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The theoretical model based on Hamilton’s principle and spectral analysis,
previously used to obtain the first three non-linear modes of a clamped—clamped
beam [1], and the first non-linear mode of a fully clamped rectangular plate [2],
is used here in order to calculate the second non-linear mode of a fully clamped
rectangular plate. The large vibration amplitude problem, reduced to a set of
non-linear algebraic equations, is solved numerically. Results are given for the
second mode of fully clamped rectangular plates, for various plate aspect ratios
and vibration amplitudes. The non-linear mode shows a higher bending stress
near to the clamps at large deflections, compared with that predicted by linear
theory. © 1999 Academic Press

1. INTRODUCTION

In spite of the considerable amount of research which has been carried out during
the last few decades on non-linear vibration, linear theories remain widely used in
most of the practical applications, particularly in the field of modal testing. This
seems to be due to the fact that no equivalent has yet been found to the general
linear formulation in which the normal modes of free vibration of a structure, with
their associated frequencies, play an important role, and facilitate simple expression
of the response of a structure in the forced case. Although such a “nonlinear modal
analysis theory” has still to be developed, the analogy with the linear case suggests
commencing with determination of the non-linear mode shapes and their
associated frequencies for structures having a simple geometry. The present work
concerned with the second non-linear mode of fully clamped rectangular plates, is
a continuation of a series of papers investigating the non-linear modes of beams,
homogeneous and composite plates, with various boundary conditions [1-3].
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Determination of the natural frequencies and mode shapes of vibrating plates has
been a subject of numerous experimental and theoretical investigations for nearly
two centuries, since the experimental work of Chladni was produced in 1787, giving
the first known observations of the nodal patterns for completely free square plates
[4]. Since then, well-known investigators, such as Rayleigh, Voight, Love and Ritz,
have been associated with this problem [4, 5]. However, as the partial differential
equation governing the transverse vibrations of thin elastic plates has no complete
analytical solution, as pointed out by Love and Timoshenko [5], no exact solutions
have yet been found for most of the boundary condition cases. Consider the case of
rectangular plates; 21 combinations of classical boundary conditions exist and
exact solutions are known only for the six cases having two opposite edges simply
supported. Furthermore, in a survey made by Leissa in 1973 [4], it was pointed out
that until 1954, when Warburton derived his formulae based on a single-term
representation of the deflection mode shapes for the natural frequencies of plates
with various boundary conditions, no solution, even approximate, was known for
six boundary condition cases. The general accuracy of Warburton’s formulae is
discussed in reference [4].

Large vibration amplitudes of plate-type structures are encountered in many
engineering applications, especially in the aerospace field. Generally, the plates are
assumed to be fully or partially free, simply supported or clamped. The clamped
support conditions assume that both displacements and rotations are prevented.
This is difficult to achieve in practice [6]. However, these boundary conditions can
be the most adequate for idealizing practical structures, such as aircraft wing panels
[7]. Although in such a situation, the real plate boundaries are neither perfectly
clamped nor simply supported, due to the relative support flexibility, the natural
frequencies and the stresses calculated on the basis of the fully clamped boundaries
assumption are higher than those obtained in the simply supported boundaries
case, and hence they may be considered by the designer as an upper limit.!
Although in the case of fully clamped rectangular plate, the boundary conditions
are mathematically simple, compared with the simply supported or free boundaries,
there is no exact analytical solution. Even in the linear case, approximate numerical
methods, like finite difference techniques, the Galerkin technique, Weinstein’s
method, integral equations and series methods have been used in the literature to
study the linear mode shapes and natural frequencies of fully clamped rectangular
plates. A comprehensive treatment of the linear problem and references
corresponding to all the above-mentioned methods are given in the monograph of
Leissa [9] and in the more recent review mentioned above. A detailed presentation
of a series method, based on a Levy-type solution and the superposition theorem is
given in reference [ 10]. The Rayleigh—Ritz method has been adopted in the study of
the linear problem in references [ 11-13]. Although a large number of studies have
been carried out on non-linear plate vibrations, as mentioned above, each problem
has received a special treatment involving some particular approximations. Some

