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The non-linear vibrations of an inhomogeneous soil layer which is subjected to
a harmonic motion along its bottom are investigated in this study. The
Ramberg}Osgood model is transformed to a suitable form to obtain an analytical
solution and it is assumed that the shear modulus of the layer varies with depth.
The governing equation is a non-linear partial di!erential equation. Because of
weak non-linearity, the displacement and forcing frequency are expanded into
perturbation series by using the Lindstedt}PoincareH technique, and it is assumed
that the response has the same periodicity as the forcing. Then, the zeroeth and the
"rst order linear equations of motion and boundary conditions are obtained.
Di!erent types of solutions are obtained for the zeroeth order equation depending
on the inhomogeneity parameter a. The orthogonality condition of
Millman}Keller [1] is used to extract secular terms which are important in the
resonance region. Then, the variation of the amplitude at the top versus the forcing
frequency X is investigated for some values of inhomogeneity and perturbation
parameters.

( 1999 Academic Press
1. INTRODUCTION

In the recent years, engineers and geologists have become increasingly aware of the
need for evaluating the e!ect of soil conditions on the ground surface accelerations
and ampli"cations during earthquakes. Because the changes with soil conditions in
the form of the response spectra can have signi"cant e!ects on the lateral forces on
structures, it would seem to be desirable that the nature of the soil conditions
underlying a site should be taken into account, either qualitatively or quantitatively
in evaluating the lateral forces for design purposes. Non-linear vibrations of
continuous systems have largely been investigated in the last two decades. This type
of problem is encountered in the vibrations of lumped-mass systems, plates, shells,
beams, water and radio waves and motions of gases [2]. The source of non-linearity
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may be geometric, inertial, material or some combinations of these. The geometric
non-linearity comes from the non-linear strain}displacement relation. Finite
displacements, rotations and large curvatures are causes of this type of
non-linearity. The inertial non-linearity occurs in systems with single or continuous
mass. The materially non-linear e!ects (or physical non-linearity) come from the
non-linear stress}strain relations. In this study, only the material non-linearity is
considered. In many cases, the ground motions developed near the surface of a soil
layer during an earthquake may be attributed primarily to the upward propagation
of shear waves from an underlying rock formation. If the ground surface, the rock
surface, or the boundaries between di!erent soil layers are inclined, analyses of the
response of the soil deposit can only be made by techniques such as the
"nite-element method or boundary-element method. If the ground surface, the rock
surface, and the boundaries between soil layers are essentially horizontal, however,
the lateral extent of the deposit has no in#uence on the response, and the deposit
may be considered as a series of semi-in"nite layers. In such cases the ground
motions induced by a seismic excitation at the base are only the result of shear
deformations in the soil, and the layer may be considered as a one-dimensional
shear beam. Methods of analyzing the response of such layers are described in
detail elsewhere [3, 4]. To determine the response of a soil deposit having
irregularly varying soil properties, to use a lumped-mass type of analysis is
convenient [4, 5]. Non-linearity of soil can be taken into account by using the
force}displacement characteristics of springs between the masses.

Non-linearity may take place in the governing equations and stress boundary
conditions. In the literature, a lot of non-linear governing equations have been
proposed such as the Du$ng, Van der Pol, Korteweg-de Vries, Sine-Gordon, the
non-linear SchroK dinger equation [6], and the idealization of the Ramberg}Osgood
model [7, 8]. Because these equations are partial di!erential equations
(lumped-mass system expected) the spectrum contains an in"nite number of modes.
A few modes depending on the degree of non-linearity may give su$cient
knowledge about the response of systems. In some cases, the "rst mode proves
to be enough. There are some interesting phenomenae in non-linear vibrations
which cannot be seen in linear vibrations; such as shifts in frequency, dispersion
due to the amplitude, generation of harmonics, removal of singularities in
resonance, jump from one state to another, increase or decrease of amplitude.
A lot of methods have been developed by several authors to solve non-linear
vibration problems. Bojadziev and Lardner [9, 10] and Bojadziev [10] used the
Krylov}Bogoliubov}Mitropolsky (KBM) technique for longitudinal non-linear
vibrations of bars. Ablowitz et al. [7, 8] investigated the non-linear vibrations of
a layer which is forced along its bottom by using the Lindstedt}PoincareH technique
and the method of multiple scales. Engin et al. [12] investigated the same problem
for a multilayered system by using the orthogonality of the zeroeth order solution
to the right-hand side of the "rst order equation of motion. Sridhar et al. [13, 14]
studied non-linear symmetric and asymmetric responses of circular plates by using
the Galerkin procedure.

