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A formulation for fully coupled bu!eting analysis of long-span cable-supported
bridges is presented, in which dynamic coupling between modes of vibration,
dynamic forces on bridge deck and towers and cables, and varying wind speed and
structural properties along the bridge deck and towers and cables can be taken
into consideration. This formulation adopts a "nite element approach and
a pseudo-excitation method. Aeroelastic forces on the bridge deck are changed into
nodal forces to form aeroelastic damping and sti!ness matrices while aerodynamic
forces on the bridge deck, towers and cables are converted into nodal forces to
obtain a loading vector. After the system equation of motion is assembled, the
pseudo-excitation method is applied and the formulation is programmed so that
a personal computer can be used to execute the bu!eting analysis of the system of
hundreds of degrees of freedom in 1 or 2 h. The results from the case study of a long
suspension bridge using the proposed formulation and program are also selectively
presented in this paper.

( 1999 Academic Press
1. INTRODUCTION

Wind-induced vibrations of the bridge deck of a long-span cable-supported bridge
are classi"ed mainly as bu!eting, vortex shedding, #utter and galloping. Many
e!orts have been made in last two decades to successfully prevent bridge deck
from #utter instability through the optimization of deck cross-section and/or the
installation of aeroelastic devices. The optimization of deck cross-section has also
signi"cantly reduced vortex-shedding response. Relatively less attention has been
given to the bu!eting response of bridge decks, probably because the bu!eting
response does not generally lead to catastrophic failure. However, with the
record-breaking span lengths of modern long-span cable-supported bridges, the
0022-460X/99/480569#20 $30.00/0 ( 1999 Academic Press
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bu!eting response is signi"cantly increased, which may lead to serious fatigue
damage to structural components and connections, instability of vehicles travelling
on the deck, and discomfort to pedestrian.

In the early 1960s, Davenport [1] applied statistical concepts of the stationary
time series and random vibration theory to the bu!eting analysis of long-span
bridges. He introduced aerodynamic admittance functions and joint acceptances to
consider the temporal and spatial distributions of aerodynamic forces along the
bridge deck. He also partly took account of motion e!ects of bridge deck on
bu!eting response using aerodynamic damping. In the 1970s, Scanlan and Gade
[2] extended their research results from #utter instability to bu!eting response.
They believed that aeroelastic forces in #utter instability would a!ect the bu!eting
response of the bridge deck, and hence they suggested that the aerodynamic forces
due to wind turbulence be considered together with the aeroelastic forces due to the
motion of the deck in the bu!eting analysis of the bridge. In the aeroelastic forces
they suggested, both aeroelastic sti!ness and damping e!ects and aeroelastic
coupling between #exural and torsional vibrations were included in terms of a set
of #utter derivatives. In the aerodynamic forces, however, they did not consider the
aerodynamic admittance functions.

The bu!eting analysis of modern long-span bridges using either Davenport's
theory or Scanlan's theory is actually a combination of numerical, experimental,
and analytical approaches. The "nite element technique is usually adopted to
determine the natural frequencies and mode shapes of a modern long-span bridge.
The wind tunnel tests of bridge section models provide #utter derivatives
and aerodynamic coe$cients. The bu!eting response of the bridge deck is then
determined using the SRSS method (the square root of the sum of squares of
modal responses).

Modern long-span cable-supported bridges tend to have closely spaced natural
frequencies. The contributions from multi-modes of vibration and inter-modes of
vibration to the bu!eting response, therefore, may have to be included. To consider
the multi-mode bu!eting response of a bridge deck, Lin and Yang [3] proposed
a general linear theory for the computation of cross-spectra of the deck response to
turbulent wind. Jain et al. [4] considered both multi-mode and inter-mode
bu!eting responses using a random vibration-based mode superposition approach.
Katsuchi et al. [5] analyzed the Akashi}Kaikyo bridge, the longest suspension
bridge in the world, using the multi-mode approach in reference [4] and
demonstrated the signi"cance of multi-mode responses of the bridge.