! This is true in the linear case. However, the rate of increase of resonance frequencies, due to the
geometrical non-linearity, may be higher in the simply supported case, compared with the clam-
ped—clamped case, as pointed out in reference [8].
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of the models available, such as those proposed in references [ 14, 15], are based on
the perturbation procedure, and consequently, are practically limited to the first
order effects of finite displacements upon natural frequency. Also, in most of the
studies carried out on non-linear vibrations of rectangular plates, the common
approach to such problems has been to assume a spatial function, usually the linear
mode shape, and seek a solution for the time variable, assuming that the space and
time functions can be separated. In a recent series of papers, a theoretical model,
based on Hamilton’s principle and spectral analysis has been developed for
analyzing the dependence of the mode shapes and their corresponding frequencies
on the amplitude of vibration for thin straight structures. This approach has been
applied to clamped—clamped beams and permitted calculation of the three first
non-linear modes and their corresponding frequencies as functions of the vibration
amplitude [1]. More recently, several methods such as invariant manifold and
perturbation methods, and the method of multiple scales were used to construct the
non-linear mode shapes and natural frequencies of one-dimensional continuous
systems with weak cubic geometric and inertia non-linearities [16]. Although
one-dimensional continuous systems, such as beams, are very useful as theoretical
and experimental test pieces, engineering interest is concerned mainly with panel-
type structures [ 17]. The model mentioned above has therefore also been applied to
fully clamped rectangular homogeneous and composite plates, leading to the
calculation of the first non-linear mode for various values of aspect ratio [2].
However, because of the numerical difficulty of the plate case, which involves two
variable functions, obtained as products of x and y beam functions, and requires the
use of a greater number of basic functions, compared with the beam case, higher
non-linear plate modes have not been treated in the above reference. The purpose
of the present work has been calculation of the second non-linear mode of a fully
clamped rectangular plate for various values of aspect ratio, and to analyze the
effect of non-linearity on the induced bending stresses. Detailed tables of numerical
results and plots of the non-linear bending stress corresponding to the non-linear
second mode for various amplitudes of vibration and plate sections are given. These
numerical data may be easily used in engineering applications. Data concerning the
third and higher non-linear modes of rectangular plates will be presented in the
future.

2. GENERAL FORMULATION

The purpose of the present paper is to apply the theory developed in reference [2]
to the calculation of the second non-linear mode shape of a rectangular plate for
various values of the plate aspect ratio and the amplitude of vibration. In this
section, a brief review of the theory is presented. The notation used is that defined in
reference [2]. Consider the transverse vibrations of a fully clamped rectangular
plate having a bending stiffness D,

EH?

D=ma=y

(1)
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For such a plate, the strain energy V' is given as the sum of the strain energy
due to bending (V;) and the membrane strain energy induced by large deflections
(V) V=V, + Vs, with

Lp (W W)
V=3 LD<—6x2 +—ay2> ds )
and
3D OWN?  ow\? |?
e[ (5 ) <) s o

in which W is the deflection function and S the plate area. In the above expression,
terms involving the in-plane displacements U and V and their derivatives have been
omitted. This assumption has been made in reference [ 2] when calculating the first
non-linear mode of fully clamped rectangular plates and its range of validity has
been discussed in the light of the experimental and numerical results obtained for
the frequency amplitude dependence and the bending stress estimates obtained
at large vibrations amplitudes. The results obtained via this assumption were
compared with the previous ones based on various methods such as the finite
element method, the method based on Berger’s approximation, the ultraspherical
polynomial method and the elliptic function method. It was found that the
percentage error in the non-linear frequency estimates based on this assumption,
for amplitudes up to 1-5 times the thickness, does not exceed 1-3%. Also, in the
experimental investigation of the non-linear behaviour of fully clamped rectangular
plates at large vibration amplitudes presented in reference [ 18], it was found that
the rate of increase in bending stresses estimates, obtained from measured data,
was in a very good agreement with that obtained from the theory, in which the
assumption of zero in-plane displacements was made. Hence, it is thought that
such a conclusion may justify this assumption, which induces a great simplification
in the model and a great reduction in the computation time, when calculating the
non-linear modes and the associated frequencies and non-linear bending
stresses patterns for a reasonable range of vibrations amplitudes and plates aspect
ratios. However, further investigations are needed, which should take into account
the in-plane displacements U and V, in order to examine the effects of large
vibration amplitudes on the axial stress patterns for fully clamped rectangular
plates.
The kinetic energy T of the plate is

i ow\2
T =3pH L (F) ds. @)