In this paper, the non-linear undamped vibrations of an inhomogeneous soil
layer subjected to a harmonic motion along its bottom are investigated. The layer
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lies on a bed rock. It is assumed that the linear part of the shear modulus of the
layer varies with depth. Transforming the Ramberg}Osgood model to a suitable
form for analytical solution, a non-linear partial di!erential equation is obtained as
the governing equation. The method of solution of this problem is based on the
work of Engin et al. [12]. In this study, the solution is expanded to an
inhomogeneous medium, which was given by Engin et al. [15] only for the
inhomogeneity parameter a, a"0)5. The in#uence of the characteristics of the base
rock motion and soil conditions on ground response are shown by "gures.

2. FUNDAMENTAL EQUATIONS

Figure 1 shows a soil layer of thickness d lying on a bed rock. The bed rock
makes as harmonic horizontal motion a cosXt, so the bottom of the layer has to
make the same motion because of the continuity of displacements at the interface.
Since the thickness of the layer is constant, only shear strains occur in the system.
As a result, shear vibrations of the layer are investigated. For this layer, the
kinematic relation is

c"
L;
Ly

, (1)

where c is the shear strain, ; (y, t) is the lateral displacement of the layer which is
assumed to be small, y is the co-ordinate measured from the top and t is the time.

A lot of constitutive equations have been proposed for soil-type medium. Among
these, the Ramberg}Osgood model is widely used as it can be transformed to
a suitable form for analytical solution [12]. Rearranging this transformed model
and considering the relation between the stresses and strains, the non-linear
stress}strain relation can be written as

q"G
max

c!G
1
c3, (2)

where q is the shear stress, G
max

and G
1

are, respectively, the linear and non-linear
shear moduli.
Figure 1. Soil layer on a bed rock.
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Some factors in relation to the undrained deformation properties of clays show
that it is appropriate to give some attention to their implications. Almost all clays
show that the shape of the deformed surface is likely to be very sensitive to the
sti!ening of the soil with depth. Variation of some kind of rocks with depth and
from place to place is examined in terms of the drained modulus of elasticity E. For
a number of sites, depth pro"les of moduli and other data are presented; these are
related to lithology and weathering which are related in turn to the geology. The
values of E can be obtained by laboratory tests, "eld tests and analysis of case
histories. For instance, in triassic rocks and over-consolided clays, the modulus
pro"le is inhomogeneous and the modulus E increases approximately linearly with
depth. After 1970 the e!ect of inhomogeneity began to be considered in soil
structure interaction analysis, both static and dynamic, soon after Gibson [16]
introduced a special type of inhomogeneity with linearly varying sti!ness with
depth in an incompressible half-space with vanishing modulus at the surface. This
so-called Gibson soil is adopted for modelling water-saturated normally
consolidated clays. Experimental evidence shows that irrespective of the nature of
sedimentary strata the depth variation of the shear modulus G follows a power law
GJ zn with n)1, where z is the depth below soil surface. Based on the fact that
clays are almost fully saturated the value n"1 has been widely used for normally
consolidated clays and for sand. For cohesionless soils, however, the exponent n is
between 0)25 and 0)4 depending on the soil under consideration. In the early stages
of analytical treatment of wave propagation problems in inhomogeneous soils
exponents n'1 have been used, mainly due to the resulting simpli"cations in the
equations involved. In addition to the shear modulus, speci"c values for the
Poission ratio were also often assumed solely for analytical convenience.

Considering these reasons, it is assumed that G
max

varies with depth as

G
max

"G
0A1#k

y
dB

a
, (3)

where G
0
is the shear modulus at the top, k and a are the inhomogeneity parameters

[16}18]. According to this, the non-linear stress-strain relation becomes

q"G
0 A1#k

y
dB

a L;
Ly

!G
1A

L;
LyB

3
. (4)

Neglecting body forces, the equation of motion for the layer can be written as

Lq
Ly

"o
L2;
Lt2

, (5)

where o is the mass density. Substituting equation (4) into equation (5), the
following di!erential equation is obtained:

G
0 A1#k

y
dB

a L2;
Ly2

#G
0

k
d

a A1#k
y
dB

a~1 L;
Ly

!3G
1 A

L;
LyB

2 L2;
Ly2

"o
L2;
Lt2

, (6)

where the term (L;/Ly)2 (L2;/Ly2) indicates the non-linearity. The layer is
subjected to a harmonic motion a cosXt at the bottom y"d and traction free at
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the surface y"0. Thus, the boundary conditions can be written as

qD
y/0

"0, ; (y, t) D
y/d

"a cosXt. (7)

In this study, weak non-linearity is considered. As a result, the response of the layer
is assumed to be harmonic with the period 2n/X, as the forcing term. Thus, the
periodicity condition is written as [12]

; (y, t)"; (y, t#2n/X). (8)

It is convenient to rewrite the above equations in terms of dimensionless quantities,
which are de"ned as follows:

u";/a, s"Xt, m"y/d, e"3
G

1
G

0
A
a
dB

2
, q2

0
"

od2

G
0

X2
0

, (9)

where u is the dimensionless displacement, s and m are the dimensionless time and
co-ordinate respectively. The parameters X

0
, e(e@1) and q

0
denote the frequency

for the linear analysis of the layer, perturbation parameter and dimensionless wave
number respectively. The non-linear governing equation (6), boundary conditions
(7) and periodicity condition (8) can now be written in the non-dimensional form

(1#km)a
L2u
Lm2

#ka (1#km)a~1
Lu
Lm

!e A
Lu
LmB

2 L2u
Lm2

"q2
0 A

X
X

0
B
2 L2u

Ls2
, (10)

(1#km )a
Lu
Lm

!

e
3 A

Lu
LmB

3

Km/0

"0, u(m, s) Dm/1
"cos s, (11)

u (m, s)"u(m, s#2n). (12)

3. SOLUTION

Due to the non-linear term (Lu/Lm)2 (L2u/Lm2 ), to "nd an exact solution of the
governing equation (10) is impossible. For this reason, considering weak non-
linearity, an approximate solution is sought by using the perturbation method.
Among a few variants of the perturbation method, the Lindsted}PoincareH
technique seems to be a suitable one [2]. For the use of this technique, the
displacement u (m, s; e) and forcing frequency X (e) are expanded into the
perturbation series as follows:

u (m, s; e)"u
0
(m, s) #eu

1
(m, s)#2 , (13)

X (e)"X
0
(1#eX

1
#2), (14)

where X
1

is the dimensionless frequency shift, u
0

and u
1

are the linear and the "rst
order parts of the displacement respectively. With the substitution of these series
into the governing equation (10) and boundary conditions (11), and equating the
coe$cients of the same powers of e to zero, a system of linear partial di!erential
equations is obtained replacing non-linear governing equation (10). Thus, the
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zeroeth order equation of motion and the boundary conditions become

(1#km )a
L2u

0
Lm2

#ka (1#km )a~1
Lu

0
Lm

!q2
0

L2u
0

Ls2
"0, (15)

Lu
0

Lm Km/0

"0, u
0
(m, s) Dm/1

"cos s. (16)

The "rst order equation of motion and the boundary conditions become

(1#km)a
L2u

1
Lm2

#ka (1#km)a~1
Lu

1
Lm

!q2
0

L2u
1

Ls2
"2q2

0
X

1

L2u
0

Ls2
#

L2u
0

Lm2 A
Lu

0
Lm B

2
, (17)

Lu
1

Lm Km/0

"0, u
1
(m, s) Dm/1

"0, (18)

where u
0

and u
1

have the period 2n. The periodicity conditions for the zeroeth and
"rst order terms can be written by using equation (12) as

u
0
(m, s)"u

0
(m, s#2n), u

1
(m, s)"u

1
(m, s#2n). (19)

3.1. ZEROETH ORDER SOLUTION

Equation (15) is homogeneous and linear so the method of separation of
variables can be used in the form

u
0
(m, s)"uN

0
(m) cos s. (20)

By substituting equation (20) into equations (15) and (16), the zeroeth order
equation of motion and the boundary conditions are obtained as

(1#km)a
d2uN

0
dm2

#ka(1#km)a~1
duN

0
dm

#q2
0
uN
0
"0, (21)

duN
0

dm Km/0

"0, uN
0
(m, s) Dm/1

"1. (22)

Equation (21) has di!erent solutions depending on di!erent values of the
inhomogeneity parameter a [19]. The general solution function of equation (21) can
be written as

uN
0
"(1#km)m Z

p
[(q

0
/rk) (1#km)r], (23)

where p, m and r are real constants and given by

p"
1!a
2!a

, m"