The wind-induced dynamic responses of bridge deck, towers and cables are
traditionally determined separately to simplify the problem. Thus, wind-induced
dynamic forces on the towers and cables are not considered in the aforementioned
work. Recently, with respect to #utter instability of cable-stayed bridges, Ogawa
et al. [6] pointed out that the ignorance of interaction between bridge deck, towers
and cables may positively or negatively a!ect the prediction of #utter instability of
a bridge. Davenport [7] also mentioned several possible mechanisms of interaction
between the bridge deck and the cables.

In terms of modern computer technology, a fully coupled three-dimensional
bu!eting analysis of a long-span bridge is presented in this paper. The advantages
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of the suggested approach, comprising a three-dimensional "nite element approach
and a pseudo-excitation method, are: (1) to readily handle the bridge deck with
signi"cantly varying structural properties and mean wind speed along the deck; (2)
to make good use of the ready-made "nite element models of the bridge for both
static and eigenvalue analyses as well as the relevant results; (3) to naturally include
inter-mode and multi-mode responses; (4) to determine wind-induced responses
of the bridge deck, towers, and cables simultaneously; and (5) to lay down a
foundation for investigation of vibration mitigation or control of cable-supported
bridges.

2. AEROELASTIC STIFFNESS AND DAMPING MATRICES

Aeroelastic forces on a bridge deck come from the interaction between the
wind #ow and the motion of the deck. Scanlan and his co-workers [4, 8, 9]
mathematically described the aeroelastic forces per unit length on a bridge deck
in terms of the so-called #utter derivatives as follows:

Dae"
1
2

o;2B
dCKP*

1

pR
;
#KP*

2

B
d
aR
;

#K2P*
3
a#K2P*

4

p
B

d

#KP*
5

hQ
;
#K2P*

6

h
B

d
D ,

(1)

¸ae"
1
2
o;2B

dCKH*
1

hQ
;
#KH*

2

B
d
aR
;

#K2H*
3
a#K2H*

4

h
B
d

#KH*
5

pR
;
#K2H*

6

p
B
d
D ,

(2)

Mae"
1
2

o;2B2
d CKA*

1

hQ
;
#KA*

2

B
d
aR
;

#K2A*
3
a#K2A*

4

h
B

d

#KA*
5

pR
;
#K2A*

6

p
B
d
D ,

(3)

where Dae, ¸ae, and Mae are the aeroelastic drag, lift, and torsional moment,
respectively, on the deck segment of unit length, o is the air density, ; is the mean
velocity of the incident wind at the deck segment, B

d
is the width of the bridge deck

segment, K is equal to B
d
u/; (called the reduced frequency), P*

i
, H*

i
, and A*

i
(i"

1}6) are the functions of 2n/K (called the #utter derivatives), p(t), h (t), and a(t) are
the lateral, vertical, and angular dynamic displacements of the deck segment,
respectively, and each over-dot denotes one partial di!erentiation with respect to
time. There are some discussions on the application of equations (1)} (3) to the
bridge deck, such as turbulent e!ects on #utter derivatives [10] and the spanwise
diminution of coherence in the associated #utter derivatives [11]. These discussions
are, however, not addressed in this study.
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In a matrix notation, equations (1)} (3) can be expressed as

Fae"Saed#Daed0 , (4)

where
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Assume that the bridge deck is modelled by three-dimensional beam elements,
and the relation between the internal displacements of the ith element and its nodal
displacements can be expressed as

d
i
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i
, (8)

where the vector d
i
is the 3]1 internal displacement vector of the ith deck element,

corresponding to the vector d, in the local co-ordinate system denoted by xN , yN , zN ; the
vector de

i
is the 12]1 local nodal displacement vector of the ith deck element, and

the matrix B
i
is the 3]12 interpolation function matrix of the beam element. By

using the principle of virtual work the aeroelastic sti!ness and damping matrices of
the ith element can then be, respectively, expressed as
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where the integrals are de"nite integrals over the element length. If the length of the
element is su$ciently small, the width of the element, the #utter derivatives, and the
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mean wind speed for the element can be regarded as constant with respect to the
local co-ordinate xN . Thus, after the integration of equations (9) and (10), either the
aeroelastic element sti!ness or the aeroelastic damping matrices can be expressed
as a 12]12 matrix, as listed in Appendix A.