The transverse displacement function W is expanded as a series of n basic functions:
W = ai(xa y)Wl(t) = ai(x7 y)Sin wt, (5)

where the usual summation convention for repeated indexes is used. Assuming that
the time and space functions are separable and that harmonic motion takes place,
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one obtains after discretization of the above expressions,

T =} w*aam;;cos® (ot), (6)
Vy = 3 sin?(wt) a;ak;j; (7)
V= %aiajakalbijkl sin*(w?), (8)

where m;; k;; and b;j,; are the mass tensor, the rigidity tensor and the non-linearity
tensor respectively. The expressions for these tensors are given in reference [2].
Applying Hamilton principle to the vibration problem gives

2n/w
5J (V — T)dt =0, )
0

Replacing T and V in this equation by their expressions given above, integrating
the time functions and calculating the derivatives with respect to the a;s leads to the
following set of non-linear algebraic equations:

3aaja b, + 2a; ki —2a,0**mE =0, r=1,..,n (10)

which have to be solved numerically. In order to complete the formulation the
procedure adopted in the present paper is similar to that developed in reference [2]
to obtain the fundamental non-linear mode. It is based on use of the equation
Vimax = Tmax in order to obtain the (n + 1)th equation necessary for calculating
the (n + 1) unknowns, i.e., the a;’s (i = 1-n) and w*. This leads to the following
equation:

% %k
_ aiajkij + aiajaka, bijkl

w** - , (11)
a;a;ms

which has to be substituted in equations (10) to obtain a system of n nonlinear
algebraic equations leading to the n contribution coefficients a;, i = 1-n. The
contribution of the basic function corresponding to the second mode is first fixed,
and other basic function contributions are calculated via numerical solution of the
remaining (n — 1) non-linear algebraic equations as in reference [2]. The Harwell
library routine NSO1A used in reference [2] to obtain the first non-linear mode has
been successfully used here to obtain the numerical results presented for the second
non-linear mode.

3. SECOND NON-LINEAR MODE SHAPE

3.1. NUMERICAL DETAIL

Consider the fully clamped rectangular plate, shown in Figure (1), whose aspect
ratio o = b/a, is less than 1. For such a plate, the deflections in the x and y directions
are represented here by clamped—-clamped beam functions. These functions, which
satisfy all the fully clamped theoretical boundary conditions, i.e., zero displacement
and zero slope along the four plate edges, have been used and shown to be
appropriate in previous studies of the vibration of fully clamped rectangular plates
[1,2,4,6]. In the remainder of this paper, the simple index i used in the series
expansion of the plate deflection function W, ie., equation (5), is replaced by
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Figure 1. Plate notation.

a double index ij:

ag(x, y) = oij VVij(xa ¥), (12)

where o;; is the influence coefficient of product of the ith and jth beam mode shapes
on the kth non-linear mode of vibration. The analytical expressions and the
shapes of the clamped-clamped beam functions are given in reference [2]. The
fundamental non-linear mode shape of a fully clamped rectangular thin elastic plate
is symmetric in both the x and y directions. To calculate it, 25 basic functions
obtained as products of the first five clamped-clamped beam mode shapes were
used, which involve three symmetric beam functions in each direction.

Consider now the second linear mode shape of the plate. As o = b/ais less than 1,
it is antisymmetric in the x direction and symmetric in the y direction. Previous
studies have shown that only nine plate functions corresponding to three
antisymmetric beam functions in the x direction and three symmetric beam
functions in the y direction contribute significantly to this mode [4, 9, 12]. These
nine plate functions involve the first six beam functions. Use of all of the first six
beam functions for both the x and y directions would have led to 36 plate functions
and hence to the solution of 35 non-linear algebraic equations involving
36* =1679616 terms of the non-linear rigidity tensor b;j;. Because of such
unnecessary numerical difficulty, due to the fact that only plate functions
antisymmetric in the x direction and symmetric in the y direction were expected to
contribute to the second non-linear mode shape, calculations were made using only
the nine plate functions satisfying the above conditions of symmetry among the 36
functions obtained as products of the first six beam functions. This led to a set of
eight non-linear algebraic equations which has been solved numerically for various
values of the amplitude of vibration and plate aspect ratios. The routine used is
based on a hybrid method combining the steepest descent and Newton’s methods
and consequently exploits the advantages of both methods [19]. A step procedure,
similar to that described in references [1,2], was adopted for ensuring rapid
convergence when varying the amplitude, which allowed solutions to be obtained
with a quite reasonable number of iterations (an average of 80 for eight equations).
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However, the number of iterations necessary here for ensuring convergence was
much higher than that needed when calculating the first non-linear mode (30
iterations for 24 equations) [2].