1!a
2

, r"
2!a

2
. (24)

In equation (23), Z
p

represents the Bessel functions of order p. Solution (23) has
several forms with respect to the values of a. Some of them are studied below.
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3.1.1. ¹he case for a(2 and p a rational number

In this case, the zeroeth order solution uN
0
can be written from equation (23) in the

form

uN
0
(m )"(1#km)mCA1

J
pA

q
0

rk
(1#km)r B#A

2
J
~pA

q
0

rk
(1#km)r BD, (25)

where J
p

and J
~p

are the "rst kind Bessel functions of order p, A
1

and A
2

are the
constants of integration which are to be determined from the boundary conditions.
Using boundary conditions (22), the integration constants can be obtained as

A
1
"

Z
2
(1#k)~m

Z
1
Z

4
#Z

2
Z

3

, A
2
"

Z
1
(1#k)~m

Z
1
Z

4
#Z

2
Z

3

, (26)

where

Z
1
"J

p~1 A
q
0

rkB, Z
2
"J

~p`1 A
q
0

rkB, Z
3
"J

p A
q
0

rk
(1#k)rB,

Z
4
"J

~p A
q
0

rk
(1#k)rB. (27)

Now, the zeroeth order solution has been obtained in terms of the unknown
parameter q

0
. The amplitude of the vibration at the surface can be obtained from

equation (25) as

A"uN
0
(m) Dm/0

"A
1
J
p A

q
0

rkB#A
2
J
~p A

q
0

rkB. (28)

where A can be considered as the amplitude magni"cation factor. As it is known,
there are some special cases in which the values of q

0n
make A very large. These

important cases are called as resonance. The values of q
0n

, n"1, 2,2 , are the
roots of the equation

J
p~1 A

q
0

rkB J
~p A

q
0

rk
(1#k)rB#J

~p`1 A
q
0

rkB J
p A

q
0

rk
(1#k)rB"0. (29)

Using the roots of equation (29), one can calculate the natural frequencies from
equation (9) as

X
0n
"q

0n A
G

0
od2B

1@2
, n"1, 2,2 . (30)

It is understood that the number of natural frequencies are in"nite.

3.1.2. ¹he case for a(2 and p an integer number

In this case, the zeroeth order solution uN
0
can be written from equation (23) in the

form

uN
0
(m)"(1#km)mCB1

J
pA

q
0

rk
(1#km)rB#B

2
Y

p A
q
0

rk
(1#km) rBD, (31)
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where Y
p
is the second kind Bessel function of order p, B

1
and B

2
are the constants

of integration. From boundary conditions (22), B
1

and B
2

can be obtained as

B
1
"!

Z
2
(1#k)~m

Z
1
Z

4
!Z

2
Z

3

, B
2
"

Z
1
(1#k)~m

Z
1
Z
4
!Z

2
Z

3

,

where

Z
1
"J

p~1 A
q
0

rkB, Z
2
"Y

p~1 A
q
0

rkB, Z
3
"J

p A
q
0

rk
(1#k)rB,

Z
4
"Y

p A
q
0

rk
(1#k) rB. (32)

The amplitude of the vibration at the surface can be obtained from equation (31) as

A"uN
0
(m) Dm/0

"B
1
J
p A

q
0

rkB#B
2
Y

p A
q
0

rkB . (33)

The values of q
0n

, n"1, 2,2, are the roots of the equation Z
1
Z
4
!Z

2
Z
3
"0, and

the natural frequencies of the layer can be obtained by using equation (30). It is
noted that when a"1, that is p"0, G

.!9
varies linearly with depth. In this case, the

solution of equation (21) becomes

uN
0
(m)"C

1
J
0 A

2q
0

k
J1#kmB#C

2
Y

0 A
2q

0
k

J1#kmB, (34)

where J
0

and Y
0

are the zeroeth order "rst and second kind Bessel functions
respectively; C

1
and C

2
are the constants of integration. Using boundary

conditions (22), these constants can be obtained as

C
1
"!Y

1A
2q

0
k BND

1
, C

2
"J

1A
2q

0
k BND

1
, (35)

D
1
"J

1 A
2q

0
k BY

0 A
2q

0
k

J1#kB!Y
1 A

2q
0

k B J
0 A

2q
0

k
J1#kB , (36)

where J
1

and Y
1

are the "rst order Bessel functions. The amplitude of the vibration
at the surface can be obtained from equation (34) as

