads, a single-frequency component in the load gives rise to a broad-
band response in the ground. The magnitudes of the responses to the zero fre-
quency moving load and the dynamic loads at a point away from the track indicate
that both quasi-static and dynamic loads are likely to be signi"cant in the spectrum
of the train vibration in di!erent frequency bands. Even in the case of trains
travelling at speeds in excess of the ground wave speeds, the dynamic loads are
likely to be signi"cant compared to the &&bow wave'' from the quasi-static loads for
frequencies above the onset of the modal propagation in the layer.
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