3.2. TYPICAL VALUES OBTAINED BY USE OF 25 FUNCTIONS

To confirm the good convergence of the series expansion and the validity of use
of only the nine plate functions mentioned in the above section, the second
non-linear plate mode shape has also been calculated using 25 plate functions
obtained as product of the first five beam functions (symmetric and antisymmetric),
and an example of the numerical results obtained for a square plate and
non-dimensional vibration amplitudes of 0-1157, 0-6742 and 3-1928 are listed in
Table 1. It can be seen that functions having significant contributions are those
expected according to the analysis given above, i.e., d,1, da1, 23, da3, dzs and dys.
The values of their contributions, listed in Table 1, are very close to those
corresponding to the same functions in Table 2, in which results obtained using
only nine well-chosen plate functions are given. The slight difference is due to the

TABLE 1

Second non-linear mode shape of a fully clamped square plate: typical numerical
results obtained with 25 basic functions

W, 01157 06742 31928
wnl*Jol* 1-0047 1-1453 27190

ay, 0-3963E — 10 — 0:3270E — 09 — 0-1548E — 08
ayy 005 03 15
ds — 0:6584E — 11 0-4967E — 11 0-1362E — 09
ay, 0-5915E — 03 0-1526E — 01 0-1923E + 00
ag, 0-2003E — 10 0-4541E — 11 0:9316E — 10
a,, 0-1173E — 09 02213E — 13 0-8671E — 15
s, — 03377E — 10 — 02011E — 09 — 0:9420E — 09
ds, 0-4209E — 12 0-8494E — 13 — 0-5349E — 15
sy — 0:9203E — 11 — 0-1231E — 10 — 0-1236E — 09
as, — 03193E — 11 — 0-1719E — 12 0-7077E — 15
ays — 0-1716E — 10 — 02956E — 10 — 02611E — 09
a4y, 0-2119E — 02 0-2444E — 01 0-2673E + 00
s 0-4902E — 10 0-1359E — 11 0-7211E — 10
(s — 0-1102E — 03 — 0-5962E — 03 0-2424E — 01
dss — 0:6135E — 11 — 02635E — 11 — 0-5692E — 10
dyy — 0-1686E — 11 — 0-1150E — 12 0-1355E — 15
s 02561E — 11 — 02018E — 10 — 0-1706E — 09
sy 0-1420E — 10 0-1513E — 14 0-1153E — 14
(u — 0-2133E — 10 — 0-6841E — 12 — 02067E — 10
sy — 0-5461E — 12 — 0-7982E — 13 02394E — 15
ays 0-1933E — 10 — 0-3300E — 11 — 0:6349E — 10
s 0-3540F — 03 0:3239E — 02 0-6355E — 01
s — 0-1568E — 10 — 0-6188E — 13 02282E — 10
s — 0-5090E — 04 — 0-1812E — 03 0-4256E — 02

dss 0-1726E — 11 0-1471E — 12 — 0-3424E — 10
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TABLE 3

Comparison of contribution coefficients to the second mode shape of a fully clamped
square plate: o = 1-0 (a) results from linear analysis, reference [ 12]; (b) present results
obtained from non-linear analysis for w* = 0-1157

% ES
ol*onl* ay;  ay; dys ayq ay3 dys ey de3 des

(a) 73-41 1 00406 0-0070 00101 —0-0022 —0-0011 0-0020 —0-0007 — 0-0005
(b) 73-76 1 00423 00070 00119 —0-0023 —0-:0011 0-0018 —0-0006 — 0-0005