A"uN
0
Dm/0

"C
1
J
0 A

2q
0

k B#C
2
Y

0 A
2q

0
k B . (37)

The values of q
0n

, n"1, 2,2 are the roots of the equation

J
1 A

2q
0

k BY
0 A

2q
0

k
J1#kB!Y

1 A
2q

0
k B J

0 A
2q

0
k

J1#kB"0. (38)

The natural frequencies of the layer can be obtained by using equation (30).
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3.1.3. ¹he case for a"2

In this case, equation (21) becomes as follows:

(1#km)2
d2uN

0
dm2

#2k(1#km )
duN

0
dm

#q2
0

uN
0
"0. (39)

This is an Euler equation of the second order [18]. After some manipulations,
solution of this equation can be obtained as

uN
0
(m)"D

1
(1#km )p1~"#D

2
(1#km )~p1~", (40)

where p
1

may be an imaginary number and is given by

p2
1
"

1
4
!

q2
0

k2
. (41)

Here, D
1

and D
2

are the constants of integration and they can be obtained by using
boundary conditions (22) as follows:

D
1
"(p

1
#1/2)/D

2
, D

2
"(p

1
!1/2)/D

2
,

D
2
"[(p

1
#1/2) (1#k)p1#(p

1
!1/2) (1#k)~p1]/J1#k. (42)

Equating D
2

to zero, one obtains the non-dimensional natural frequency of the
layer as the roots of the following equation:

D
2
"0P

J(1/4)!(q2
0
/k2)!1

2
J(1/4)!(q2

0
/k2)#1

2

#(1#k)J1!4q2
0
/k2
"0. (43)

In this case, the amplitude of the vibration at the surface can be obtained from
equation (40)as

A"uN
0
(m) Dm/0

"D
1
#D

2
. (44)

3.1.4. ¹he case for a"3

In this case, equation (21) becomes as follows:

(1#km)3
d2uN

0
dm2

#3k (1#km )2
duN

0
dm

#q2
0

uN
0
"0. (45)

Because of the variable coe$cients, this equation is solved by using the power
series. m"!1/k is the singular point of the equation. If k is chosen as k'!1,
equation (45) does not have any singularity inside the layer. To keep away from the
singular point, power series solution is carried out at the center of the layer, m"1/2.
The series solution of equation (45) can be taken as

uN
0
(m)"

=
+
n/0

A
n
(m!1/2)n. (46)
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The coe$cients A
n

can be written in terms of the independent unknowns A
0

and
A

1
as follows:

A
n
"A

0
f
n
#A

1
g
n
, n*2. (47)

The recurrence formulas for f
n

and g
n

are given by

f
n
"!M f

n~1
a
2
(n!1)2#f

n~2
[a

3
(n!2) (n!1)#q2

0
]

#f
n~3

[n3!9n2#29n!33]N/[n (n!1)a
1
], n*3,

g
n
"!Mg

n~1
a
2
(n!1)2#g

n~2
[a

3
(n!2) (n!1)#q2

0
]

#g
n~3

[n3!9n2#29n!33]N/[n (n!1)a
1
], n*3,

f
0
"1, g

0
"0, f

1
"0, g

1
"1, f

2
"!q2

0
/2a

1
, g

2
"!a

2
/2a

1
,

(48)

where

a
1
"(1#k/2)3, a

2
"3k(1#k/2)2, a

3
"3k2(1#k/2). (49)

Now, the solution of equation (45) can be written in the form

uN
0
(m)"A

0

=
+
n/0

f
n
(m!1/2)n#A

1

=
+
n/1

g
n
(m!1/2)n, (50)

where A
0

and A
1

are the constants yet to be determined. Using boundary
conditions (22), the constants A

0
and A

1
can be obtained as

A
0
"!

1
D

3

=
+
n/1

ng
n
(!1/2)n~1 , A

1
"

1
D

3

=
+
n/2

nf
n
(!1/2)n~1 ,

D
3
"

=
+
n/2

nf
n
(!1/2)n~1

=
+
n/1

g
n
(1/2)n!