The system aeroelastic sti!ness matrix Kae
s

and aeroelastic damping matrix
Cae

s
can be assembled from the element aeroelastic sti!ness and damping matrices

in the same way as the system structural sti!ness matrix Ks
s
and structural damping

matrix Cs
s

are assembled from the element structural sti!ness and damping
matrices. The aeroelastic sti!ness and damping matrices are di!erent from the
structural sti!ness and damping matrices in which the former are the functions of
both the frequency and the mean wind speed.

It may be worthwhile to point out that the aeroelastic sti!ness and damping
matrices described above have been used by some researchers to carry out "nite
element-based #utter analysis of cable-supported bridges [12}14]. However,
to the best of writers' knowledge, they are not aware that anyone has used the
combination of the "nite element approach and pseudo-excitation method for the
bu!eting analysis of long-span cable-supported bridges.

3. AERODYNAMIC FORCES DUE TO TURBULENCE

3.1. AERODYNAMIC FORCES ON DECK

By assuming no interaction between aeroelastic and aerodynamic forces and
by using quasi-steady aerodynamic force coe$cients, the aerodynamic forces
(bu!eting forces) on the deck segment of unit length are expressed as [4, 9]
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the angle of attack of normal incident wind referring to the horizontal plane of the
deck segment, and u(t) and w(t) are the horizontal and vertical components of
#uctuating wind respectively.

The aerodynamic forces on the deck segment can also be expressed in matrix
notation:
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in which
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The consistent bu!eting forces at the nodal points of the ith deck element in the
local coordinate system can be obtained by the following de"nite integral:
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If the length of the element is su$ciently small, the aerodynamic coe$cients and
their derivatives, the wind velocities for the element, and the width of the element
can be regarded as constant along the element. Consequently, the bu!eting forces at
the nodal points of the ith deck element can be expressed as
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i,d
"Eb

i,d
q
i
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The expression of the matrix Eb
i,d

is listed in Appendix B.

3.2. AERODYNAMIC FORCES ON TOWERS

The aerodynamic forces on a bridge tower caused by along-wind and cross-wind
turbulence can be derived based on the quasi-steady assumption in a similar way to
the aerodynamic forces on the bridge deck. Following the work of Davenport [15]
and Solari [16], the aerodynamic forces on the bridge tower can be expressed in
a general form as

Fb
t
"Ab

t
r (18)

in which

Fb
t
"G

Db
t

Lb
t

Mb
t
H , r"G

u
vH , Ab

t
"

C
1,t A

2C
D,t
; B C

1,t A
C@

D,t
; B

C
1,t A

2C
L,t
; B C

1,t A
C@

L,t
; B

C
2,tA

2C
M,t
; B C

2,tA
C@

M,t
; B

, (19)

where Db
t
, ¸b

t
, and Mb

t
are the bu!eting drag, lift, and moment, respectively, on the

tower segment of unit height, C
D,t

, C
L,t

, and C
M,t

are the bu!eting drag, lift, and
moment coe$cients referring to the width B

t
of the tower segment, C@

D,t
"

dC
D,t

/du, C@
L,t
"dC

L,t
/d/, C@

M,t
"dC

M,t
/d/, / is the angle of attack of normal



BUFFETING ANALYSIS OF CABLE-SUPPORTED BRIDGES 575
incident wind referring to the vertical plane of the tower segment, u(t) and v(t) are
the horizontal and lateral components of #uctuating wind, respectively, and
C
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, and C
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t
. Obviously, equation (19) is similar to equation

(15) but for the tower, the aerodynamic coupling between lift and drag is ignored.
The further hypothesis that u(t) and v (t) are statistically independent random
processes was suggested by Solari [16] while Davenport [15] set C@

D,t
to zero.

The bridge tower is usually modelled as a series of three-dimensional beam
elements. The consistent bu!eting forces at the nodal points of the ith element in the
local co-ordinate system for the bridge tower can be obtained by the following
de"nite integral.
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Again, if the length of the tower element is su$ciently small, the aerodynamic
coe$cients and their derivatives, the wind velocities for the element, and the width
of the element can be regarded as constant along the element. Consequently, the
bu!eting forces at the nodal points of the ith tower element can be expressed as
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The expression of the matrix Eb
i,t

is listed in Appendix B.