TABLE 4

Comparison of contribution coefficients to the second mode shape of a fully clamped
square plate: o« = 0-8 (a) linear results calculated here; (b) present results obtained from
non-linear analysis for w* = 0-1174

%
olonl*  a,;  da,, Qys Ay gz ys ey g3 Aes

(a) 52523 1 0-0296 0-0047 0-0153 —0-00258 —0-00093 0-00313 —0-:00108 —0-00053
(b) 52745 1 00305 00047 0-0169 —0-00260 —0-00091 0-00298 —0-00095 — 0-00055

TABLE 5

Comparison of contribution coefficients to the second mode shape of a fully clamped
square plate: o = 0-2 (a) linear results calculated here; (b) present results obtained from
non-linear analysis for w* = 0-1131

%
olonl* a,; a,; a5  ay Ays ays Aoy dg3 des

(a)23-447 1 0-0024 0-0003 0-097 —0-00006 —0-00001 0-0297 —0-0003 —0-00004
(b)23-509 1 0-0026 0-0004 0-095 —0-00005 —0-000002 0-0327 —0-00027 —0-00007

fact that the 25 functions used do not involve the functions Wg,, W3 and
W5 which contribute to the second non-linear mode shape, as shown in Table 2.

3.3. COMPARISON OF SOLUTIONS OBTAINED FROM THE NON-LINEAR MODEL AT SMALL
AMPLITUDES WITH LINEAR SOLUTIONS

In Tables 3-5, numerical solutions of the set of non-linear algebraic equations
corresponding to the non-linear vibration problem, obtained for a,; = 0-05 are
compared with results given by Leissa in reference [9] from Rayleigh-Ritz analysis
of the linear problem, for plates having aspect ratios of 1, 0-8 and 0-2 respectively. It
can be seen that both resonance frequencies and contribution coefficients obtained
from the non-linear analysis at small vibration amplitudes are very close to those
obtained from the linear analysis. Also, in Table 6(a), non-linear frequency
parameters obtained here from the non-linear analysis for small values of a,;
are compared with parameters obtained from previous linear analyses [20-22]
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TABLE 6(a)

Comparison of non-dimensional frequency parameters. (a) linear results calculated
here: (b) non-linear results obtained here for small amplitudes (a,; = 0-05) (corre-
sponding to W* = 0-1158 for o = 1 for example) and various aspect ratios

Aspect 0-2 0-4 0-6 0-8 1

ratio o

ol*(a) 23-447 27-816 37277 52:523 73-40

onl*(b) 23-509 27-895 37-407 52:745 7376
TABLE 6(b)

Comparison of non-dimensional frequency parameters, corresponding to various plate
aspect ratios: (a) linear results obtained in reference [207; (b) linear results obtained in
reference [217; (c) linear results obtained in reference [22]; (d) non-linear results
obtained here for very small amplitudes (a,; = 0-005 corresponding to W* = 0-01158

when o = 1)
Aspect 0-4 0-66 1 1-5 2:0 2:5
ratio o
wl*(a) 27-81 41-73 73-41 93-87 173-84
wl*(b) 73-413 93-86
wl*(c) 73-3947 127-307
wnl*(d) 27-82 4172 73-416 93-86 127-348 173-88

corresponding to various plate aspect ratios. In Table 6(b) non-linear frequency
parameters obtained here from the non-linear analysis for very small values of
a,, are compared with parameters obtained from the solution of the eigenvalue
problem for other values of the plate aspect ratio. In both Tables 6(a) and (b),
corresponding to various plate aspect ratios, very good agreement can be seen
between data from a linear model and the non-linear model at small deflections. It
is worth noting here, from the numerical methods point of view, that a classical
eigenvalue problem, solved usually by using classical numerical methods, such as
Jacobi’s method, appears here, as has been pointed out when dealing with the first
non-linear plate mode shape in reference [2], as a limit of a non-linear problem,
described by a set of non-linear algebraic equations, the solution of which tends to
the eigenvalue problem solution when the displacement amplitude tends to zero.