=
+
n/0

f
n
(1/2)n

=
+
n/1

ng
n
(!1/2)n~1. (51)

The dimensionless natural frequencies are the roots of D
3
"0, and the amplitude of

the vibration at the surface is

A"uN
0
Dm/0

"A
0

=
+
n/0

f
n
(!1/2)n#A

1

=
+
n/1

g
n
(!1/2)n. (52)

3.2. FIRST ORDER SOLUTION

Now, a solution is going to be searched for the "rst order equation (17). As it is
seen, it is a non-homogeneous partial di!erential equation with variable coe$cients
and has the term (L2u

0
/Lm2 ) (Lu

0
/Lm)2 at the right-hand side. This term includes the

products of various types of functions which are not suitable for analytic solution in
most of the cases. For this reason, only the numerical solution of this equation is
possible. The frequency shift X

1
, which is not known yet, appears at the right-hand

side of equation (17). Boundary conditions (18) and periodicity conditions (19) are
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not su$cient to obtain this parameter. Instead of the solution of equation (17), the
frequency shift is obtained by using the orthogonality condition introduced in
references [1, 12]. For this purpose, both sides of equation (17) is multiplied by
u
0
(m, s) and integrated over the time and co-ordinate. Using boundary conditions

(18) and periodicity conditions (19), one obtains the following equation:

P
2n

0
P

1

0
G(1#km)a

L2u
1

Lm2
#ka(1#km)a~1

Lu
1

Lm
!q2

0

L2u
1

Ls2 H u
0
dmds,0. (53)

As a result of this, the orthogonality condition is obtained as

P
2n

0
P

1

0
C2q2

0
X

1

L2u
0

Ls2
#

L2u
0

Lm2 A
Lu

0
Lm B

2

D u
0

dmds"0. (54)

By the substitution of equation (20) into this equation, frequency shift is obtained as

X
1
"

3
8q2

0

:1
0
uN
0
(d2uN

0
/dm2) (duN

0
/dm)2 dm

:1
0

uN 2
0

dm
. (55)

Because of the di$culties in obtaining these integrals analytically, a numerical
method of solution, for example Simpson's rule, has been used. After integration,
the frequency shift X

1
is obtained dependent on X

0
. Then, using the "rst two terms

in series (14), one obtains the following relation:

X"X
0
[1#eX

1
(X

0
)]. (56)

Since the physical and geometrical properties of the layer and the amplitude of the
forcing are known, using equation (9) and substituting the solutions uN

0
and

equation (55) into equation (56), a relation is obtained between X and X
0
as follows:

X"X(X
0
). (57)

If X
0

is chosen, one may get into the resonance region, when X
0
:X

0n
. As a result

of this, uN
0
(m ) increases inde"nitely and perturbation series (13) and (14) diverge.

Instead of this, if the forcing frequency X is chosen, the parameter X
0

can be
calculated as the "rst root of non-linear algebraic equation (57). Using this root in
one of amplitude equations (28), (33), (37), (44) or (52), one can get a relation
between the amplitude magni"cation factor A and the forcing frequency X as
follows:

A"A (X ). (58)

In this way, a "nite amplitude is obtained even in the resonance region.

4. NUMERICAL RESULTS AND DISCUSSION

The numerical results obtained with the above formulation are presented in this
section for the inhomogeneity parameters a and k, and the non-linearity parameter
e. The variation of the ratio of shear modulus in linear case to the shear modulus at
the surface with respect to depth for parameters k and a are given in Figures 2(a)
and 2(b) respectively. From the "gures, it is observed that the parameter a is more



Figure 2. (a) Shear modulus ratio G/G
0

versus depth of the layer m for a"0)5 at various values of
inhomogeneity parameter k. (b) Shear modulus ratio G/G

0
versus depth of the layer m for k"2 at

various values of inhomogeneity parameter a.

Figure 3. Amplitude magni"cation factor A versus forcing frequency X for linear case (e"0) at
various values of inhomogeneity parameter a for k"2.
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e$cient than the parameter k, and especially in case of a"3, the bottom of the
layer behaves almost as a rigid medium. This case has a great e!ect on the
amplitude magni"cation factor A which can be seen from the latter results and is an
expected attitude. The variation of the amplitude magni"cation A with respect to
the forcing frequency X in linear case for e"0, k"2 and di!erent values of a is
given in Figure 3. In the homogeneous medium, resonance cases occur when
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dimensionless frequency is equal to odd multiples of n/2. But in the inhomogeneous
medium, for positive coe$cients, resonance occurs in some frequencies which are
larger than the ones for homogeneous medium. In this case, the response curves
displace to the right, and the e!ect of the inhomogeneity away from the resonance
region becomes small. The amplitude magni"cation factor}forcing frequency
relations for a "xed non-linearity parameter and various values of a and k are given
in Figures 4(a)}4(d). The in#uence of the parameter k upon the amplitude
magni"cation factor A and resonance regions for di!erent values of a can be seen
clearly in these "gures. In all cases, whatever a is, with the increase of k, resonance
regions displace to the right and A increases. In obtaining these results, the solution
Figure 4. Amplitude magni"cation factor A versus forcing frequency X for non-linear case
(e"0)05) at various values of inhomogeneity parameter k. (a) a"0)5; (b) a"1; (c) a"2; (d) a"3.
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for the linear case has been used. In these solution functions, there exists
dimensionless wave number q