3.3. AERODYNAMIC FORCES ON CABLES

In the eigenvalue analysis of the bridge, the cable is usually modelled as a
series of two-node cable elements. In accordance with this arrangement and the
quasi-steady assumption, the aerodynamic forces on the cable segment of unit
length due to turbulence can be written as
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segment of unit height, C
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The consistent bu!eting forces at the nodal points of the ith cable element in the
local co-ordinate system for the bridge cable can be obtained by the following
de"nite integral:
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in which B
i,c

is the 2]6 interpolation function matrix for the cable element.
Assuming that the structural properties and wind properties are constant with
respect to the element, the bu!eting forces at the nodal points of the ith cable
element can be expressed as
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The expression of the matrix Eb
i,c

is listed in Appendix B.

4. LOADING SPECTRAL DENSITY FUNCTION MATRIX

The nodal forces obtained by equations (17), (21) and (25) are in the local
co-ordinate systems. They should be converted to those in the global co-ordinate
system through the co-ordinate transformation matrix T

i
used in the eigenvalue

analysis of the bridge:
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where the superscript T means the transposition of a matrix and n is the total
number of the elements subject to wind loading. Notice that the co-ordinate
transformation matrix T is not a function of t. Therefore, if assuming that the
#uctuating wind components u(t), v(t), and w(t) acting on the elements can be
represented by a stationary random process, the correlation function matrix for the
bu!eting forces on the whole bridge can be obtained by
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where E is the expected value operator. The spectral density function matrix of the
nodal bu!eting forces acting on the whole bridge in the global co-ordinate system is
thus
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The cross-spectral density function matrix of the nodal bu!eting forces acting on
the ith and jth elements can be expressed in a general form as
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If the ith element is a deck element and the jth element is a cable element,
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Similar explanation can be given to the two elements of which one is a tower
element and the other is a cable element or to the two elements of which one is
a tower element and the other is a deck element.

The cross-spectral density functions of the wind components on the elements in
reference [9] are adopted:
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where C
x
, C

y
, and C

z
are the constants determined experimentally. For the deck

elements, it is suggested that 5K¸
d
/2nB

d
)C

x
)20K¸

d
/2nB

d
be satis"ed. ¸

d
is the

total length of the bridge deck, u
*

is the friction velocity of the wind, i is the
imaginary unit, C

k,l
and Q

k,l
are the co-spectra and quadrature spectra, respectively,

and S*
k,l

is the conjugation of S
k,l

. No quantitative assessment for the quadrature
spectrum Q

k,l
has yet been made, but for the deck C

uw
can be chosen as [4]
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)
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e~Cx
Dxi~xj

D@Ld.

(44)

5. PSEUDO-EXCITATION METHOD

The equation of motion of the whole bridge for the bu!eting analysis can be
expressed as

MYG (t)#CY0 (t)#KY(t)"RP(t), (45)

in which Y(t) is the total nodal displacement vector of N dimensions including the
bridge deck, towers, cables, and other components, M is the N]N total mass
matrix, C is the N]N total damping matrix which consists of both aeroelastic
damping matrix Cae

s
and structural damping matrix Cs

s
, K is the N]N total sti!ness

matrix containing the aeroelastic sti!ness matrix Kae
s

and the structural sti!ness
matrix Ks

s
, P is the total loading vector of m dimensions (in general, m@N), and it is

equal to Pb
s
, R is the N]m matrix consisting of 0 and 1, which expands the

m-dimensional loading vector into the N-dimensional loading vector.
The Fourier transformation of equation (45) gives the frequency-domain transfer

function between loading and displacement response as

H(iu)"[!u2M#iuC#K]~1, (46)
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in which the superscript !1 means the matrix inversion. The spectral density
function matrix for the displacement response can be then calculated from the
spectral density function matrix of the bu!eting force:

S
YY

(u)"H*RS
PP

(u)RTHT. (47)

The computation e!ort required for the determination of the response spectral
density function matrix is tremendous for a long-span bridge if equation (47) is
applied. Traditionally, the random-vibration-based mode superposition approach
(the SRSS method) is used to overcome this problem if the natural frequencies of
the bridge are well separated and the structural damping is small. For a long-span
bridge of closely spaced natural frequencies, inter-mode and multi-mode responses
may be important. A pseudo-excitation algorithm is thus suggested here to
determine the spectral density function matrix for the bu!eting response. This
algorithm actually converts the random response calculation to the deterministic
response calculation. The principle of the algorithm [17] and its application to
wind-excited structures are introduced as follows:

Note that the spectral density function matrix S
PP

(u) or Sb
PP

(u) is a symmetric
matrix. Therefore, this excitation spectral matrix can be decomposed as

S
PP

(u)"L*DLT (48)

in which L is the lower triangular matrix and D the diagonal matrix. With the kth
column of L denoted as L

k
and the kth diagonal element of D denoted as d

kk
, S

PP
(u)

can be further expressed as

S
PP

(u)"
m
+
k/1

d
kk

L*
k
LT

k
. (49)

Let S
PiPi

(u) and ¸
ik

denote the element in S
PP

(u) at the ith row and ith column,
and the ith element in the kth column L

k
respectively. These elements can be then

determined using the following procedure:

d
11
"S

pipi
, (50)

d
ii
"S

PiPi
!

i~1
+
r/1

L*
ir
L

ir
d
rr
, (51)

¸
ij
"

1
d
jj
Adii!

i~1
+
r/1

¸*
ir
¸
jr
d
rrB , j(i, (52)

¸
ij
"0, i(j. (53)

Then, the pseudo-excitations are constituted as follows:

f
k
"L

k
exp(iut) (k"1, 2,2, m). (54)

For each pseudo-excitation vector, a pseudo-displacement response vector,
Y

k
(u), can be determined by

Y
k
"H (u)Rf

k
. (55)
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It can be readily proved that the spectral density function matrix of the
displacement response of the bridge can be obtained by

S
YY

(u)"
m
+
k/1

d
kk

Y*
k
YT

k
. (56)

Much less computation e!ort is needed to calculate the response spectral density
matrix by the pseudo-excitation method, equation (56), than by equation (47), in
particular if the internal force response spectral density matrix is required. Further
reduction of computation time can also be achieved if the bu!eting response of
a long-span bridge is dominated by the "rst few modes of vibration. In this case, the
equation of motion, equation (45), can be "rst reduced from N dimensions to
r dimensions in terms of the mode shapes found in the eigenvalue analysis, where
r is the number of modes of vibration interested.

Let Q
N]r

be the modal matrix containing the "rst r mode shapes, and introduce
a linear transformation.

Y
N]1

"Q
N]r

z
r]1

(57)

in which z is the r]1 generalised displacement response vector. Equation (45) of
N dimensions can be reduced to the equation of r dimensions:

M
r
zK (t)#C

r
z5 (t)#K

r
z(t)"P

r
(t), (58)

where

M
r
"QTMQ, C

r
"QTCQ, K

r
"QTKQ, P

r
"QTRP. (59)

The pseudo-excitations are computed according to

f
rk
"QTRL

k
exp(iut) (k"1, 2,2,m). (60)

For each pseudo-excitation vector, the pseudo-displacement response vector,
Y

k
(u), is now determined by

Y
k
"QH

r
(u)Rf

rk
(k"1, 2,2, m), (61)

where the transfer function is

H
r
(iu)"[!u2M

r
#iuC

r
#K

r
]~1. (62)

The spectral density function matrix for the displacement response attributed to
the "rst r modes of vibration is computed according to equations (56) and (61).

It is seen that di!erent from the SRSS method, the pseudo-excitation method
retains the cross-correlation terms between the "rst r normal modes. The modal
coupling e!ects can thus be included. The standard deviations of the displacement,
velocity, and acceleration of the node can be readily computed according to the
random vibration theory, after the auto spectral density functions for each node are
determined.



Figure 1. Con"guration of long suspension bridge used in case study.

Figure 2. Lateral displacement response of bridge deck. (*) Full bridge; (} } }) deck only.
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6. APPLICATION

The formulation described above was programmed and applied to a real long
suspension bridge having a main span of 1377 m and two side spans of 300 and
350 m respectively (see Figure 1). The height of the tower is 206 m while the
diameter of the main cable is 1)1 m. The bridge deck is a hybrid steel structure
carrying both the highway and the railway. The modal analysis of the bridge
showed that the natural frequencies of the bridge were spaced very closely; the "rst
20 natural frequencies ranged from 0)068 to 0)380 Hz only. The #utter derivatives
H*

i
and A*

i
(i"1, 2, 3, 4) and the aerodynamic force coe$cients of the bridge deck

were measured from wind tunnel tests. The variation of mean wind speed with
height was assumed to follow a power law with an exponent of 0)19 for an open
terrain. The reference mean wind speed was taken as 25 m/s at the bridge deck level
near the tower and the wind was assumed to be normal to the bridge deck.