3.4. COMPARISON OF THE AMPLITUDE FREQUENCY DEPENDENCE CALCULATED VIA THE
PRESENT THEORY WITH PREVIOUS RESULTS

In order to estimate the accuracy of the results obtained by the present theory
and the effects of the approximations adopted, a comparison has been made with
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Figure 2. Comparison of non-linear resonant frequency of the 2nd mode of an isotropic plate
o = 2/3. [ values taken from [23], read from graph; — present work.

previous results. Most of the available results for fully clamped rectangular plates
are concerned with the first non-linear mode. Only one reference has been found in
which the non-linear resonant frequency of the second mode of an isotropic
rectangular plate (aspect ratio = 2/3), calculated using the hierarchical finite
element method was presented. Figure 2 shows very good agreement between
results given in reference [23] and the results calculated via the present model.
This good agreement, added to the reasons mentioned in Section 2, shows that
the assumption of zero in-plane displacements made in equation (2) can lead
to good estimation of the second non-linear mode of fully clamped rectangular
plates.

4. GENERAL PRESENTATION OF NUMERICAL RESULTS

Numerical results corresponding to assigned values of a,; varying from 0-05 to
2 corresponding to a maximum displacement amplitude to thickness ratio varying
from 0-1131 to 4-942, obtained at (x*, y*) = (0-5, 0-25), and o = 0-2, 0-4, 0-6, 0-8 and
1, are summarized in Tables 2, 7-10. In each table, a;; represents the contribution of
the basic function obtained as product of the ith and jth x and y clamped-clamped
beam functions, wk,, is the maximum non-dimensional amplitude and w}/wj
is the ratio of the non-linear non-dimensional frequency parameter defined in
equation (11) to the linear non-dimensional frequency parameter obtained by
diagonalization of the linear system.
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Figure 3. Comparison of the change in natural frequency for the first and the 2nd mode (square
plate o = 1). Curve 1: first non-linear mode; Curve 2: second non-linear mode.
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Figure 4(a). Normalized second non-linear mode rectangular plate o = 0-2, x* = 0-025. Curve 1:
lowest amplitude; Curve 4: highest amplitude.

5. AMPLITUDE DEPENDENCE OF THE SECOND MODE SHAPE

The dependence of the non-linear frequency on the amplitude of vibration is
plotted in Figure 3, for both the first and second mode of a fully clamped square
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Figure 4(b). Normalized second non-linear mode square plate « = 1, x* = 0-025. Curve 1: lowest
amplitude; Curve 4: highest amplitude.
TABLE 11

Maximum displacement amplitude W %, corresponding to the normalized curves given
in Figures 4-13

W*  Aspect 1 0-8 0-6 0-4 0-2
ratio o
Curve 1 0-115701 0-117414 0-116951 0-115639 0-113120
Curve 2 0674169 0677996 0678659 0-682430 0-720949
Curve 3 120373 120146 120720 1-23387 1-35920
Curve 4 2-24821 2:23027 2-24604 2-32360 2:61124

plate (o« = 1), with the ratio of non-linear frequency w*nl against the maximum
non-dimensional amplitude wg,,. The curves of Figure 3 show that the first
non-linear mode exhibits less change in frequency with amplitude than does the
second non-linear mode. This fact is not surprising, since for the same maximum
displacement amplitude, the deflection shape associated with the first mode
produces less induced tension than that associated with the second mode. In
Figures 4(a) and (b) normalized symmetric sections of the non-linear second mode
shape corresponding to x* = 0-025 and o« = 0-2 and 1, are plotted for the values
of the maximum non-dimensional amplitudes given in Table 11. All curves show
the amplitude dependence of symmetric sections of the second mode shape. They
show that the non-linear mode shapes in the neighbourhood of the clamps can be
very different from those expected in the linear theory. In Figures 5(a) and (b)
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Figure 5(a). Normalized second non-linear mode rectangular plate o = 0-2, y* = 0-025. Curve 1:
lowest amplitude; Curve 4: highest amplitude.
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Figure 5(b). Normalized second non-linear mode rectangular plate o« = 0-6, y* = 0-025. Curve 1:
lowest amplitude; Curve 4: highest amplitude.

normalized antisymmetric plots of the non-linear second mode shape corresponding
to y* =0025 and o =02; 0-6 are presented for the values of the maximum
non-dimensional amplitudes w,, given in Table 11. These curves show that
antisymmetric components of the second non-linear mode shape are also amplitude
dependent with an increase of curvature near to the clamps and a displacement of
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the maximum amplitude towards the clamps, as has been pointed out in reference
[1] for the second non-linear mode shape of a clamped-clamped beam.