0
, which is not known yet. In the non-linear case,

orthogonality condition (54) is used instead of the solution of "rst order equation
(17). In equation (55), which has been obtained by using the orthogonality
condition, q

0
is still an unknown parameter. The curves of X"X(X

0
) for the

homogeneous case are given in Figure 5. In this "gure, it is observed that DX DPR

for some special values of q
0

such as n/2, 3n/2. But the parameter q
0

is calculated as
the root of the non-linear equation (56) by using the Newton}Raphson technique
after choosing X. The o}a, b}c and d}e curve segments in this "gure correspond to
Figure 6. Amplitude magni"cation factor A versus forcing frequency X for non-linear case
(e"0)05) at various values of inhomogeneity parameter a for k"2.

Figure 5. Forcing frequency X versus dimensionless wave number q
0

for homogeneous case.
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di!erent choices of X, therefore, the resonances values q
0n

jump. To avoid such an
inconvenience the resonances are removed with the elimination of these special
values. With the choice of X and calculation of q

0n
the relation A"A (X) is reached

at the end. Using the obtained relation the A values are obtained from the
equations (52), (44), (37), (33) and (28). It is noteworthy that the A values may be
in"nite in linear case whereas they remain "nite even in the resonance region for
non-linear case. Thus, it can be concluded that the non-linearity and damping
e!ects are similar.

The A}X response curves for k"2, e"0)05 and di!erent values of a are given in
Figure 6. From the "gure, it can be observed that the e!ect of a on A and resonance
Figure 7. Amplitude magni"cation factor A versus forcing frequency X for non-linear case at
various values of non-linearity parameter e for k"2. (a) a"0)5; (b) a"1; (c) a"2; (d) a"3.
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regions are similar to the previous case. The e!ect of the non-linearity on the
relation between A and X for various values of a and k are given in Figures
7(a)}7(d). From the "gures, it is obviously seen that, especially in the resonance
region, the A values decrease with the increase of the non-linearity parameter e. In
this case, one can conclude that the non-linearity is e!ective in the resonance
region. The e!ect of non-linearity on A for homogeneous and inhomogeneous
media are given in Figures 8(a) and 8(b) respectively. From the "gures, it can be
observed that the non-linearity is very e!ective in the resonance regions for both
media. The variation of dimensionless wave number q

0
with respect to the

parameter k for a"0)5; 1; 2; 3 is given in Figure 9. The variation is slow for a"0)5
Figure 9. Dimensionless wave number q
0

versus inhomogeneity parameter k at various values of
inhomogeneity parameter a.

Figure 8. Amplitude magni"cation factor A versus forcing frequency X . (a) For homogeneous
medium (k"0), (b) for inhomogeneous medium k"2 and a"1.
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and a"1 whereas it is fast for a"2. For a"3, the e!ect of k decreases when it is
greater than 2.

5. CONCLUSIONS

The forced vibrations of an inhomogeneous layer have been obtained by using
a perturbation method. The e!ects of the inhomogeneity parameters a and k and
the non-linearity parameter e on the behaviour of the layer have been investigated.
The Bessel functions have been used in the solution for the di!erent values of
inhomogeneity parameter a. The resonance regions and the amplitudes at the
surface, in the linear and non-linear cases, vary depending on the inhomogeneity
parameters. The non-linearity parameter, which is dependent on the physical and
geometrical properties of the layer and the amplitude of the forcing, has also a great
in#uence on the response of the layer. In the linear case (e"0), resonance occurs for
some special forcing frequencies, but in the non-linear case, resonances are removed
with the elimination of these special frequencies. In this case, the amplitudes at the
surface decrease and it is concluded that the non-linearity causes damping.
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