Due to space limitation, most of the results from the case study will be presented
later, together with the detailed information on the bridge structural system, bridge
modal properties, #utter derivatives and aerodynamic parameters. Figure 2 shows
the variations of standard deviation of deck lateral displacement response along the
span for the full bridge and for the deck only. The term &&full bridge''means that the



Figure 3. Vertical displacement response of bridge deck. (*) Full bridge; (} } }) deck only.

Figure 4. Angular displacement response of bridge deck. (*) Full bridge; (} } }) deck only.
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bu!eting forces not only on the bridge deck but also on the bridge towers and cables are
included in the analysis. The term &&deck only'' implies bu!eting forces only on the bridge
deck and no bu!eting forces on the bridge towers and cables in the analysis. It is seen from
Figure 2 that due to the consideration of bu!eting forces on the main cables and towers, the
lateral displacement response of the bridge deck increases by about 15% at the midspan.
The variations of standard deviation of deck vertical and angular displacement responses
along the span for the full bridge, however, are almost the same as those for the deck only, as
shown in Figures 3 and 4 respectively.
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7. CONCLUSIONS

A new formulation has been presented in this paper for fully coupled
three-dimensional bu!eting analysis of long-span cable-supported bridges. The
formulation is featured by a combination of the "nite element approach and
pseudo-excitation method. The advantages of the suggested formulation are: (1) to
readily handle the bridge deck of signi"cantly varying structural properties and
mean wind speed along the deck; (2) to make good use of the ready-made "nite
element models of the bridge for both static and eigenvalue analyses; (3) to
naturally include inter-mode and multi-mode responses; (4) to determine
wind-induced responses of the bridge deck, towers, and cables simultaneously; and
(5) to lay down a foundation for the investigation of vibration mitigation or control
of cable-supported bridges.

The suggested formulation has been intentionally programmed so that a
personal computer could be used to execute the bu!eting analysis of the system of
hundreds of degrees of freedom in 1 or 2 h. A case study of a real long suspension
bridge has been carried out using the developed program and the results have been
selectively presented. The case study, however, does not include e!ects of
aerodynamic admittance, spatial correlation of #utter derivatives, lateral #utter
derivatives, and others which need further investigation.
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APPENDIX A. AEROELASTIC ELEMENT STIFFNESS AND DAMPING

MATRICES

The interpolation function matrix B used for a beam element is as follows:
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The aeroelastic sti!ness coe$cients in the 12]12 aeroelastic sti!ness matrix, Kae,
for the deck element can thus be obtained according to equation (9):
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in which Sae
i,j

is the ij element of the matrix Sae, and ¸ the length of the element.
The aeroelastic damping coe$cients in the 12]12 aeroelastic damping matrix,

Cae, for the deck element can be derived according to equation (10). The resulting
coe$cients are the same as those in equation (A3) only if Kae

i,j
and Sae

i,j
are replaced

by Cae
i,j

and Dae
i,j

respectively.

APPENDIX B. AERODYNAMIC ELEMENT FORCE MATRICES

According to equations (16) and (17), the force coe$cients in the 12]2 matrix,
Eb
d
, related to the bu!eting forces at the nodal points of the deck element, can be

derived as
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According to equations (20) and (21), the force coe$cients in the 12]2 matrix,
Eb
t
, related to the bu!eting forces at the nodal points of the tower element can be

expressed as
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The interpolation function matrix B
c
used for a cable element is as follows:

B
c
"C

0 1!x/¸ 0 0 x/¸ 0

0 0 1!x/¸ 0 0 x/¸D . (B3)
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According to equations (24) and (25), the force coe$cients in the 6]1 matrix, Eb
c
,

related to the bu!eting forces at the nodal points of the cable element can be
obtained as
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