6. BENDING STRESSES ASSOCIATED WITH THE SECOND
NON-LINEAR MODE SHAPE

The maximum bending strain ¢,;, and ¢, obtained for z = H/2 are given by

H [0*w H [(d*w
xp =5 (W)’ &b =% (8—y2> (13-14)

By using the classical thin plate assumption of plane stress and Hooke’s law, the
stresses can be obtained as

EH 0%w 0%w

o= m(() o (59)) "
EH 0%w 0%w

T =) ((W) o <W>> (1e)

In terms of the non-dimensional parameters defined in reference [2], non-
dimensional stresses o3, and o3}, can be defined by

o*w* o*w*

o= () + o (S ) 17

0*w* o*w*
(5] (22)

The relationships between the dimensional and non-dimensional stresses are
EH?
—_ g%

o 2(1—v2)6 , (19)

which is valid for both dimensional and non-dimensional pairs of stresses defined in
equations (15-18).

The non-dimensional bending stress distribution associated with the rectangular
plate second non-linear mode is plotted in Figure 6 for x* = 0-025 and o = 1. It can
be seen in this figure, corresponding to a region which is very close to the clamps,
that the bending stress can exhibit a quite unusual distribution, with a positive
bending stresses along the whole section parallel to the y direction, i.e., the
symmetric direction of the second mode. Such a non-linear effect has been
mentioned in reference [2] for the plate non-linear fundamental mode and was
attributed to the Poisson’s ratio effect and to high curvatures in the other direction
(i.e. the x direction in the present case). The non-dimensional bending stress
distribution, associated with the second non-linear mode, is plotted for various
plate aspect ratios and various sections parallel to directions of symmetry and
antisymmetry of the mode in Figures 7(a, b) and (8a, b). All curves show the
amplitude dependence of the stress distribution, and a high increase of the bending
stress near to the clamps, compared with the rate of increase expected in the linear
theory. Table 12 summarizes some numerical data concerning the rate of increase
in bending stresses. The non-dimensional bending stress at the point A(x* = 0-025,
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Figure 6. Non-dimensional bending stress distribution associated with the fully clamped
rectangular plate second non-linear mode for « = 1 along the section x* = 0-025. Curve 1: lowest
amplitude; Curve 4: highest amplitude.
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Figure 7(a). Non-dimensional bending stress distribution associated with the fully clamped
rectangular plate second non-linear mode for « = 0-2 along the section x* = 0-25. Curve 1: lowest
amplitude; Curve 4: highest amplitude.
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Figure 7(b). Non-dimensional bending stress distribution associated with the fully clamped
rectangular plate second non-linear mode for o = 0-6 along the section x* = 0-25. Curve 1: lowest
amplitude; Curve 4: highest amplitude.
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Figure 8(a). Non-dimensional bending stress distribution associated with the fully clamped
rectangular plate second non-linear mode for « = 0-2 along the section y* = 0-25. Curve 1: lowest
amplitude; Curve 4: highest amplitude.
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Figure 8(b). Non-dimensional bending stress distribution associated with the fully clamped
rectangular plate second non-linear mode for o = 1 along the section y* = 0-25. Curve 1: lowest
amplitude; Curve 4: highest amplitude.

y* = 0-025) of a plate corresponding to « = 0-6, increases from 0-067 to 3-95, when
the non-dimensional amplitude increases from 0-1169 to 2-2460, as indicated in
Table 12. This is about three times the increase expected in the linear theory.

7. CONCLUSIONS

The non-linear model developed in references [ 1, 2] for non-linear free vibrations
of thin elastic structures occurring at large displacement amplitudes has been
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successfully used in the present work to determine numerically the amplitude
dependence of the second non-linear mode shape of fully clamped rectangular
plates, for various aspect ratios and vibration amplitudes, via the solution of a set
of non-linear algebraic equations, involving a fourth order tensor due to the
geometrical non-linearity. The amplitude-dependent second non-linear mode
shape was expressed as a series of plate functions obtained as products of
clamped—-clamped x and y beam functions. As was expected, it was noticed that
plate functions obtained using higher order beam functions, compared with those
used for the first non-linear mode in reference [2], contribute significantly to the
second non-linear mode. Consequently, the size of the tensors increased and the
process of solution became quite long. However, a convergence study showed that
only plate functions representing the shape of the second mode (antisymmetric in
the x-direction and symmetric in the y-direction) have a significant contribution to
the second non-linear mode. This justified the use of only nine well-chosen plate
functions, which made the numerical solution much easier to obtain.

Considering the results obtained, numerical data corresponding to various
values of the plate aspect ratio and amplitudes of vibration up to 494 times the
plate thickness are given. Plots of the amplitude-dependent plate second mode
showed clearly that the geometrical non-linearity induces a deformation of the
mode, in both the symmetric and antisymmetric directions, with a displacement
of the extremum line towards the clamps when the amplitude increases. As a
consequence of the deformation of the mode, it was shown that the rate of increase
in the induced bending stresses in a region close to the clamps can be three times
higher than that expected in the linear theory.

It appears from the present work that the non-linear model developed in
references [1, 2] allows higher order non-linear fully clamped rectangular plate
modes to be quite easily estimated and can be considered as an extension of the
classical linear eigen value problem for free vibration of plates. It shows also
qualitatively and quantitatively how it can be inaccurate to assume linear mode
shapes when expressing the non-linear response of plate structures. Further
investigations are needed in order to allow higher order modes to be estimated and
to find out how the estimated non-linear modes can be simply used in order to
express the non-linear forced response for engineering purposes. Also the effects of
such a non-linearity on the fatigue life of highly excited plate-type structures has to
be investigated. There is considerable relevance to the acoustic fatigue problem in
aircraft structures.
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APPENDIX A: NUMERICAL DETAILS OF THE CLAMPED-CLAMPED
BEAM ANALYSIS

The chosen basic functions W; were the linear clamped-clamped beam functions

cosh(v;x/L) — cos(v;x/L)  sinh(v;x/L) — sin(v;x/L)
Wi(x) = -

coshv; — cosv; sinh v; — sin v;

where v; for i = 1,2, ... are the eigenvalue parameters for a clamped-clamped
beam. The values of the parameters V; were computed by solving numerically
the transcendental equation coshuv;cosv; =1 and are given in Table 13. The
functions w; were normalized in such a manner that

1
m; = L wi(xF)wk(x*)dx* = 6;;.

The functions w¥, i =1, ... ,5, are shown in Figure 9.
TABLE 13
Symmetric (a) and antisymmetric (b) eigenvalue parameters for a clamped-clamped beam
(a) (b)
1 473004075 2 7-85320462
3 10-99560784 4 14-13716549
5 17-27875966 6 20-42035225
7 23-56194490 8 26-70353756
9 29-84513021 10 32:98672286
11 36-12831552 12 39-26990817
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Figure 9. Clamped-clamped beam functions for i =1, 2, 3,4, 5.
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APPENDIX B: NOTATION

contribution coefficient of the plate deflection function as
a product of the ith and jth beam mode shapes in the x and
y directions, respectively

length, width of the plate

Young’s modulus

plate thickness

general term of the rigidity tensor, the mass and the
non-linearity tensor respectively

General term of the non-dimensional rigidity tensor, mass
tensor and non-linearity tensor respectively

Dimensional and non-dimensional surfaces [0, a] x [0, b] and
[0, 1] x [0, 1] respectively

kinetic energy

in-plane displacements at point (x, y) of the plate

U(x, y,t) = u(x, y)sin? wt

V(x, y, t) = v(x, y)sin® ot

Bending, axial and total strain energy respectively
transverse displacement at point x on the plate

Wi(x, y, t) = w(x, y) sin wt

non-dimensional transverse displacement at point x on the
plate

maximum of the non-dimensional transverse displacement
point co-ordinates

non-dimensional parameter (aspect ratio) given by o = b/a
Poisson’s ratio

mass density per unit volume of the plate

frequency and non-dimensional frequency parameter
respectively

Dimensional bending stresses

Non-dimensional bending stresses
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